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Abstract This paper is concerned with the solution of severely ill-conditioned linear tensor

equations. These kinds of equations may arise when discretizing partial differential equa-

tions in many space-dimensions by finite difference or spectral methods. The deblurring of

color images is another application. We describe the tensor Golub–Kahan bidiagonalization

(GKB) algorithm and apply it in conjunction with Tikhonov regularization. The condition-

ing of the Stein tensor equation is examined. These results suggest how the tensor GKB

process can be used to solve general linear tensor equations. Computed examples illustrate

the feasibility of the proposed algorithm.
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1 Introduction

This paper is concerned with the numerical solution of severely ill-conditioned tensor equa-

tions. We are particularly interested in the solution of Sylvester and Stein tensor equations.

The proposed iterative schemes also can be used to solve equations of the form

L(X) = C, (1)
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where L : RI1×I2×...×IN → R
I1×I2×...×IN is a linear tensor operator. Severely ill-conditioned

tensor equations arise in color image restoration, video restoration, and when solving certain

partial differential equations in several space-dimensions by collocation methods; see, e.g.,

[3,21–24]. Throughout this work, vectors and matrices are denoted by lowercase and capital

letters, respectively, and tensors of order three (or higher) are represented by Euler script

letters.

Before discussing the problems to be solved, we recall the definition of an n-mode prod-

uct from [19]:

Definition 1 The n-mode (matrix) product of a tensor X ∈ R
I1×I2×...×IN with a matrix U ∈

R
J×In is denoted by X×n U . It is of size

I1 ×·· ·× In−1 × J× In+1 ×·· ·× IN ,

and has the elements

(X×n U)
i1 ···in−1 jin+1 ···iN

=
In

∑
in=1

xi1i2···iN u jin .

The n-mode (vector) product of a tensor X ∈ R
I1×I2×...×IN with a vector v ∈ R

In is of order

N −1 and is denoted by X×̄nv; its size is I1 × . . .× In−1 × In+1 × . . .× IN .

The Sylvester and Stein tensor equations are given by

X×1 A(1)+X×2 A(2)+ . . .+X×N A(N) =D (2)

and

X−X×1 A(1)×2 A(2) . . .×N A(N) = F, (3)

respectively, where the right-hand side tensors D,F ∈ R
I1×I2×...×IN and the coefficient ma-

trices A(n) ∈R
In×In (n = 1,2, . . . ,N) are known, and X ∈R

I1×I2×...×IN is the unknown tensor

to be determined.

Many discretized linear partial differential equations in several space-dimensions by

finite differences [2,3,9] or spectral methods [3,21–23,27] can be expressed with the aid of

a Sylvester tensor equation. A discussion on the conditioning of (2) under certain conditions

is provided by Najafi et al. [24], who proposed the application of Tikhonov regularization in

conjunction with the global Hessenberg process in tensor form to solve (2) with a perturbed

right-hand side. Some perturbation results for (3) are provided by Liang and Zheng [20]

and by Xu and Wang [28], who solve eq. (3) by using the tensor forms of the BiCG and

BiCR iterative methods. Liang and Zheng [20] present perturbation results for (3) for the

case when N is even and A(1) = · · · = A(N) = A is Schur stable, i.e., when all eigenvalues

of A lie in the open unit disc in the complex plane. These results rely on the matrix spectral

norm of (I −A(N)⊗·· ·⊗A(2)⊗A(1))−1.

Recently, Huang et al. [16] proposed to apply the global form of well-known iterative

methods in their tensor forms to the solution of a class of tensor equations via the Einstein

product. The iterative methods in the present work are well suited to solve problems dis-

cussed in [16] when they are severely ill-condition; Huang et al. [16] do not consider this

situation.

This paper first establishes some results on the conditioning of (3) motivated by [20,

28]. Then the tensor form of the Golub–Kahan bidiagonalization (GKB) process for the

solution of severely ill-conditioned tensor equations is described. In particular, we consider

the solution of severely ill-conditioned tensor equations of the forms (2) and (3). To this
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end, we apply results in [3] and generalize techniques described in [5]. We remark that the

results discussed in Section 3 also can be applied to the solution of severely ill-conditioned

problems of the form (1).

The remainder of this section introduces notation used in throughout this paper. We also

recall the concept of the contracted product between two tensors. Section 2 presents some

results on the sensitivity of the solution of (3), and in Section 3 we describe a tensor form

of the GKB process and discuss the use of Gauss-type quadrature to determine quantities of

interest for Tikhonov regularization. Section 4 presents some numerical results, and Section

5 contains concluding remarks.

1.1 Notation

Let X ∈R
I1×I2×···×IN be an N-mode tensor, and let xi1i2...iN denote the element (i1, i2, . . . , iN)

of X. For a real square matrix A with real eigenvalues, λmin(A) and λmax(A) stand for its

smallest and largest eigenvalues, respectively. The set of all eigenvalues of A is denoted by

σ(A). The symmetric and skew-symmetric parts of A are given by

H(A) =
1

2
(A+AT ) and S(A) =

1

2
(A−AT ),

respectively, where the superscript T denotes transposition. The condition number of an

invertible matrix A is defined by

cond(A) = ‖A‖2‖A−1‖2,

where ‖·‖2 stands for the spectral norm. The largest and smallest singular values of a matrix

A are denoted by σmax(A) and σmin(A), respectively. In particular, for an invertible matrix it

holds

cond(A) =
σmax(A)

σmin(A)
.

We use the notation
ℓ
⊗

i=1

xi := x1 ⊗ x2 ⊗·· ·⊗ xℓ for the multi-dimensional Kronecker product.

The vector vec(X) is obtained by using the standard vectorization operator with respect to

frontal slices of X. The mode-n matricization of a tensor X is denoted by X(n); it arranges

the mode-n fibers to be the columns of the resulting matrix. Recall that a fiber of a tensor is

defined by fixing all indices but one; see [19] for more details.

1.2 Contracted product

The ⊠
N product between two N-mode tensors

X ∈ R
I1×I2×···×IN−1×IN and Y ∈ R

I1×I2×···×IN−1×ĨN

is defined as the IN × ĨN matrix, whose (i, j)-th entry is given by

[X⊠
N Y]i j = tr(X::···:i ⊠

N−1 Y::···: j), N = 3,4, . . . ,

where

X⊠
2 Y= XTY, X ∈ R

I1×I2 ,Y ∈ R
I1×Ĩ2 ,
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and tr(·) denotes the trace of its argument. The ⊠N product is a special case of the contracted

product [10]. Specifically, X⊠
N Y is the contracted product of the N-mode tensors X and Y

along the first N −1 modes. For X,Y ∈ R
I1×I2×···×IN , we have

〈X,Y〉= tr(X⊠
N Y), N = 2,3, . . . ,

and ‖X‖2 = tr(X⊠
N X) = X⊠

(N+1) X for X ∈ R
I1×I2×···×IN . We conclude this section by

recalling the following two results from [3].

Lemma 1 Let X ∈ R
I1×···×In×···×IN , A ∈ R

Jn×In , and y ∈ R
Jn . Then

X×n A×̄ny = X×̄n(A
T y).

Proposition 1 Let B ∈ R
I1×I2×···×IN×m be an (N +1)-mode tensor with the column tensors

B1,B2, . . . ,Bm ∈R
I1×I2×···×IN and z = (z1,z2, . . . ,zm)

T ∈R
m. Then for an arbitrary (N+1)-

mode tensor A with N-mode column tensors A1,A2, . . . ,Am, we have

A⊠
(N+1) (B×̄

N+1
z) = (A⊠

(N+1)B)z.

2 Sensitivity analysis of the Stein tensor equation

This section mainly discusses the conditioning of the Stein tensor equation (3). To this end,

we first consider a linear system of equations that is equivalent to (3), and then derive lower

and upper bounds for the condition number of the matrix of this linear system.

It is well-known that (2) is equivalent to the linear system of equations

Ãx = b,

with x = vec(X), b = vec(D), and

Ã=
N

∑
j=1

I(IN )⊗·· ·⊗ I(I j+1)⊗A( j)⊗ I(I j−1)⊗·· ·⊗ I(I1).

Moreover, we have (see [19])

Y= X×1A(1)×2A(2) · · ·×NA(N) ⇔ Y(1) = A(1)X(n)(A
(N)⊗·· ·⊗A(2))T .

As a result, it follows that (3) corresponds to the linear system of equations

Ax :=
(

I −A(N)⊗·· ·⊗A(2)⊗A(1)
)

vec(X) = vec(F).

We use the tensor norm

‖X‖= ‖vec(X)‖2 .

Therefore, the sensitivity analyses of (2) and (3) are closely related to deriving bounds for

the condition number of the matrices Ã and A. For linear systems of equations Ax = b and

A(x+∆x) = b+∆b with a nonsingular matrix, it is well known that

‖∆x‖2

‖x‖2

≤ cond(A)
‖∆b‖2

‖b‖2

.
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Moreover, if
∥

∥A−1
∥

∥

2
‖∆A‖2 < 1, then

‖∆x‖2

‖x‖2

≤ cond(A)

1− cond(A)
‖∆A‖2
‖A‖2

{‖∆A‖2

‖A‖2

+
‖∆b‖2

‖b‖2

}

;

see, e.g., [13] for further details on perturbation analysis for linear systems of equations.

Lower and upper bounds for Ã have been derived in [24] under suitable conditions.

Therefore, we limit our discussion to the tensor A, which we will assume to be invertible. It

is shown in [28] that

cond(A)≥
maxλik

∈σ(A(k)),k=1,2,...,N |1−λi1 λi2 . . .λiN |
minλik

∈σ(A(k)),k=1,2,...,N |1−λi1 λi2 . . .λiN |

and

cond(A)≤ 1+∏N
i=1 ‖A(i)‖2

1−∏N
i=1 ‖A(i)‖2

, (4)

where the latter bound requires the inequality ‖A(N)⊗ ·· ·⊗A(2)⊗A(1)‖2 < 1 to hold. The

following proposition presents an alternative upper bound.

Proposition 2 Assume that ∏N
i=1 σmin(A

(i))> 1. Then

cond(A)≤
(

∏N
i=1 σmin(A

(i))

∏N
i=1 σmin(A(i))−1

)

(

1+∏
N

i=1
‖A(i)‖2

)

.

Proof Define F = A(N)⊗·· ·⊗A(1) and let ρ(M) denote the spectral radius of the matrix M.

Then

‖A‖2 ≤ 1+‖F‖2 = 1+
√

ρ (FFT )

= 1+
N

∏
i=1

σmax(A
(i))

= 1+∏
N

i=1
‖A(i)‖2. (5)

Since (I −F)−1 =−(I −F−1)−1F−1 and

F
−1 = (A(N))−1 ⊗·· ·⊗ (A(1))−1,

we obtain

‖F−1‖2 = ∏
N

i=1
‖(A(i))−1‖2 = (∏

N

i=1
σmin(A

(i)))−1 < 1

and

‖(I −F)−1‖2 ≤ ‖(I −F
−1)−1‖2‖F−1‖2 ≤ ‖(I −F

−1)−1‖2 ≤
1

1−‖F−1‖2
,

which shows the proposition.
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Remark 1 We note that the assumption in Proposition 2 differs from the one used in [28].

Because of the importance of determining upper bounds in perturbation analysis, we re-

port the upper bounds provided by (4) and Proposition 2 for two matrices A. The bounds

and the exact condition numbers are plotted in Figure 1. We used the MATLAB function

“cond(full(A))”. This allowed us to calculate the condition number of A for small n only

due to lack of computer memory. 1 When the matrix A is large and sparse, we can compute

an estimate of the condition number with MATLAB function “condest(A)”.

Case I: We let the matrices A(i), i = 1,2,3, be ill-conditioned “prolate” Toeplitz matri-

ces. This kind of Toeplitz matrix can be generated with the MATLAB command A =
gallery(′prolate′,n,w), which returns the n-by-n prolate Toeplitz matrix with param-

eter w. We set w = 0.11 for A(1), w = 0.12 for A(2), and w = 0.13 for A(3). Then

‖A(3) ⊗ A(2) ⊗ A(1)‖ < 1. Notice that A(1), A(2), and A(3) are full matrices. We there-

fore do not report “condest(A)” for this case.

Case II: For i = 1,2,3, consider the matrices

A(i) =
ν

h2















2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2















+
ci

4h















3 −5 1

1 3 −5 1

. . .
. . .

. . . 1

1 3 −5

1 3















∈ R
n×n, (6)

that are the sum of a symmetric tridiagonal matrix and a banded upper Hessenberg

Toeplitz matrix with ν = 0.1, c1 = 1, c2 = 2, c3 = 3, and h = 1/(n + 1). It can be

verified that
3

∏
i=1

σmin(A
(i))> 1.
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Fig. 1 Computed bounds versus the exact condition numbers for different values of n; Case I (left) and Case

II (Right)

We next derive new bounds for cond(A). This requires the following two propositions.

1 All computations for this section were carried out on a 64-bit 2.50 GHz core i5 processor with 8.00GB

RAM using MATLAB version 9.4 (R2018a).
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Proposition 3 Let A(i) ∈ R
ni×ni and xi ∈ R

ni for i = 1,2, . . . , ℓ. Then

(
ℓ
⊗

i=1

xi)
T
H(A(1)⊗A(2)⊗·· ·⊗A(ℓ))

ℓ
⊗

i=1

xi =
ℓ

∏
i=1

xT
i H(A(i))xi. (7)

Proof We show the assertion by induction. Let ℓ= 2. Using the fact that xT
i S(A

(i))xi = 0 for

i = 1,2, we obtain (7) from the following equality (see [29]):

H(A(1)⊗A(2)) =H(A(1))⊗H(A(2))+S(A(1))⊗S(A(2)).

Now assume that (7) holds for ℓ= k. Let ℓ= k+1 and define

Yk =

(k+1)
⊗

i=2

xi, Yk+1 = x1 ⊗Yk, Ak = A(2)⊗·· ·⊗A(k+1).

Then

Y
T
k+1H(A(1)⊗A(2)⊗·· ·⊗A(k+1))Yk+1 = (x1 ⊗Yk)

T
H(A(1)⊗Ak)(x1 ⊗Yk)

= (xT
1 H(A(1))x1)× (YT

k H(Ak)Yk).

The proposition now follows from the induction hypothesis.

Proposition 4 Let A= I −A(N)⊗·· ·⊗A(2)⊗A(1). Then

λmax(AA
T )≥ 1+∏

N

i=1
σ2

max(A
(i))−2∏

N

i=1
yT

i H(A(i))yi

and

λmin(AA
T )≤ 1+∏

N

i=1
σ2

min(A
(i))−2∏

N

i=1
zT

i H(A(i))zi,

where the yi and zi are unit eigenvectors such that, for i = 1,2, . . . ,N,

A(i)(A(i))T zi = σ2
min(A

(i))zi and A(i)(A(i))T yi = σ2
max(A

(i))yi.

Proof It is easy to verify that

AA
T = (I −AN ⊗·· ·⊗A1)(I −AT

N ⊗·· ·⊗AT
1 )

= I +ANAT
N ⊗·· ·⊗A1AT

1 −2H(AN ⊗·· ·⊗A1). (8)

Let Y = (yN ⊗·· ·⊗ y1) and Z = (zN ⊗·· ·⊗ z1). Then it follows from Proposition 3 that

Y
T
AA

T
Y = 1+∏

N

i=1
σ2

max(A
(i))−2∏

N

i=1
yT

i H(A(i))yi

and

Z
T
AA

T
Z = 1+∏

N

i=1
σ2

min(A
(i))−2∏

N

i=1
zT

i H(A(i))zi.

This shows the desired result.
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Remark 2 If the matrices A(i), for i = 1,2, . . . ,N, are positive definite, then

λmin(AA
T )≤ 1+∏

N

i=1
σ2

min(A
(i)).

We note that the matrices A(i) are not required to be symmetric. Positive definiteness of the

matrix A(i), i = 1,2, . . . ,N, implies that H(A(i)) is symmetric positive definite. Furthermore,

if

∏
N

i=1
σ2

max(A
(i))≥ 2∏

N

i=1
λmax(H(A(i))),

then the following upper bound follows from Proposition 4,

cond(A)≥

√

1+∏N
i=1 σ2

max(A
(i))−2∏N

i=1 λmax(H(A(i)))
√

1+∏N
i=1 σ2

min(A
(i))

≥ 1
√

1+∏N
i=1 σ2

min(A
(i))

.

Under additional assumptions, we can derive an alternative upper bound for the condi-

tion number. To this end, we need the following result, which is a consequence of Weyl’s

Theorem [14, Theorem 4.3.1].

Proposition 5 Let the matrices A,B ∈ R
n×n be symmetric. Then

λmax(A+B)≤ λmax(A)+λmax(B),

λmin(A+B)≥ λmin(A)+λmin(B).

Remark 3 Let F = A(N) ⊗ ·· · ⊗ A(1) and λ ∈ σ(H(F)). Let EN denote the set of non-

negative even numbers less than or equal to N. Then

λmax(H(F))≤ ∑
r∈EN

N!

r!(N − r)!
Mr

SMN−r
H ≤ (MS +MH)

N ,

where

MS = max
i=1,2,...,N

‖S(A(i))‖2 and MH = max
i=1,2,...,N

‖H(A(i))‖2.

The result can be shown by considering the symmetric part of F . For simplicity, let N = 3.

Then

H(F) = H(A(3))⊗H(A(2))⊗H(A(1))+H(A(3))⊗S(A(2))⊗S(A(1))

+S(A(3))⊗H(A(2))⊗S(A(1))+S(A(3))⊗S(A(2))⊗H(A(1)).

Using Proposition 5, we have

λmax(H(F)) ≤
3

∏
i=1

‖H(A(i))‖2 +‖H(A(3))‖2‖S(A(2))‖2‖S(A(1))‖2

+‖S(A(3))‖2‖H(A(2))‖2‖S(A(1))‖2 +‖S(A(3))‖2‖S(A(2))‖2‖H(A(1))‖2

≤ M3
H +3MHM2

S ≤ (MH +MS)
3.

It follows from the above discussions that if 1+
N

∏
i=1

σ2
min(A

(i))−2(MS +MH)
N > 0, then we

can derive an upper bound for ‖A−1‖2 in the following manner: We obtain from (8) that

λmin(AA
T ) ≥ 1+

N

∏
i=1

σ2
min(A

(i))−2λmax(H(F))

≥ 1+
N

∏
i=1

σ2
min(A

(i))−2(MS +MH)
N .
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Therefore,

‖A−1‖2 ≤
1

√

1+
N

∏
i=1

σ2
min(A

(i))−2(MS +MH)N

. (9)

Combining the inequalities (5) and (9) yields

cond(A)≤
1+

N

∏
i=1

σmax(A
(i))

√

1+
N

∏
i=1

σ2
min(A

(i))−2(MS +MH)N

. (10)

To illustrate the bound (10), we let A(1) = A(2) = A(3) = Ã, where the matrix Ã ∈ R
n×n

is defined by

Ã = M+2rL+
100

(n+1)2
I

with M = tridiag(−1,2,−1) and L = tridiag(0.5,0,−0.5). We note that the matrix Ã is taken

from [29–31]. The condition

1+
3

∏
i=1

σ2
min(A

(i))−2(MS +MH)
3 > 0

holds for suitable choices of r and even values of n. Figure 2 displays graphs for the exact

condition number cond(A) and the bound (10). The computations are carried out on the

same computer as for Figure 1. In particular, the function cond(·) can be evaluated for fairly

small values of n, only.
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2500

2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

900

 

 

upper bound cond(A)

Fig. 2 Computed bounds by (10) versus the exact condition numbers for different values of n; r = 70 (left),

r = 100 (center) and r = 500 (right).

We conclude this section by considering the situation when all the matrices A(i) are

diagonalizable.

Remark 4 Let the matrices A(i) be diagonalizable, i.e., there are nonsingular matrices Si and

diagonal matrices Di such that A(i) = SiDiS
−1
i for i = 1,2, . . . ,N. Introduce

A= I −A(N)⊗·· ·⊗A(1) and S = SN ⊗·· ·⊗S1.
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Then A= S(I −DN ⊗·· ·⊗D1)S
−1. Hence, if 1 /∈ σ(A(N)⊗·· ·⊗A(1)), then

A
−1 = S(I −DN ⊗·· ·⊗D1)

−1
S
−1.

As a result, we get

‖A−1‖2 ≤
N

∏
i=1

‖S−1
i ‖2‖Si‖2M1,D =

N

∏
i=1

cond(Si)M1,D,

‖A‖2 ≤
N

∏
i=1

‖S−1
i ‖2‖Si‖2M2,D =

N

∏
i=1

cond(Si)M2,D,

where

M1,D = max

{

1

|1−λmin(DN ⊗·· ·⊗D1)|
,

1

|1−λmax(DN ⊗·· ·⊗D1)|

}

,

M2,D = max{|1−λmin(DN ⊗·· ·⊗D1)|, |1−λmax(DN ⊗·· ·⊗D1)|} ≤ 1+
N

∏
i=1

‖Di‖2.

We obtain the inequality

cond(A)≤
N

∏
i=1

(cond(Si))
2

M1,DM2,D.

Let
N

∏
i=1

‖D−1
i ‖2 < 1. Then analogously to the proof of Proposition 2, we have

cond(A)≤
N

∏
i=1

(cond(Si))
2 M2,D

1−
N

∏
i=1

‖D−1
i ‖2

.

If
N

∏
i=1

‖Di‖2 < 1, then

cond(A)≤
N

∏
i=1

(cond(Si))
2 M2,D

1−
N

∏
i=1

‖Di‖2

≤
N

∏
i=1

(cond(Si))
2 2

1−
N

∏
i=1

‖Di‖2

.

Finally, we note that if the matrices Di, i = 1,2, . . . ,N, are all positive definite, then

λmin(DN ⊗·· ·⊗D1) =
N

∏
i=1

λmin(Di) and λmax(DN ⊗·· ·⊗D1) =
N

∏
i=1

λmax(Di).
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3 The tensor form of GKB and Tikhonov regularization

We first describe the implementation of the Golub–Kahan bidiagonalization (GKB) process

in the tensor framework. Subsequently, we discuss an application of the GKB process to

Tikhonov regularization. For notational simplicity, we introduce the two linear operators

M̃,M : RI1×I2×···×IN → R
I1×I2×···×IN defined by

M̃(X) := X×1 A(1)+X×2 A(2)+ · · ·+X×N A(N),

M(X) := X−X×1 A(1)×2 A(2) . . .×N A(N).

The adjoint operators of M̃ and M are given by

M̃
∗(Y) := Y×1 (A

(1))T +Y×2 (A
(2))T + · · ·+Y×N (A(N))T ,

M
∗(Y) := Y−Y×1 (A

(1))T ×2 (A
(2))T . . .×N (A(N))T ,

for Y ∈ R
I1×I2×···×IN . The tensor equations (2) and (3) can be expressed as

M̃(X) =D,

M(X) = F. (11)

We remark that the results and methods of this section also can be applied to other linear

operators from R
I1×I2×···×IN to R

I1×I2×···×IN . For notational convenience, we discuss in the

sequel results and methods for equation (11).

Consider for the moment the linear system of equations Ax= b with a nonsingular matrix

A ∈ R
n×n. Application of k steps of the GKB process to A with initial vector b produces the

decompositions

AUk =Vk+1T̄k, ATVk =UkT T
k , (12)

where the matrices Vk+1 ∈R
n×(k+1) and Uk ∈R

n×k have orthonormal columns, the matrix Vk

is made up of the first k columns of Vk+1, the first column of Vk+1 is b/‖b‖2, the matrix T̄k ∈
R
(k+1)×k is lower bidiagonal with all diagonal and subdiagonal entries positive, and Tk is the

leading k× k submatrix of T̄k. We assume that k is small enough so that the decompositions

(12) with the stated properties exist. This is the generic situation. Otherwise the GKB process

is said to break down. In the latter event the computations simplify. We will not dwell on

the handling of breakdowns. Thorough discussions on the GKB process can be found in [13,

25].

It is natural to extend the GKB process to tensor equations. Algorithm 1 describes the

application of the GKB process to equation (11). We refer to the process so defined as the

GKB based on tensor format (GKB−BTF) process.

Assume that the first k steps of Algorithm 1 can be carried out without breakdown, i.e.,

without any coefficients α j and β j vanishing. The analogue of the lower bidiagonal matrix

T̄k ∈ R
(k+1)×k in (12), which we also refer to as T̄k, has the diagonal entries α1,α2, . . . ,αk.

They are computed in line 6 of Algorithm 1. The subdiagonal elements β2,β3, . . . ,βk+1 of

T̄k are computed in line 12 of the algorithm. We can express the matrix T̄k in the form

T̄k =

(

Tk

βk+1eT
k

)

.
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Algorithm 1: The GKB−BTF process associated with the linear operator M.

1 Input: Linear operator M, the right-hand side F, number of steps k.

2 Set β1 = ‖F‖, V1 =
1

β1
F, and U0 = 0.

3 begin

4 for j = 1,2, . . . ,k do

5 U=M∗(V j)−β jU j−1;

6 α j = ‖U‖;

7 if α j = 0 then

8 Stop

9 end

10 U j = U/α j;

11 V=M(U j)−α jV j;

12 β j+1 = ‖V‖;

13 if β j+1 = 0 then

14 Stop

15 end

16 V j+1 = V/β j+1 ;

17 end

18 end

Theorem 1 Let Ṽk, Ũk, W̃k, and W̃∗
k be (N + 1)-mode tensors with frontal slices V j, U j,

W j :=M(U j), and W∗
j :=M∗(V j), respectively, for j = 1,2, . . . ,k, computed by Algorithm

1. Then

W̃k = Ṽk ×(N+1) T T
k +βk+1Z×(N+1) Ek = Ṽk+1 ×(N+1) T̄ T

k , (13)

W̃∗
k = Ũk ×(N+1) Tk, (14)

where Z is an (N +1)-mode tensor with k column tensors 0, . . . ,0,Vk+1. The last column of

the matrix Ek = [0, . . . ,0,ek] ∈ R
k×k is the last column of the identity matrix of order k.

Proof From Lines 11 and 16 of Algorithm 1, we have

M(U j−1) = α j−1V j−1 +β jV j. (15)

Note that the ( j−1)st frontal slice of (13) is given by

(Ṽk+1 ×(N+1) T̄ T
k ):...:( j−1) =

k+1

∑
ℓ=1

Vℓ(T̄k)ℓ, j−1 = α j−1V j−1 +β jV j.

Equation (13) now follows from (15) and the above relation.

To show (14), we first note that lines 2, 5, and 10 of Algorithm 1 yield

M
∗(V j) = β jU j−1 +α jU j, j = 1,2, . . . ,

where U0 is defined to be zero. Equation (14) now follows by comparing the above equation

and the jth frontal slice of the right-hand side of (14).

We turn to the situation when the operator M in (11) is severely ill-conditioned and

the right-hand side tensor F is contaminated by error. Let F̂ denote the unknown error-free

tensor associated with F, and assume that F̂ is in the range of M. We would like to determine

the solution of minimal norm, X̂, of

M(X) = F̂.
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Straightforward solution of (11) may not give a meaningful approximation of X̂ due to a

large propagated error in the solution of (11) stemming from the error in F. A common way

to address this difficulty is to replace equation (11) by a nearby problem, whose solution is

less sensitive to the error in F. This replacement is known as regularization. One of the most

popular regularization methods is due to Tikhonov. This regularization method replaces the

solution of (11) by the minimization problem

min
X∈RI1×I2×...×IN

{

‖M(X)−F‖2 +µ‖X‖2
}

. (16)

The parameter µ > 0 is referred to as a regularization parameter. Its purpose is to balance the

influence of the first term (the fidelity term) and the second term (the regularization term).

Let Xk,µk
= Ũk×̄(N+1)yk,µk

be an approximate solution of (16), where Ṽk is defined as

above. We obtain from (13), by using Lemma 1 and Proposition 1, that

∥

∥M(Xk,µk
)−F

∥

∥ =
∥

∥Ṽk+1 ×(N+1) T̄ T
k ×̄(N+1)yk,µk

−F
∥

∥

=
∥

∥Ṽk+1×̄(N+1)T̄kyk,µk
−F

∥

∥

=
∥

∥

∥
Ṽk+1 ⊠

(N+1) (Ṽk+1×̄(N+1)T̄kyk,µk
−F)

∥

∥

∥

2

=
∥

∥

∥
(Ṽk+1 ⊠

(N+1) Ṽk+1)T̄kyk,µk
− Ṽk+1 ⊠

(N+1)F

∥

∥

∥

2

=
∥

∥T̄kyk,µk
−β1e1

∥

∥

2
. (17)

This shows that (16) is equivalent to the following low-dimensional minimization problem

min
y∈Rk

{

‖T̄ky−β1e1‖2
2 +µ‖y‖2

2

}

= min
y∈Rk

∥

∥

∥

∥

(

T̄k√
µI

)

y−β1e1

∥

∥

∥

∥

2

2

. (18)

The minimization problem on the right-hand side can be solved in only O(k) arithmetic

floating point operations for each value of µ > 0; see Eldén [11] for details.

We turn to the choice of the regularization parameter and assume that an upper bound

ε > 0 for the norm of the error in the right-hand side F is explicitly known. Then the discrep-

ancy principle can be applied to determine the regularization parameter µ . The discrepancy

principle prescribes that µ > 0 be chosen so that

∥

∥M(Xk,µk
)−F

∥

∥= ηε (19)

for some parameter η > 1 that is independent of ε . This is a nonlinear equation for µ > 0;

see, e.g., Engl et al. [12] for a discussion on the discrepancy principle. Of course, other

techniques for determining a suitable value of µ also can be applied; see, e.g., Kindermann

and Raik [17,18] for discussions.

It is not advisable to use the normal equations associated with the right-hand side of

(18) in computations. However, the normal equations are convenient to apply when deriving

expressions for determining a value of µ > 0 that approximately satisfies (19). Let yk,µ

denote the solution of (18). Using the normal equations associated with the right-hand side

of (18), yk,µ can be expressed as

yk,µ = β1(T̄
T

k T̄k +µI)−1T̄ T
k e1. (20)
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Consequently,

∥

∥T̄kyk,µ −β1e1

∥

∥

2

2
=
∥

∥β1T̄k(T̄
T

k T̄k +µI)−1T̄ T
k e1 −β1e1

∥

∥

2

2

=
∥

∥(T̄k(T̄
T

k T̄k +µI)−1T̄ T
k − I)β1e1

∥

∥

2

2

=
∥

∥(µ−1T̄kT̄ T
k + I)−1β1e1

∥

∥

2

2

= β 2
1 eT

1 (µ
−1T̄kT̄ T

k + I)−2e1.

Introduce the functions

ψk(µ) = β 2
1 eT

1 (µ
−1T̄kT̄ T

k + I)−2e1,

φk(µ) = β 2
1 eT

1 (µ
−1TkT T

k + I)−2e1. (21)

Proposition 6 Let η > 1 and ε > 0 be constants, and let the function φk(µ) be defined by

(21). If µ > 0 satisfies

ε2 ≤ φk(µ)≤ η2ε2, (22)

then the associated solution yk,µ of (18) is such that

ε ≤
∥

∥Tkyk,µ −β1e1

∥

∥

2
≤ ηε,

and Xk,µ = Ṽk×̄(N+1)yk,µ fulfills

ε ≤
∥

∥M(Xk,µ)−F
∥

∥≤ ηε. (23)

Moreover,

ψk(µ) =
∥

∥M(Xk,µ)−F
∥

∥

2
. (24)

Proof It can be shown that φk(µ) ≤ ψk(µ) for µ ≥ 0. A proof based on interpreting φk(µ)
as a Gauss quadrature rule and ψk(µ) as a Gauss–Radau quadrature rule with a fixed node

at the origin is provided in [8] in the context of solving large linear systems of equations

with a severely ill-conditioned matrix and an error-contaminated right-hand side. Eq. (24)

follows from (17).

The following result is easy to show. A proof can be found in [8].

Proposition 7 Let φk(µ) be defined by (21). Then the function µ → φk(1/µ) is strictly

decreasing and convex for µ > 0. Moreover,

lim
µ→∞

φk(1/µ) = β 2
1 .

In particular, Newton’s method applied to compute the solution µk of the equation

φk(1/µ) = η2ε2 (25)

with an initial approximate solution µ0 ≥ 0 to the left of the solution converges monoton-

ically and quadratically. For instance, one may choose µ0 = 0 when the function µ →
φk(1/µ) and its derivative are suitably defined at µ = 0.



Golub–Kahan bidiagonalization for ill-conditioned tensor equations 15

It follows from Proposition 7 that the use of the Newton method to solve (25) is easy to

implement, because the method does not have to be safe-guarded when starting with µ0 = 0.

This is discussed in [8]. However, a cubically convergent zero-finder described in [26] and

applied in [7,26] requires fewer iterations and less CPU-time.

The most expensive part of the computations with Algorithm 1 is the evaluation of

M∗(V j) and M(U j) in lines 5 and 11 of the algorithm. With the aim of keeping the com-

putational effort required by Algorithm 1 as small as possible, we would like to choose the

number of steps, k, of the algorithm small, but large enough to be able to satisfy (23). To

achieve this, we proceed as follow: Carry out a few steps k > 0 with Algorithm 1, say k = 2,

and compute the solution µk > 0 of φk(1/µ) = ε2. If ψk(1/µk)≤ η2ε2, then (23) holds for

Xk,µk
= Ũk×̄(N+1)yk,µk

, (26)

where yk,µk
is defined by (20) with µ = µk. If, instead, ψk(1/µk)> η2ε2, then we increase

k by one, i.e., we set k = k+ 1 and carry out one more step with Algorithm 1. We increase

the number of steps until (23) holds. Typically only a few steps of Algorithm 1 are required

to satisfy (23). The required number of evaluations of the expressions M∗(V j) and M(U j)
typically is fairly small. This is illustrated in Section 4. Algorithm 2 summarizes the compu-

tations required for Tikhonov regularization based on the GKB−BTF process.

Algorithm 2: The GKB−BTF-Tikhonov method for the solution of (16).

1 Input: Linear operator M, right-hand side F, bound ε > 0 for the error in F.

2 Choose η > 1 and set k = 2;

3 Set V1 = F/‖F‖;

4 Determine the orthonormal bases {U j}k
j=1 and {V j}k+1

j=1 of tensors, and the

bidiagonal matrices Tk and T̄k with Algorithm 1;

5 Determine the regularization parameter µk such that (22) holds for µ = µk. This may

require increasing k. In this case, let k = k+1 and go to line 4;

6 Determine yk,µk
by solving (18) and compute Xk,µk

from (26);

This section focused on the solution of equation (11). However, the solution method

described can be applied to the solution of more general tensor equations (1).

4 Numerical examples

This section shows a few numerical experiments that illustrate the performance of the method

described in Section 3. We limit ourselves to the case N = 3 in (2) and (3). For notational

simplicity, we write equations (2) and (3) in the form L(X) = C. The right-hand side tensor

is in all test problems contaminated by an error tensor E with normally distributed random

entries with zero mean. The entries are scaled to yield a specified noise level

ν :=
‖E‖
‖C‖ .

All computations were carried out using the Tensor Toolbox [1] in MATLAB version R2018b

with an Intel Core i7-4770K CPU @ 3.50 GHz processor and 24GB RAM.
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We report the relative errors

ek :=
‖Xµk ,k − X̂‖

‖X̂‖
,

where X̂ denotes the desired solution of the problem with error-free right-hand side tensor

Ĉ associated with C, and Xµk ,k denotes the kth computed approximation determined by the

algorithms.

In the computations for Tables 1, 5, and 7, the iterations were terminated as soon as an

approximate solution Xµk ,k was found such that the discrepancy principle
∥

∥L(Xµk ,k)−C
∥

∥≤ ηε, (27)

was satisfied, where η = 1.01 is a user-chosen constant and ε is the norm of error in C, i.e.,

ε = ‖E‖. Our numerical results illustrate that the performance of the algorithms is not very

sensitive to the choice of η(≥ 1); we illustrate the convergence behavior of the algorithms

for several values of η in Example 5. We remark that the left-hand side of (27) can be

computed inexpensively by using (17) with M and F replaced by L and C, respectively. We

compare Algorithm 2 of the present paper to methods that apply the Hessenberg and flexible

Hessenberg processes based on tensor format to reduce the given large problem to smaller

ones. These methods are used together with Tikhonov regularization and are described in

[24]. The discrepancy principle is used to determine the regularization parameter. We refer to

the method that uses the Hessenberg process based on tensor format together with Tikhonov

regularization as the HT−BTF method; when the Hessenberg process based on tensor format

is replaced by the flexible Hessenberg process based on tensor format, the resulting method

is referred to as the FHT−BTF method.

When the coefficient matrices are dense and not very large, the FHT−BTF method out-

performs the other methods in our comparison. However, for large and sparse coefficient

matrices, FHT−BTF requires more CPU time than Algorithm 2. For large problems, the

FHT−BTF method requires many iterations to satisfy the stopping criterion (27). We there-

fore for the results reported in Tables 2-4, Table 6, and Tables 8-10 used the alternative

stopping criterion
‖Xµk ,k −Xµk−1,k−1‖

‖Xµk−1,k−1‖
≤ τ (28)

for a user-specified value of the parameter τ > 0. Moreover, at most 300 iterations were

allowed. In the FHT−BTF method, we used two steps of the stabilized biconjugate gradient

method based on tensor format (BiCGSTAB−BTF) [9] as inner iteration; see [24] for further

details. Choosing a smaller value of τ results in that a larger number of iteration is required to

satisfy (28). We illustrate the performance of Algorithm 2 for several values of τ in Example

5.

We report the number of iterations and the CPU-time (in seconds) required by the meth-

ods in our comparison to compute approximate solutions that satisfy the specified stopping

criteria. Subsection 4.1 discusses the solution of severely ill-conditioned problems of the

form (2) and Subsection 4.2 considers severely ill-conditioned problems of the form (3).

The blurring matrices used in Subsection 4.1 can be expressed as

I ⊗ I ×A(1)+ I ⊗A(2)⊗ I +A(3)⊗ I ⊗ I,

while the blurring matrices applied in Subsection 4.2 can be written as

I −A(3)⊗A(2)⊗A(1),
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where the A(ℓ) are a Gaussian Toeplitz matrix A = [ai j] given by

ai j =







1

σ
√

2π
exp

(

− (i− j)2

2σ2

)

, |i− j| ≤ r,

0, otherwise,

(29)

or a Toeplitz matrix with entries

ai j =







1

2r−1
, |i− j| ≤ r,

0, otherwise.
(30)

We further present some experiments for Sylvester and Stein tensor equations with the coef-

ficient matrices given in Case II of Remark 1 at the end of each subsection. Blurring matrices

of the type (29) and (30) have been used in the literature to test iterative schemes for image

deblurring; see [4–6,15].

4.1 Experimental results for severely ill-conditioned Sylvester tensor equations

We consider equation (2) with coefficient matrices that are dense and very ill-conditioned.

This kind of equation arises from the discretization of a fully three-dimensional microscale

dual phase lag problem by a mixed-collocation finite difference method; see [21–23] for

details.

Example 1 Consider (2) with the matrices A(ℓ) = [ai j] ∈ R
n×n for ℓ= 1,2,3 defined by

ai j =











−2
(

π
L

)2 (−1)i+ j

sin2

[

1
2

(

2πξ j
L −xi

)] , i 6= j

−
(

π
L

)2
(

n2+2
3

)

, i = j,

where xi =
2π(i−1)

n
, ξ j =

( j−1)L
n

, i, j = 1,2, . . . ,n, and L = 300. When n is odd, the coeffi-

cient matrices A(ℓ) are well-conditioned and the problem can be solved successfully with a

block iterative method; see [3]. However, when n is even, the coefficient matrices are very

ill-conditioned. This is illustrated in [24, Example 5.4]. The error-free right-hand side of (2)

is constructed so that X̂= randn(n,n,n) is the exact solution, i.e., X̂ has normally distributed

random entries with mean zero and variance one. Table 1 shows the numerical results ob-

tained. Computed approximate solutions and the exact solution are displayed in Figure 3.

Table 1 shows the FHT−BTF method to perform better than the other methods. This is

typical for problems with dense coefficient matrices.

We next turn to an image restoration problem, in which the error-free right-hand side in

(2) is constructed so that the exact solution is a hyperspectral image. Here the matrices A(i),

i = 1,2,3, are sparse and we will see that Algorithm 2 performs the best.

Example 2 We consider the situation when the exact solution of (2) is a tensor of order

1019×1337×33 that represents a hyperspectral image of a natural scene2. The coefficient

matrices A(1), A(2), and A(3) are defined by (30) with suitable dimensions and with r = 2 for

2 http://personalpages.manchester.ac.uk/staff/d.h.foster
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Table 1 Comparison results for Example 1 with respect to stopping criterion (27).

Grid cond(A(i)) Level of noise (ν) Method Iter(k) ek CPU-time (sec)

100×100×100 1.25 ·1016

0.01

Algorithm 2 39 1.11 ·10−1 2.31

HT−BTF 11 7.51 ·10−2 3.62

FHT−BTF 5 6.25 ·10−2 0.98

0.001

Algorithm 2 134 4.48 ·10−2 7.53

HT−BTF 24 2.57 ·10−2 34.84

FHT−BTF 8 2.33 ·10−2 2.35

150×150×150 4.67 ·1016

0.01

Algorithm 2 37 1.18 ·10−1 7.03

HT−BTF 11 7.40 ·10−2 12.32

FHT−BTF 5 6.33 ·10−2 3.34

0.001

Algorithm 2 178 4.02 ·10−2 36.89

HT−BTF 21 3.21 ·10−2 72.95

FHT−BTF 8 2.61 ·10−2 8.15

180×180×180 3.28 ·1016

0.01

Algorithm 2 36 1.19 ·10−1 11.13

HT−BTF 11 7.55 ·10−2 21.45

FHT−BTF 5 6.13 ·10−2 5.66

0.001

Algorithm 2 154 4.18 ·10−2 58.64

HT−BTF 22 2.89 ·10−2 134.51

FHT−BTF 7 2.91 ·10−2 11.65

(a) (b) (c)

(d) (e)

Fig. 3 (a) Exact solution on grid 180× 180× 180, (b) noisy data with noise level ν = 0.01, (c) restored

solution by HT−BTF, (d) FHT−BTF, and (e) Algorithm 2.

A(1) and A(2), and r = 3 for A(3). This gives cond(A(1))= 5.26 ·1016, cond(A(2))= 1.75 ·1017,

and cond(A(3)) = 4.75 ·1016. Thus, all the coefficient matrices are numerically singular.

As mentioned above, the (F)HT−BTF methods can not be efficiently used with the stop-

ping criterion (27). Therefore, we used the stopping criterion (28) for all algorithms. The

results are reported in Table 2. Algorithm 2 can be seen to perform better than the HT−BTF

and FHT−BTF methods. Table 7 illustrates that the computational effort increases as the er-

ror in the tensor C decreases. Here Algorithm 2 was terminated as soon as (27) was satisfied.

The contaminated and restored images are displayed in Figures 4 and 5.

Example 3 Consider the Sylvester tensor equation (2) whose coefficient matrices A(1), A(2),

and A(3) are defined by (30) with r = 30 for A(1), r = 20 for A(2), and r = 20 for A(3). We

examine the performance of algorithms for the following cases:

Case I Let the exact solution of (2) be hyperspectral image of order 1019× 1337× 33 in

the above example. Here we have cond(A(1)) = 1.66 ·1018, cond(A(2)) = 4.13 ·1019 and
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Table 2 Results for Example 2 using the stopping criterion (28) with τ = 2 ·10−2.

Noise level ν Method Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 4 3.85 ·10−2 7.45

HT−BTF 4 6.77 ·10−2 27.01

FHT−BTF 2 6.28 ·10−2 26.81

0.001

Algorithm 2 4 3.57 ·10−2 7.47

HT−BTF 4 4.40 ·10−2 26.67

FHT−BTF 2 3.85 ·10−2 25.30

(a) (b) (c)

Fig. 4 Example 2. (a) Exact image, (b) blurred and noisy image with noise level ν = 0.01, (c) restored image

by Algorithm 2 using the stopping criterion (27).

(a) (b)

(c) (d)

Fig. 5 Example 2. (a) blurred and noisy image with noise level ν = 0.01, restored images by (b) HT−BTF,

(c) FHT−BTF, and (d) Algorithm 2 using the stopping criterion (28).
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Table 3 Results for Example 3 using the stopping criterion (28) with τ = 2 ·10−2.

Noise level ν Method
Case I Case II

Iter(k) ek CPU-time (sec) Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 7 1.02 ·10−1 41.09 41 7.02 ·10−1 439.29

HT−BTF 8 9.08 ·10−2 123.69 10 9.03 ·10−1 221.93

FHT−BTF 7 1.18 ·10−1 217.22 7 8.65 ·10−1 245.47

0.001

Algorithm 2 8 8.22 ·10−2 49.77 42 6.95 ·10−1 452.10

HT−BTF 8 8.67 ·10−2 123.64 14 8.82 ·10−1 498.97

FHT−BTF 5 6.93 ·10−2 145.75 7 8.63 ·10−1 245.85

Table 4 Results for Example 4 using stopping criterion (28).

Grid 200×200×200 350×350×350

(τ = 1 ·10−3) (τ = 2 ·10−3)
Noise level ν Method Iter(k) ek CPU-time (sec) Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 67 4.36 ·10−2 82.99 44 5.03 ·10−2 221.85

HT−BTF 22 3.25 ·10−2 264.85 17 3.30 ·10−2 647.16

FHT−BTF 20 3.21 ·10−2 205.10 15 3.28 ·10−2 547.81

0.001

Algorithm 2 65 3.88 ·10−2 79.20 44 4.85 ·10−2 222.13

HT−BTF 18 2.16 ·10−2 142.22 17 2.19 ·10−2 614.08

FHT−BTF 19 1.60 ·10−2 187.02 16 1.79 ·10−2 643.74

cond(A(3)) = 5.59 ·1018.

Case II Let X̂= randn(1000,500,100) be the exact solution of (2), i.e., A(1) ∈ R
1000×1000,

A(2) ∈ R
500×500 and A(3) ∈ R

100×100 for which cond(A(1)) = 1.74 · 1018, cond(A(2)) =
8.07 ·1017 and cond(A(3)) = 3.66 ·1018.

Results for these cases are reported in Table 3. The table shows Algorithm 2 to converge

faster for Case I. However, the HT−BTF method outperforms the other approaches for the

noise level 0.01 for Case II. We remark that the performance of the methods when applied

to the Stein tensor equation is different when increasing r in the coefficient matrices; see

Example 7 for more details.

We turn to results for the Sylvester tensor equation with the coefficient matrices given

in Case II of Remark 1. This equation arises from the discretisation of a three-dimensional

convection-diffusion equation on a uniform grid using a standard finite difference for the

diffusion term and a second order convergent scheme (Fromm’s scheme) for the convection

term with mesh size h= 1/(n+1); see [2,3]. This problem was examined in [3] for n×n×n

grids with n ≤ 110, for which the corresponding matrix A is not severely ill-conditioned.

However, the condition number increases with the value of n.

Example 4 Consider the Sylvester tensor equation for N = 3 with the coefficient matrices

A(ℓ) for ℓ= 1,2,3 given in the second case of Remark 1. Table 4 shows that Algorithm 2 is

an efficient solver. When the noise level is small, FHT−BTF requires more CPU-time than

HT−BTF and produces slightly more accurate approximate solutions.

4.2 Experimental results for severely ill-conditioned Stein tensor equations

In this subsection, we consider the solution of three severely ill-conditioned problems of the

form (3). For the first two examples, error-free right-hand sides are constructed so that the
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Table 5 Results for Example 5 using the stopping criterion (27).

Level of noise (ν) Method Iter(k) ek CPU-times(sec)

0.01

Algorithm 2 13 5.31 ·10−2 0.80

HT−BTF 12 6.46 ·10−2 8.71

FHT−BTF 5 6.58 ·10−2 2.25

0.001

Algorithm 2 52 2.63 ·10−2 3.78

HT−BTF 13 5.97 ·10−2 10.64

FHT−BTF 6 6.41 ·10−2 3.02

Table 6 Results for Example 5 using the stopping criterion (28) with τ = 2 ·10−2.

Noise level ν Method Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 6 7.40 ·10−2 0.41

HT−BTF 9 7.88 ·10−2 4.09

FHT−BTF 6 6.54 ·10−2 2.86

0.001

Algorithm 2 6 7.32 ·10−2 0.38

HT−BTF 9 7.84 ·10−2 4.14

FHT−BTF 6 6.42 ·10−2 2.87

exact solutions are color images. The iterations with the algorithms were terminated with

the stopping criteria (27) or (28). We conclude this subsection by reporting the results for

Stein tensor equations with the coefficient matrices given in Case II of Remark 1.

Example 5 The “exact” image3 is represented by a 576×787×3 tensor and is displayed in

Figure 6(a). The coefficient matrices of equation (3) are A(1), which is defined by (29), and

A(2) and A(3), which are given by (30), and have suitable dimensions. We set r = 7,σ = 2

for A(1), and r = 2 for A(2) and A(3). Then cond(A(1)) = 1.79 ·106, cond(A(2)) = 4.05 ·1017,

and cond(A(3)) = 6.45 · 1049. We found that when using the stopping criterion (28), the

performance of Algorithm 2 is not very sensitive to small changes in η(> 1) and τ; see

Figure 7 for details.

Example 6 Let the exact solution of (3) be of order 1019×1337×33; it represents the hy-

perspectral image shown in Figure 8. The coefficient matrices A(1), A(2), and A(3) of suitable

dimensions are defined by (30) with r = 12 for A(1), r = 2 for A(2), and r = 6 for A(3). Then

cond(A(1)) = 2.05 ·1018, cond(A(2)) = 1.75 ·1017, and cond(A(3)) = 2.44 ·1017.

Table 7 Results for Algorithm 2 with the stopping criterion (27).

Example 2 Example 6

Noise level ν Iter(k) ek CPU-time (sec) Iter(k) ek CPU-time (sec)

0.01 6 3.54 ·10−2 14.31 18 7.98 ·10−2 58.76

0.001 20 1.72 ·10−2 57.03 31 5.62 ·10−2 96.14
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(a) (b) (c)

(d) (e)

Fig. 6 Example 5. (a) Exact image, (b) blurred and noisy image with noise level ν = 0.01, restored image by

(c) HT−BTF, (d) FHT−BTF, and (e) Algorithm 2 using the stopping criterion (27).
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Fig. 7 Convergence history of Algorithm 2 for Example 5: Relative error versus iteration numbers with

respect to different η and τ for noise level 0.01.

Tables 5, 6, 7, and 8 show results for Examples 5 and 6. Algorithm 2 can be seen to be

superior to the other methods examined. The exact, contaminated, and restored images are

shown in Figures 6, 8, and 9.

3 The image is available at https://www.hlevkin.com/TestImages/Boats.ppm
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Table 8 Results for Example 6 using the stopping criterion (28) with τ = 3 ·10−2.

Noise level ν Method Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 6 1.39 ·10−1 17.73

HT−BTF 6 2.61 ·10−1 54.83

FHT−BTF 4 1.40 ·10−1 57.04

0.001

Algorithm 2 6 1.37 ·10−1 17.74

HT−BTF 6 2.44 ·10−1 54.94

FHT−BTF 4 1.38 ·10−1 57.96

(a) (b) (c)

Fig. 8 Example 6. (a) Exact image, (b) blurred and noisy image with noise level ν = 0.01, (c) restored image

by Algorithm 2 using the stopping criterion (27).

(a) (b)

(c) (d)

Fig. 9 Example 6. (a) blurred and noisy image, restored images by (b) HT−BTF, (c) FHT−BTF, and (d)

Algorithm 2 using the stopping criterion (28) with τ = 3 ·10−2.
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Similarly to Example 3, we consider coefficient matrices (30) with larger values of r.

Differently from Sylvester tensor equations, all algorithms perform better when increasing

the value of r. For the Stein tensor equation, we note that Algorithm 2 can be competitive

with the (F)HT−BTF method.

Example 7 Consider the Stein tensor equation (3) with the matrices A(ℓ) given by (30) for

ℓ = 1,2,3. Let r = 40 for A(1), r = 50 for A(2), and r = 30 for A(3). Table 9 reports results

for the following two cases:

Case I Let the exact solution of (3) be the hyperspectral image of order 1019× 1337×
33 mentioned above. We have cond(A(1)) = 1.18 · 1018, cond(A(2)) = 4.87 · 1018, and

cond(A(3)) = 3.12 ·10114.

Case II Let X̂= randn(1000,500,100) be the exact solution of (3); i.e., A(1) ∈ R
1000×1000,

A(2) ∈ R
500×500, and A(3) ∈ R

100×100. We have cond(A(1)) = 2.48 · 1019, cond(A(2)) =
6.70 ·1017, and cond(A(3)) = 5.70 ·1018.

The results reported in Table 9 show Algorithm 2 to perform better than (F)HT−BTF

for larger values of r.

Table 9 Results for Example 7 using the stopping criterion (28) with τ = 3 ·10−2.

Noise level ν Mehtod
Case I Case II

Iter(k) ek CPU-time (sec) Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 6 2.02 ·10−2 43.31 4 1.34 ·10−2 24.12

HT−BTF 6 7.40 ·10−3 75.35 3 1.04 ·10−2 28.74

FHT−BTF 3 7.30 ·10−3 103.68 3 1.01 ·10−2 115.28

0.001

Algorithm 2 6 1.06 ·10−2 43.35 4 1.50 ·10−3 24.21

HT−BTF 6 1.20 ·10−3 75.61 3 1.30 ·10−3 28.65

FHT−BTF 3 7.32 ·10−4 102.92 3 1.00 ·10−3 115.34

We conclude this subsection by reporting results for a Stein tensor equation, whose

coefficient matrices are given by (6).

Example 8 Let X̂= randn(n,n,n) be the exact solution of equation (3) and let the coefficient

matrices A(1), A(2), and A(3) be defined by (6). We observe that the (F)HT−BT methods

perform less well when increasing the problem size. Therefore, we used a slightly larger

value of τ for n = 200. Table 10 shows that HT−BT is superior to Algorithm 2 for n = 120.

When n = 200, Algorithm 2 outperforms (F)HT−BT.

Table 10 Results for Example 8 using the stopping criterion (28).

Noise level ν Mehtod
n = 120 (τ = 2 ·10−3) n = 200 (τ = 1 ·10−2)

Iter(k) ek CPU-time (sec) Iter(k) ek CPU-time (sec)

0.01

Algorithm 2 212 5.10 ·10−1 128.95 49 6.21 ·10−1 47.93

HT−BTF 14 5.70 ·10−1 16.14 22 5.74 ·10−1 242.70

FHT−BTF 17 6.01 ·10−1 30.97 24 6.31 ·10−1 336.09

0.001

Algorithm 2 192 5.09 ·10−1 109.50 49 5.93 ·10−1 47.86

HT−BTF 16 5.48 ·10−1 22.94 21 5.88 ·10−1 213.60

FHT−BTF 20 3.75 ·10−1 46.99 12 4.08 ·10−1 61.33
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5 Conclusions

This paper first presents some results on the conditioning of the Stein tensor equation. Then it

introduces the Golub–Kahan bidiagonalization process with application to solving severely

ill-conditioned linear tensor equations, such as Sylvester and Stein tensor equations. The

iterative scheme also can be applied to the solution of general linear tensor equations with

an operator over Rn1×n2×···×nk . We provide new theoretical results and present some numer-

ical examples with applications to high-dimensional PDEs and color image restoration to

illustrate the applicability and effectiveness of the proposed iterative method.
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