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1 Introduction

We are concerned with the solution of linear least-squares problems

min
x∈Rn

‖Ax− b‖, (1)

where A ∈ R
m×n is a large matrix, whose singular values “cluster” at the

origin, and b ∈ R
m. In particular, A has many “tiny” singular values of dif-

ferent orders of magnitude. Least-squares problem with a matrix of this kind
commonly are referred to as linear discrete ill-posed problems. They arise, for
instance, from the discretization of Fredholm integral equations of the first
kind; see, e.g., [10,19]. Applications of this kind of least-squares problems in-
clude image reconstruction and remote sensing. Throughout this paper ‖ · ‖
denotes the Euclidean vector norm or the spectral matrix norm. Both the
situations when m ≥ n and when m < n will be considered.

The vector b in linear discrete ill-posed problems that arise in applications
typically represents measured data and is contaminated by a measurement
error e ∈ R

m. Thus,

b = bexact + e, (2)

where bexact denotes the unknown error-free vector associated with b. We are
interested in determining the solution, xexact, of minimal Euclidean norm of
the unavailable least-squares problem

min
x∈Rn

‖Ax− bexact‖.

Due to the error e in b and the presence of small positive singular values
of A, the solution of (1) of minimal Euclidean norm typically is not a useful
approximation of xexact. To determine a meaningful approximation of xexact,
one generally replaces the minimization problem (1) by a nearby problem,
whose solution is less sensitive to the error e. This replacement is known
as regularization. One of the most popular regularization methods is due to
Tikhonov. It replaces (1) by a penalized least-squares problem of the form

min
x∈Rn

{‖Ax− b‖2 + µ‖Lx‖2}, (3)

where L ∈ R
p×n is a regularization matrix and µ ≥ 0 a regularization parame-

ter. We require that N (A)∩N (L) = {0}, where N (M) denotes the null space
of the matrix M . Then the penalized least-squares problem (3) has a unique
solution

xµ = (ATA+ µLTL)−1AT b (4)

for any µ > 0; the superscript T denotes transposition. Common choices of
regularization matrices L include the identity matrix, denoted by I, and dis-
crete approximations of differential operators; see, e.g., [5,7,19,23]. The value
of the regularization parameter µ > 0 determines how sensitive the vector (4)
is to the error in b and how close it is to the desired vector xexact.
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We will determine µ with the aid of the discrepancy principle; see below.
This requires that a bound ǫ for the error e be known, i.e.,

‖e‖ ≤ ǫ, (5)

and that bexact ∈ R(A), where R(A) denotes the range of A. If these require-
ments are not satisfied, then other methods, including the L-curve criterion
and generalized cross validation can be used to determine a suitable value of
µ; see, e.g., [11,25,26,29] for discussions and illustrations.

The Tikhonov solution (4) is said to satisfy the discrepancy principle if

‖b−Axµ‖ = ηǫ, (6)

where η > 1 is a user-chosen parameter that is independent of ǫ. When ǫ in (5)
is known to be an accurate estimate of ‖e‖ and e represents white Gaussian
noise, then generally η is chosen to be close to unity. Equation (6) has a unique
solution µdiscr = µ > 0 for many reasonable values of ηǫ > 0; see, e.g., [2].
Several zero-finders for determining µdiscr are described in [30]. A proof in a
Hilbert space setting that xµ → xexact as ǫ ց 0 can be found in [10].

It is the purpose of the present paper to compare a solution method
for large-scale Tikhonov minimization problems (3) based on partial Golub–
Kahan bidiagonalization of A to a randomized solution method. Partial Golub–
Kahan bidiagonalization is the basis for the possibly most popular Krylov sub-
space methods for the solution of large-scale problems (3) with a nonsymmetric
or symmetric indefinite matrix A; see, e.g., [2,15,18,19,22,24] for discussions
and illustrations of this solution approach. Iterative solution methods that are
based on the Arnoldi process instead of Golub–Kahan bidiagonalization are
competitive for certain problems, but may fail to determine accurate approxi-
mations of xexact for some problems; see [6,14,15,27] for discussions and appli-
cations of the Arnoldi process to large-scale linear discrete ill-posed problems.
We therefore focus on Golub–Kahan bidiagonalization in the present paper.

When solving (3) by application of ℓ steps of Golub–Kahan bidiagonaliza-
tion, the matrix A is replaced by an approximation of rank at most ℓ. Typically,
1 ≤ ℓ ≪ max{m,n} in applications. Thus, Golub–Kahan bidiagonalization
applied to the solution of (3) replaces A by a low-rank approximation of the
matrix A, and then solves the low-rank problem instead of (3).

Randomized solution methods for the solution of large-scale problems have
received considerable attention; see Halko et al. [17] for a survey. When applied
to the solution of (3), these methods also determine a low-rank approxima-
tion of A. They compute an approximate solution of the original problem by
replacing the given matrix by its low-rank approximation, and then solve the
low-rank problem so obtained. Xiang and Zou [33,34] describe applications of
this approach to the solution of large-scale Tikhonov minimization problems
(3). To the best of our knowledge, very few comparisons of randomized and
Krylov subspace-based solution methods for linear discrete ill-posed problems
are available in the literature. It is quite natural to compare these approaches
to the solution of large-scale linear discrete ill-posed problems, because they
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both determine low-rank approximations of the large matrix A. Vatankhah et
al. [32] show that randomized methods may be faster than Krylov subspace
methods based on Golub–Kahan bidiagonalization for certain problems. We
illustrate that, for some linear discrete ill-posed problems, methods based on
Golub–Kahan bidiagonalization are competitive and we seek to shed light on
for which kinds of linear discrete ill-posed problems Golub–Kahan bidiagonal-
ization may be preferable.

This paper is organized as follows. Section 2 reviews methods based on
partial Golub–Kahan bidiagonalization of the matrix A described in [2,22]
for the solution of large-scale Tikhonov regularization problems (3). Section
3 outlines the randomized method proposed by Xiang and Zou [33]. The ran-
domized method discussed in [34] also is commented on. Section 4 presents
computed results, and Section 5 contains concluding remarks.

2 Solution methods based on Golub–Kahan bidiagonalization

This section reviews solution methods for the Tikhonov minimization problem
described in [2,22]. They are based on reducing the matrix A to a small bidi-
agonal matrix by the application of 1 ≤ ℓ ≪ min{m,n} steps of Golub–Kahan
bidiagonalization to A. The number of steps is chosen as small as possible so
that the computed solution can satisfy the discrepancy principle. Thus, appli-
cation of ℓ steps of Golub–Kahan bidiagonalization to A with initial vector b
gives the decompositions

AVℓ = Uℓ+1C̄ℓ, ATUℓ = VℓC
T
ℓ , (7)

where the matrices Uℓ+1 ∈ R
m×(ℓ+1) and Vℓ ∈ R

n×ℓ have orthonormal columns,
Uℓ ∈ R

m×ℓ consists of the first ℓ columns of Uℓ+1, and

Uℓ+1e1 = b/‖b‖. (8)

Here and throughout this paper e1 = [1, 0, . . . , 0]T denotes the first axis vector
of appropriate dimension. The range of Vℓ is the Krylov subspace

Kℓ(A
TA,AT b) = span{AT b, (ATA)AT b, . . . , (ATA)ℓ−1AT b}. (9)

Further, the matrix

C̄ℓ =




ρ1 0
σ2 ρ2

. . .
. . .

σℓ−1 ρℓ−1

σℓ ρℓ
0 σℓ+1



∈ R

(ℓ+1)×ℓ

is lower bidiagonal with positive entries σk and ρk, and Cℓ ∈ R
ℓ×ℓ is obtained

by removing the last row of C̄ℓ. We assume that ℓ is small enough so that
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the decompositions (7) with the described properties exist. This is the generic
situation. The dominating computational effort required to determine the de-
compositions (7) is the sequential evaluation of ℓ matrix-vector products with
each one the matrices A and AT ; see, e.g., [16, Section 10.4.4] for an algorithm.

Following [22], we compute an approximate solution of (3) by minimizing
over the Krylov subspace (9) instead of over Rn. Thus, we solve

min
x∈Kℓ(ATA,AT b)

{‖Ax− b‖2 + µ‖Lx‖2}, (10)

which, by using the representation x = Vℓy, and the relations (7) and (8), can
be expressed as

min
y∈Rℓ

{‖C̄ℓy − e1‖b‖ ‖
2 + µ‖LVℓy‖

2}. (11)

Denote the solution of (11) by yµ,ℓ. Then xµ,ℓ = Vℓyµ,ℓ is an approximate
solution of (3). We point out that the problems (3) and (10) only differ in the
spaces over which they are minimized. The randomized method of Section 3
gives a minimization problem that differs in several ways from the problem
(3).

First consider the situation when L = I. Then it is shown in [1, Theorem
5.1] that

‖Axµ,ℓ − b‖ = ‖C̄ℓyµ,ℓ − e1‖b‖ ‖. (12)

It therefore suffices to choose µ > 0 so that the reduced problem on the right-
hand side satisfies the discrepancy principle; see [2] for details. It follows that
it is quite inexpensive to determine a value of µ > 0 such that the approximate
solution xµ,ℓ = Vℓyµ,ℓ of (3) with L = I satisfies (6). A discussion on how this
can be done by using Newton’s method can be found in [2]; other zero-finders
are discussed in [30].

The expressions (12) decrease as ℓ increases. This follows from the fact that
the dimension of the Krylov subspace in (10) increases with ℓ and that the
subspaces are nested, i.e., Kℓ(A

TA,AT b) ⊂ Kℓ+1(A
TA,AT b) for ℓ = 1, 2, . . . .

We choose the number of bidiagonalization steps, ℓ, as small as possible to
satisfy the discrepancy principle for some 0 < µ < ∞, i.e., we choose ℓ so that

‖C̄ℓyµ,ℓ − e1‖b‖ ‖ < ηǫ ≤ ‖C̄ℓ−1yµ,ℓ−1 − e1‖b‖ ‖.

Further details on the choice of ℓ are described in [2].
We turn to the case when L 6= I. This situation can be handled by several

approaches; see, e.g., [3,9,22]. In the numerical examples of Section 4, we will
apply the method described in [22]. Let L ∈ R

p×n and assume that ℓ in (7)
satisfies 1 ≤ ℓ ≤ min{p, n}. Compute the QR factorization QℓRℓ = LVℓ, where
Qℓ ∈ R

n×ℓ has orthonormal columns and Rℓ ∈ R
ℓ×ℓ is upper triangular. Then

(11) becomes
min
y∈Rℓ

{‖C̄ℓy − e1‖b‖ ‖
2 + µ‖Rℓy‖

2}.

Typically, the matrix Rℓ is nonsingular and not very ill-conditioned. Then the
change of variables z = Rℓy results in the minimization problem

min
z∈Rℓ

{‖C̄ℓR
−1
ℓ z − e1‖b‖ ‖

2 + µ‖z‖2}.
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It can be shown that if µ is determined so that the solution zµ,ℓ satisfies
‖C̄ℓR

−1
ℓ z − e1‖b‖ ‖ = ηǫ, then the associated approximate solution xµ,ℓ =

VℓR
−1
ℓ zµ,ℓ satisfies the discrepancy principle (6); see [22] for details. Hence, it

is quite cheap to determine an approximate solution of (3) that satisfies (6)
also when L 6= I.

3 Randomized solution methods

The reduced singular value decomposition (SVD) of the matrix A ∈ R
m×n,

with m ≥ n, is of the form

A = UΣV T , (13)

where the matrices U ∈ R
m×n and V ∈ R

n×n have orthonormal columns, and

Σ = diag[σ1, σ2, . . . , σn] ∈ R
m×n, σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

The diagonal entries σj are known as the singular values of A. An analogous
decomposition is available when m < n; see, e.g., [16, Section 2.4] for details
on the SVD of a matrix.

The computation of the SVD (13) requires O(max{m,n}min{m,n}2) flops
and, therefore, is expensive when m and n are large. Randomized SVD meth-
ods determine an approximation of the factorization (13) and are less expen-
sive; see, e.g., Halko et al. [17]. Xiang and Zou [33] describe how randomized
SVD methods can be applied to the solution of large-scale Tikhonov min-
imization problems (3) when L = I. We will outline their approaches and
compare the performance of these randomized methods to the Golub–Kahan
bidiagonalization method of Section 2 in Section 4.

Xiang and Zou [34] also describe several randomized approaches to the
solution of Tikhonov regularization problems in general form (3). Some of
these methods are based on first transforming (3) to an equivalent problem
with L = I, similarly as outlined at the end of Section 2, while others apply
a randomized generalized SVD. We will not discuss the latter methods in the
present paper.

We first describe the method proposed by Xiang and Zou [33] for the
approximate solution of (3) when m ≥ n and L = I. Let the entries of the
matrix Ωℓ ∈ R

n×ℓ, where 1 ≤ ℓ ≪ n, be identically and normally distributed
random numbers with zero mean, and compute the QR factorization

QℓRℓ = AΩℓ,

where Qℓ ∈ R
m×ℓ has orthonormal columns and Rℓ ∈ R

ℓ×ℓ is upper triangular.
The matrixRℓ is assumed to be nonsingular in [33] and we will, for now, assume
the same. Then the columns of Qℓ form an orthonormal basis for R(AΩℓ). Let
B = QT

ℓ A ∈ R
ℓ×n and compute the reduced SVD,

B = Ŵ Σ̂V̂ T , (14)
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where the matrices Ŵ ∈ R
ℓ×ℓ and V̂ ∈ R

n×ℓ have orthonormal columns, and
Σ̂ ∈ R

ℓ×ℓ is a diagonal matrix with nonnegative diagonal entries arranged in
decreasing order. The right-hand side of

QℓB = QℓQ
T
ℓ A = QℓŴ Σ̂V̂ T (15)

is an approximation of the SVD of A (13). The decomposition (15) is much
cheaper to compute than (13) when m and n are large and 1 ≤ ℓ ≪ n ≤ m.
The following proposition provides bounds for the closeness of A and QℓQ

T
ℓ A.

Proposition 1 Suppose that A ∈ R
m×n has the singular values σ1 ≥ σ2 ≥

. . . ≥ σmin{m,n} ≥ 0. Let Ωℓ ∈ R
n×ℓ be a Gaussian matrix with ℓ := k + p ≤

min{m,n} and p ≥ 4. Let the columns of Qℓ form an orthonormal basis for

R(AΩℓ). Then

σℓ+1 ≤ ‖A−QℓQ
T
ℓ A‖ ≤ (1 + 6

√
ℓp log p)σk+1 + 3(ℓΣj>kσ

2
j )

1/2 (16)

with probability not less than 1− 3p−p.

Proof The left-hand side inequality is a consequence of the Eckart and Young
theorem [8], and the right-hand side inequality is shown by Halko et al. [17,
Corollary 10.9].

We will comment below on the significance of the upper bound (16). In
order for this bound to be small, we have to choose k large enough so that
σk+1 is small, and p large enough so that the right-hand side inequality (16)
holds with high probability. Common choices of p are 5 or 10.

The computational cost for determining the matrices Qℓ, Ŵ , Σ̂, and V̂
in (15) is comprised of O(mℓ2) flops for determining Qℓ from Ωℓ, ℓ matrix-
vector product evaluations with A (to form AΩℓ) and ℓ matrix-vector product
evaluations with AT (to form B = QT

ℓ A), as well as O(nℓ2) flops for the
computation of the SVD of B (14). Some of these computations can be imple-
mented efficiently by using high-level BLAS; see, e.g., [12] for a discussion on
implementation issues.

We will use the decomposition (15) to determine an approximate solution
of (3). Replacing A by this decomposition in (3) gives

min
x∈Rn

{‖QℓQ
T
ℓ Ax−QℓQ

T
ℓ b‖

2 + µ‖Lx‖2}+ ‖(I −QℓQ
T
ℓ )b‖

2, (17)

which can be expressed as

min
x∈Rn

{‖Ŵ Σ̂V̂ Tx−QT
ℓ b‖

2 + µ‖Lx‖2}+ ‖(I −QℓQ
T
ℓ )b‖

2. (18)

Since we would like a solution x of minimal Euclidean norm, it is natural to
require the solution to be of the form x = V̂ y for some y ∈ R

ℓ. Substitution
into (18) gives the minimization problem

min
y∈Rℓ

{‖Σ̂y − ŴTQT
ℓ b‖

2 + µ‖LV̂ y‖2}. (19)
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This problem differs from (3) in several ways: i) A is replaced by QℓQ
T
ℓ A, ii)

the term ‖(I −QℓQ
T
ℓ )b‖

2 in (18) is ignored, and iii) the space R
n is replaced

by R(V̂ ). The differences between the minimization problems (3) and (19) are
small if p and k, and therefore ℓ = p+k, in Proposition 1 are sufficiently large.
In particular, the choice of k has to be large enough in relation to how quickly
the singular values of A decay to zero with increasing index.

Let x denote the solution of (17) with µ > 0 chosen so that x satisfies the
discrepancy principle (6). The discrepancy principle suggests that ℓ be chosen
large enough so that

‖(A−QℓQ
T
ℓ A)x‖ ≤ ‖A−QℓQ

T
ℓ A‖‖x‖ ≤ η′ǫ,

where the parameter ǫ is the same as in (6), and 0 < η′ ≤ η is a user-
chosen parameter with η the same as in (6). An accurate upper bound for
‖A − QℓQ

T
ℓ A‖ can be determined with high probability by evaluating ‖(A −

QℓQ
T
ℓ A)w‖ for sufficiently many random vectors with normally distributed

entries with zero mean; see [17, eq. (4.3) and Lemma 4.1]. The evaluation of
such a bound increases the computational effort required by the randomized
method. Moreover, we would like ℓ to be large enough so that

‖(I −QℓQ
T
ℓ )b‖ ≤ η′ǫ.

We illustrate in Section 4 that for some problems the parameters p and k
in (16) have to be chosen too large to make the randomized solution method
of this section competitive with the Krylov subspace method of Section 2.

There is a small probability that in a particular application of the random-
ized method, columns of the matrix Qℓ are singular vectors associated with
“tiny” singular values of A. These singular vectors typically “oscillate” a lot,
i.e., the vector entries as a function of their index number can be thought of as
the discretization of a highly oscillatory function. The presence of such vectors
in the solution subspaceR(Qℓ) typically would result in an a highly oscillatory,
and therefore undesired, approximate solution of (3). This phenomenon may
be considered an instability of the randomized method. However, we hasten
to add that we have not observed this instability in any one of numerous com-
puted examples that we have carried out. The occurrence of this instability,
indeed, is rare.

When L = I, we have ‖LV̂ y‖ = ‖y‖. Otherwise, we compute the QR

factorization Q̂R̂ = LV̂ , where Q̂ ∈ R
p×ℓ has orthonormal columns and R̂ ∈

R
ℓ×ℓ is upper triangular. When the matrix R̂ is of full rank and fairly well-

conditioned, we proceed similarly as described at the end of Section 2.
Now consider the case when, numerically, rank(AΩℓ) < ℓ. This situation

may arises when the matrix A is of numerical rank less than ℓ. Then we
compute the SVD

Rℓ = UℓΣℓV
T
ℓ ,

where the matrices Uℓ = [uℓ,1,uℓ,2, . . . ,uℓ,ℓ] ∈ R
ℓ×ℓ and Vℓ ∈ R

ℓ×ℓ are orthog-
onal and Σℓ ∈ R

ℓ×ℓ = diag[σℓ,1, σℓ,2, . . . , σℓ,ℓ] with σℓ,1 ≥ σℓ,2 ≥ . . . ≥ σℓ,ℓ ≥
0. Let σℓ,j be the smallest numerically nonvanishing diagonal entry. Then,
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numerically, the columns of Qℓ,j := Qℓ[uℓ,1,uℓ,2, . . . ,uℓ,j ] ∈ R
m×j form an

orthonormal basis for R(AΩℓ), and we replace the matrix Qℓ in (15), (17),
and (19) by Qℓ,j .

We turn to the situation when m < n. Following Xiang and Zou [33], let
Ωℓ ∈ R

ℓ×m, with 1 ≤ ℓ ≪ m, be a random matrix with the same kind of
entries as above, and let the columns of Qℓ ∈ R

n×ℓ form an orthonormal basis
for a linear space that contains R((ΩℓA)

T ). We compute Qℓ by evaluating the
QR factorization of (ΩℓA)

T . Then we calculate the SVD of AQℓ,

AQℓ = Û Σ̂ŴT ,

where the matrices Û ∈ R
n×ℓ and Ŵ ∈ R

ℓ×ℓ have orthonormal columns, and
Σ̂ ∈ R

ℓ×ℓ is a diagonal matrix with nonnegative diagonal entries arranged in
decreasing order. The expression

AQℓQ
T
ℓ = Û Σ̂ŴTQT

ℓ

is an approximation of the SVD of A.
We determine an approximate solution of (3) by solving

min
x∈R(Qk)

{‖AQℓQ
T
ℓ x− Û ÛT b‖2 + µ‖Lx‖2}, (20)

which, with x = QℓŴy, can be written as

min
y∈Rℓ

{‖Σ̂y − ÛT b‖2 + µ‖LQℓŴy‖2}. (21)

Finally, let R̃ ∈ R
ℓ×ℓ be the upper triangular matrix in a QR factorization

of LQℓŴ . Since, generally, R̃ is nonsingular and not very ill-conditioned, we
may transform the Tikhonov minimization problem (21) to standard from by

the change of variables z = R̃y.
We conclude this section with a discussion on the application of the dis-

crepancy principle, and first consider the situation when m ≥ n. Then we
solve (17) by computing the solution of (19). Assume that the error e in b

is normally distributed with zero mean and variance ǫ2. Then, since QℓQ
T
ℓ

is an orthogonal projector, the variance of QℓQ
T
ℓ e is ℓ

mǫ2. Therefore, when
determining the regularization parameter µ for the problem (17), we replace

ǫ by
√

ℓ
mǫ in (6).

When m < n, we solve (20) by computing the solution of (21). Since Û ÛT

is an orthogonal projector, the variance of Û ÛTe is ℓ
nǫ

2. Therefore, when
determining the regularization parameter µ for the minimization problem (21),

we replace ǫ by
√

ℓ
nǫ in (6).

The value of ℓ = p + k affects both the quality of the computed solution
and the computing time required. This value has to be large enough so that
AQℓQ

T
ℓ is a sufficiently accurate approximations of A. The computed examples

of the following section illustrate this.
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4 Computed examples

The examples reported in this section show the performance of the methods
discussed in the previous sections. All computations were carried out on a
Windows computer with an i7-8750H @2.2 GHz CPU and 16 GB of memory.
The implementations were done in MATLAB R2018b.

The noise level is defined by

δ =
‖e‖

‖bexact‖
.

In all experiments, the regularization parameter was determined with the aid
of the discrepancy principle and computed by Newton’s method as outlined
above with initial iterate µ0 = 0. More details on the application of Newton’s
method can be found in [2]. This method also was used to determine the
regularization parameter in the randomized SVD (RSVD) method in a similar
way.

We consider several examples described in Regularization Tools by Hansen
[20] and in IR Tools by Gazzola et al. [13]. Both Regularization Tools and IR
Tools are program packages written in MATLAB. Problems in both one and
two space-dimensions will be discussed. We compare the performance of the
Krylov method of Section 2 and the randomized SVD method of Section 3. The
computed examples show that rapid decay of the singular values to zero with
increasing index number is essential for the success of the randomized method.
We will refer to the Krylov subspace-based Tikhonov regularization method
of Section 2 as “K-Tikhonov”, and to the Tikhonov regularization method
based on the randomized SVD technique as “R-Tikhonov”. Throughout this
section, ℓ denotes the number of bidiagonalization steps carried out by the
Golub–Kahan bidiagonalization method, as well as the number of columns of
the random matrix Ωℓ when m ≥ n, or the number of rows of the random
matrix when m < n; see Section 3.

Before comparing the two methods, we would like to discuss the computa-
tional cost of the K-Tikhonov and R-Tikhonov methods. Let us assume that
ℓ ≪ n. Then for K-Tikhonov, the computational cost is dominated by the
ℓ matrix-vector product evaluations with A and the ℓ matrix-vector prod-
uct evaluations with AT . The R-Tikhonov method requires the evaluation of
AΩℓ and ATQℓ. The flop count for these evaluations in K-Tikhonov and R-
Tikhonov is the same, and of order O(mnℓ), but the evaluations in R-Tikhonov
can be implemented as matrix-matrix products, while this is not possible in
K-Tikhonov, because in Golub–Kahan bidiagonalization the columns of the
matrices Vℓ and Uℓ+1 are determined sequentially one-by-one. As we will il-
lustrate in the following, when A is stored as a matrix, the matrix-matrix
product evaluations in R-Tikhonov are faster than the matrix-vector prod-
uct evaluations in K-Tikhonov. However, when A is not explicitly stored and
it therefore is not possible to evaluate the matrix-matrix products AΩℓ and
ATQℓ efficiently, i.e., when we need to compute 2ℓ matrix-vector products (one
for each column of Ωℓ and Qℓ), the computing time required by K-Tikhonov
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and R-Tikhonov to evaluate the necessary matrix-vector products is almost
identical.

Shaw. We first consider the Shaw test problem described in [31]. It is an
integral equation of the first kind with a smooth kernel in one space-dimension.
MATLAB code that gives a discretization of this integral equation is provided
in [20]. This code gives the matrix A ∈ R

2048×2048 and a vector xexact ∈ R
2048,

from which we compute bexact = Axexact. We add a “noise vector” e ∈ R
2048 to

bexact that models white Gaussian noise with noise level δ = 0.01 to obtain the
“available” noise-contaminated data vector b; cf. (2). The moderate dimension
of this problem allows us to compute the solution of the Tikhonov regularized
problem also in the full space since it is possible to explicitly compute the SVD
of the matrix A. We refer to the latter approach as “standard Tikhonov”. The
regularization matrix L used in this example is the discrete Laplacian in one
space-dimension.

We apply the K-Tikhonov and R-Tikhonov methods for different dimen-
sions ℓ of the solution subspace and compare the results obtained with those
obtained with standard Tikhonov, i.e., the solution of (3). In particular, we
are interested in comparing the quality of the computed approximations of
xexact determined by the different methods, as well as in the timings. Let x

denote an approximate solution computed by one of the methods considered.
We define the relative reconstruction error

RRE(x) =
‖x− xexact‖

‖xexact‖
.

Figure 1 reports RREs and timings for the K-Tikhonov and R-Tikhonov
methods. The horizontal axes in the subfigures show the dimension, ℓ, of the
solution subspaces for the K-Tikhonov and R-Tikhonov method. We can ob-
serve that the RRE for R-Tikhonov is slightly smaller than for K-Tikhonov for
ℓ > 5. Moreover, the CPU time required for the computation of the solution
with R-Tikhonov is smaller than the CPU time needed for the computation of
the solution with K-Tikhonov for solution subspaces of the same dimension.
Finally, we note that the RRE obtained with K-Tikhonov rapidly converges to
the RRE of the solution determined by standard Tikhonov, while the RRE for
the solutions determined by R-Tikhonov typically is smaller. The difference in
the quality of the computed solutions is made possibly by the facts that the
computed solutions are determined by the discrepancy principle and live in
different solution subspaces.

Figure 2 displays the singular values σℓ+1 of A and the quantities ‖(I −
QℓQ

T
ℓ )A‖, ‖(I−QℓQ

T
ℓ )A‖‖xexact‖, and ‖(I−QℓQ

T
ℓ )b‖ of interest for Proposi-

tion 1 as functions of ℓ. We can observe in Figure 2(a) that, since the singular
values of A decay to zero extremely fast with increasing index ℓ, the matrix
QℓQ

T
ℓ A approximates A well; the approximation error is very close to the

optimal one, i.e., to σℓ+1. Figure 2(b) shows that the discrepancy principle al-
ready can be satisfied in a subspace of fairly small dimension. We remark that,
although the function ℓ → ‖(I − QℓQ

T
ℓ )b‖ appears to be constant for ℓ large
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Fig. 1: Shaw test problem, comparison between K-Tikhonov and R-Tikhonov:
(a) RRE for solutions determined by K-Tikhonov (red dashed curve), R-
Tikhonov (blue solid curve), and standard Tikhonov (black dotted curve).
The horizontal axes show the dimension, ℓ, of the solution subspaces for K-
Tikhonov and R-Tikhonov. (b) CPU time in seconds for K-Tikhonov (red
dashed curve) and R-Tikhonov (blue solid curve) for different values of ℓ.
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Fig. 2: Shaw test problem, bounds of Proposition 1: (a) Comparison of the
approximation error ‖(I −QℓQ

T
ℓ )A‖ (blue solid curve) and the optimal error,

i.e., the singular values σℓ+1 of the matrix A (black dotted curve) versus ℓ.
(b) Comparison of ‖(I −QℓQ

T
ℓ )A‖‖xexact‖ (blue solid curve), ‖(I −QℓQ

T
ℓ )b‖

(red dashed curve), and ηǫ (black dotted line) versus ℓ.

enough, this function is decreasing very slowly as ℓ increases and vanishes for
ℓ = n.

Heat. We consider the heat test problem in [20]. It is described in [4]. This
problem models inverse heat conduction in one space-dimension. We use MAT-
LAB code supplied in [20]. This code requires a parameter κ, which is set to
the default value 1. Discretization gives a problem (1) with a matrix A ∈
R

2048×2048 and a vector xexact, from which we compute the exact data vector
bexact = Axexact. We add an error vector e that models white Gaussian noise
and corresponds to a noise level of δ = 0.02 to bexact to obtain the error con-
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Fig. 3: Heat test problem, comparison between K-Tikhonov and R-Tikhonov:
(a) RRE for solutions determined by K-Tikhonov (red dashed curve), R-
Tikhonov (blue solid curve), and standard Tikhonov (black dotted curve).
The horizontal axes show the dimension, ℓ, of the solution subspaces for K-
Tikhonov and R-Tikhonov. (b) CPU time in seconds for K-Tikhonov (red
dashed curve) and R-Tikhonov (blue solid curve) for different values of ℓ.

taminated vector b in (1). Similarly as in the previous example, we let L be
the discrete Laplacian in one space-dimension, and we display the RRE and
CPU times for K-Tikhonov and R-Tikhonov.

Figure 3 shows the RRE and CPU times for several ℓ-values. Similarly
as in the Shaw example, the computing times required for the computation
of the R-Tikhonov solutions are much smaller than the times required for
K-Tikhonov for solution subspaces of the same dimension. For the present
example, the RRE-values obtained with R-Tikhonov are slightly larger than
those obtained with K-Tikhonov for solution subspaces of the same dimension,
at least for ℓ < 23. However, the RREs are of the same order of magnitude
for both methods for solution subspaces of the same dimension. Finally, we
observe that, differently from the previous example, the RRE obtained with
the K-Tikhonov method is not the same, for ℓ large, as for standard Tikhonov.
This is due to the fact that the discrepancy principle does not determine a
unique solution; the computed solution depends on the solution subspace used.

Like in the previous example, we report the singular values σℓ+1 of A and
the quantities ‖(I − QℓQ

T
ℓ )A‖, ‖(I − QℓQ

T
ℓ )A‖‖xexact‖, ‖(I − QℓQ

T
ℓ )b‖ in

Figure 4. In the present example, the singular values of A decrease to zero
slower than in the previous example. Although the matrix QℓQ

T
ℓ A is still a

good approximation of A, the approximation error is visibly larger than the
optimal one, given by σℓ+1. This is illustrated by Figure 4(b). We observe that
in order to satisfy the discrepancy principle, the parameter ℓ has to be larger
than in the previous example.

Phillips. Our last example in one space-dimension is the phillips test prob-
lem from [20], where MATLAB code is available. This code provides a dis-
cretization of a convolution. A background for this problem is given in [28].
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Fig. 4: Heat test problem, bounds of Proposition 1: (a) Comparison of the
approximation error ‖(I − QℓQ

T
ℓ )A‖ (blue solid curve) and the optimal er-

ror, i.e., the singular values σℓ+1 of the matrix A (black dotted curve) as a
function of ℓ. (b) Comparison of ‖(I − QℓQ

T
ℓ )A‖‖xexact‖ (blue solid curve),

‖(I −QℓQ
T
ℓ )b‖ (red dashed curve), and ηǫ (black dotted line) versus ℓ.

We generate the matrix A and the noise-contaminated vector b in the same
manner as in the previous examples. Thus, the noise is white Gaussian and
corresponds to the noise level δ = 0.05. The regularization matrix L is the
discrete Laplacian in one space-dimension.

We report the results obtained with the K-Tikhonov and R-Tikhonov meth-
ods in Figure 5. These results are similar to the ones obtained for the Shaw test
problem. Thus, R-Tikhonov outperforms K-Tikhonov in terms of timings and
RRE (for ℓ sufficiently large). Similarly to the Shaw test problem, the solutions
computed with K-Tikhonov give the same RRE as the solutions computed by
standard Tikhonov already for small subspace dimensions ℓ, while the solution
computed by R-Tikhonov provide a better approximation of xexact.

As above we display the singular values σℓ+1 of A and the norms ‖(I −
QℓQ

T
ℓ )A‖, ‖(I − QℓQ

T
ℓ )A‖‖xexact‖, and ‖(I − QℓQ

T
ℓ )b‖ as functions of ℓ in

Figure 6. This example behaves like the Heat example and we therefore can
draw the same conclusions. Nevertheless, let us observe that the decay of the
singular values, even though it is slower than in the Shaw example, is still fast
enough to yield a fairly accurate approximation of A using the randomized
method.

The R-Tikhonov method performs well in all the above examples, even
though the matrices A in these examples have different properties. The matrix
in the Shaw and Phillips examples are symmetric, while in the Heat example,
the matrix is very far from a symmetric matrix. The singular values of the
matrix decay to zero quite quickly with increasing index in the Shaw and
Heat test problems, while they do not for the problem Phillips.

The above examples are discretizations of problems in one space-dimension.
We now turn to problems that are discretizations of ill-posed problems in two
space-dimensions. The relative performance of the methods in our comparison
will be seen to be different for this kind of problems.
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Fig. 5: Phillips test problem, comparison between K-Tikhonov and R-
Tikhonov: (a) RRE for solutions determined by K-Tikhonov (red dashed
curve), R-Tikhonov (blue solid curve), and standard Tikhonov (black dotted
curve). The horizontal axes show the dimension, ℓ, of the solution subspace
for K-Tikhonov and R-Tikhonov. (b) CPU time for K-Tikhonov (red dashed
curve) and R-Tikhonov (blue solid curve) for different values of ℓ
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Fig. 6: Phillips test problem, bounds of Proposition 1: (a) Comparison of the
approximation error ‖(I −QℓQ

T
ℓ )A‖ (blue solid curve) and the optimal error,

i.e., the singular values σℓ+1 of the matrix A (black dotted curve), versus ℓ.
(b) Comparison of ‖(I −QℓQ

T
ℓ )A‖‖xexact‖ (blue solid curve), ‖(I −QℓQ

T
ℓ )b‖

(red dashed curve), and ηǫ (black dotted line) versus ℓ.

Blur. We determine the matrix A with the MATLAB function blur(45,8,1)

from [20]. This function call generates a symmetric block-Toeplitz-Toeplitz-
block (BTTB) matrix A ∈ R

2025×2025, which models a Gaussian point spread
function in two space-dimensions. The parameter value 8 is the half-bandwidth
of the Toeplitz blocks. Thus, the matrix A is very sparse. It is stored in sparse
matrix format. The regularization matrix L is the discrete Laplacian in two
space-dimensions.

Let the entries of xexact be pixel values of an 45× 45-pixel image, with the
pixels ordered column-wise. Then bexact = Axexact represents a blurred image
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Fig. 7: Blur test problem, comparison between K-Tikhonov and R-Tikhonov:
(a) RRE for solutions determined by K-Tikhonov (red dashed curve), R-
Tikhonov (blue solid curve), and standard Tikhonov (black dotted curve).
The horizontal axes show the dimension, ℓ, of the solution subspaces for K-
Tikhonov and R-Tikhonov. (b) CPU time in seconds for K-Tikhonov (red
dashed curve) and R-Tikhonov (blue solid curve) for different values of ℓ.

associated with xexact. Add a vector e that represents white Gaussian noise
with noise level δ = 0.03 to bexact to obtain the contaminated data vector b;
cf. (2).

We compare RREs and CPU times for different values of ℓ similarly as
in the previous examples. The results are reported in Figure 7. The figure
shows that the R-Tikhonov method does not perform well in terms of the
RRE. In fact, the RRE is very large and does not decrease significantly as the
dimension of the solution subspace, ℓ, increases. Moreover, since the matrix A
is very sparse, the matrix-vector products required by the K-Tikhonov method
are not computational demanding. Therefore, the computational cost of the
two methods is about the same.

The relatively poor performance of the R-Tikhonov method in this exam-
ple is due to the fact that the singular values of the matrix A decrease fairly
slowly to zero with increasing index and are not approximated well by the sin-
gular values of the reduced matrix AQ30Q

T
30 used to compute the R-Tikhonov

solution. To see this in more detail, we plot in Figure 8 the singular values of
the matrices AQ30Q

T
30, C̄30, and A for all the considered examples. We can

observe that in all examples in one space-dimension, the largest singular val-
ues of the matrix A are approximated well by the singular values of AQ30Q

T
30

and C̄30. However, the singular values of AQ30Q
T
30 for the present example

are very poor approximations of the largest singular values of A. On the other
hand, the singular values of C̄30 match very well the largest singular values
of A. This suggests that the R-Tikhonov method may not be effective for the
solution of linear discrete ill-posed problems with a matrix A whose singu-
lar values decay fairly slowly with their index number. To illustrate this, we
choose the solution subspace for the R-Tikhonov method to be ℓ = 1000, and
compare the error in the computed solution with the errors in the solution de-
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Fig. 8: The largest singular values of the matrices AQ30Q
T
30 (blue solid curve),

C̄30 (red dashed curve), and A (black dotted curve) as a function of the index
for all the considered examples: (a) Shaw, (b) Heat, (c) Phillips, (d) Blur.

standard Tikhonov K-Tikhonov (ℓ = 30) R-Tikhonov (ℓ = 1000)
RRE 3.18 · 10−1 3.00 · 10−1 3.16 · 10−1

CPU time (sec.) – 2.00 · 10−2 1.21 · 100

Table 1: Blur test problem: RRE and CPU time in seconds for standard
Tikhonov, K-Tikhonov, and R-Tikhonov for selected values of k and ℓ.

termined by the K-Tikhonov method with ℓ = 30 and by standard Tikhonov.
This comparison is reported in Table 1. We can see that even when ℓ = 1000,
the R-Tikhonov method provides less accurate results than K-Tikhonov with
ℓ = 30, and requires much more execution time (about 45 times as much).

These observations are corroborated by Figure 9, which shows the singular
values σℓ+1 of A and compares them to ‖(I −QℓQ

T
ℓ )A‖ as functions of ℓ. The

figure also displays the norms ‖(I − QℓQ
T
ℓ )A‖‖xexact‖ and ‖(I − QℓQ

T
ℓ )b‖.

We can observe in Figure 9(a) that since the singular values of A do not
decay fast enough to zero with increasing index ℓ, the approximation error
‖(I−QℓQ

T
ℓ )A‖ is extremely large even for ℓ = 100. Moreover, we can see that

the discrepancy principle cannot be satisfied for ℓ ≤ 100. By visual inspection
of Figure 9(b), we can deduce that a very large value of ℓ may be required to
satisfy the discrepancy principle.
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Fig. 9: Blur test problem, bounds of Proposition 1: (a) Comparison of the
approximation error ‖(I −QℓQ

T
ℓ )A‖ (blue solid curve) and the optimal error,

i.e., the singular values σℓ of the matrix A (black dotted curve), versus ℓ. (b)
Comparison of ‖(I−QℓQ

T
ℓ )A‖‖xexact‖ (blue solid curve), ‖(I−QℓQ

T
ℓ )b‖ (red

dashed curve), and ηǫ (black dotted line) against ℓ.

Hubble. We turn to a deblurring problem from [13]. Specifically, we consider
the deblurring problem obtained when the available image is blurred by a
medium speckle PSF and, in addition, is contaminated by 5% white Gaussian
noise. The size of the image is 512×512 pixels; see Figure 10. We impose peri-
odic boundary conditions. Then the blurring matrix A ∈ R

n×n, with n = 5122,
is block circulant with circulant blocks (BCCB). Thus, A can be diagonalized
by the bidimensional Fourier matrix. We can compute the eigenvalues of A in
O(n log n) flops with the aid of the fast Fourier transform (FFT) algorithm;
see, e.g., [21] for a discussion on image deblurring and boundary conditions. By
choosing L as the discretization of the bidimensional Laplacian with periodic
boundary conditions, we can solve (3) in O(n log n) flops for each value of the
regularization parameter µ. This allows us to compute the solution by stan-
dard Tikhonov regularization and to compare results obtained in this manner
with those determined by the K-Tikhonov and R-Tikhonov methods.

Similarly as above, we apply both the R-Tikhonov and K-Tikhonov meth-
ods for different values of ℓ, and compare results in terms of CPU time and
accuracy. The matrix A is not explicitly formed; instead we evaluate matrix-
vector products with A and AT by using the FFT algorithm. Hence, in R-
Tikhonov the matrices AΩℓ and ATQℓ are computed by evaluating ℓ matrix-
vector products with A and ℓ matrix-vector products with AT . We therefore
expect the computing time for R-Tikhonov and K-Tikhonov to be about the
same. This is confirmed by the graphs of Figure 11(b). On the other hand,
we can see from Figures 11(a) and (d) that the R-Tikhonov method fails to
accurately determine the largest singular values of A, and that the restored
image determined by R-Tikhonov is of very poor quality; see Figure 12(b).
This is due to the fact that, as we can see in Figure 11(c), the singular values
of A do not decrease very fast to zero.
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(a) (b) (c)

Fig. 10: Hubble test case: (a) true image (512×512 pixels), (b) PSF (512×512
pixels), (c) blurred and noisy image with 5% of white Gaussian noise (512×512
pixels).

Figure 12 displays the reconstructed images obtained with standard Tikhonov,
R-Tikhonov, and K-Tikhonov. Visual inspection shows that K-Tikhonov is
able to provide a reconstruction of similar quality as standard Tikhonov, while
R-Tikhonov fails to determine an accurate approximation of xexact.

5 Conclusion

The application of randomized algorithms to the solution of large-scale prob-
lems has received considerable attention. This paper compares their perfor-
mance with a Krylov subspace method when applied to the solution of linear
discrete ill-posed problems by Tikhonov regularization. The singular values of
linear discrete ill-posed problems “cluster” at the origin, however, their rate
of decay towards zero with increasing index is problem dependent. The ran-
domized method is found to be competitive for the solution of linear discrete
ill-posed problems in one space-dimension, for which the singular values decay
to zero fast enough with increasing index. However, when the singular values
do not decrease quickly enough, the Krylov method considered outperforms the
randomized method. This depends on that Krylov methods determine more
appropriate solution subspaces of low dimensions for linear discrete ill-posed
problems than the randomized method when the singular values do not decay
to zero sufficiently rapidly.

We only consider one Krylov subspace method, Golub–Kahan bidiagonal-
ization, in this paper. However, our conclusions carry over to other Krylov
subspace solution methods, such as the Arnoldi method, as well, at least when
the matrix A is not too far from symmetric. When A is far from symmetric,
solution methods for discrete ill-posed problems based on the Arnoldi process
are known not to provide satisfactory results; see, e.g., [6,14] an illustration.



20 X. Bai, A. Buccini, and L. Reichel

0 5 10 15 20 25 30 35 40 45 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0 5 10 15 20 25 30 35 40 45 50

10
-1

10
0

(b)

0 0.5 1 1.5 2 2.5 3

10
5

10
-20

10
-15

10
-10

10
-5

10
0

(c)

10
0

10
1

10
2

10
-2

10
-1

10
0

(d)

Fig. 11: Hubble test problem: Comparison between K-Tikhonov and R-
Tikhonov: (a) RRE for solutions determined by K-Tikhonov (red dashed
curve), R-Tikhonov (blue solid curve), and standard Tikhonov (black dot-
ted curve). The horizontal axis shows ℓ for K-Tikhonov and k for R-Tikhonov,
(b) CPU times for K-Tikhonov (red dashed curve) and R-Tikhonov (blue solid
curve) for different values of ℓ and k, (c) singular values of the blurring matrix
A, (d) the largest singular values of the matrices AQ50Q

T
50 (blue solid curve),

C̄50 (red dashed curve), and A (black dotted curve) as a function of their
index.

(a) (b) (c)

Fig. 12: Hubble test case reconstructions: (a) Tikhonov, (b) R-Tikhonov (k =
50), (c) K-Tikhonov (ℓ = 50).
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