
A novel iterative method for discrete Helmholtz

decomposition

JaEun Ku

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences,

Stillwater, OK 74078, USA.

Lothar Reichel

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Abstract

A new iterative method for the computation of the discrete Helmholtz de-
composition of a vector is presented. We are particularly interested in com-
puting the discrete Helmholtz decomposition when the given vector is dis-
cretized by a mixed finite element method defined by Raviart-Thomas (RT)
or Brezzi-Douglas-Marini (BDM) elements. The decomposition is computed
by solving a system of linear equations by an iterative method, that splits
a given vector into a divergence-free component and a curl-free component.
Each iteration cycle uses a well-developed solver based on the algebraic
multigrid method for computing a projection onto H(div) or H(curl). Only
a few iteration cycles are required to compute an accurate approximate so-
lution. As a by-product, we obtain an iterative method for the solution of
linear systems of equations with a nearly singular matrix.

Keywords: finite element method, nearly singular system, variational
problem

AMS classification: Primary 65F10; Secondary 65N22

1. Introduction

The Helmholtz decomposition splits a vector field into a curl-free com-
ponent and a divergence-free component. This decomposition is useful, for

Email addresses: jku@okstate.edu (JaEun Ku), reichel@math.kent.edu (Lothar
Reichel)

Preprint submitted to Elsevier January 7, 2020

instance, when modeling, analyzing, and manipulating fluids, and is applied
in visualization, computer graphics, astrophysics, and imaging; see, e.g., [3]
and references therein.

The finite element method (FEM) is a widely used technique for approxi-
mating the solution of boundary and initial value problems for partial differ-
ential equations (PDEs). Mixed finite element spaces, such as spaces made
up of Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) elements, see
[7, 8, 22], are commonly used as approximation spaces when solving incom-
pressible fluid and electromagnetic problems. To the best of our knowledge,
there is no efficient algorithm for computing the discrete Helmholtz decom-
position for mixed element spaces. This decomposition is described in, e.g.,
[1, 9].

The aim of this paper is to present a new iterative method for comput-
ing the discrete Helmholtz decomposition of a given vector in a mixed finite
element space. Our iterative method has a simple structure, which makes
it easy to implement. In each iteration step, the method uses an algebraic
multigrid method (AMG) to determine the projection of a given vector onto
divergence-free or curl-free components. Typically only few iteration steps
are required. The computed components are essentially orthogonal. This
is an important property of the discrete Helmholtz decomposition. Our
iterative method is based on a scheme for computing the solution of a lin-
ear system of equations with a nearly singular matrix. This scheme is an
extension of the method described in [17].

This paper is organized as follows. Section 2 introduces necessary no-
tation and describes the background of our decomposition method. The
iterative method is presented in Section 3, where also its convergence prop-
erties are studied. Section 4 discusses iterative solution of nearly singular
systems. Numerical examples are presented in Section 5, and concluding
remarks can be found in Section 6.

2. Problem formulation

This section discusses the Helmholtz decomposition and introduces no-
tation to be used subsequently.

2.1. The Helmholtz decomposition

Let Vh be a discrete subspace of (L2(Ω))
n, where Ω ∈ R

n is a bounded
simply connected polygonal domain with boundary ∂Ω. Our discussion is for
n = 2 space-dimensions; however, the method generalizes in a straightfor-
ward manner to n = 3 space-dimensions. We are interested in the situation

2

when Vh is a mixed finite element space, such as a Raviart-Thomas (RT)
space or a Brezzi-Douglas-Marini (BDM) space; see [22] and [7, 8]. Our
analysis is presented for RT spaces, but can easily be extended to BDM
spaces. The Helmholtz decomposition is based on the fact that a vector
f ∈ Vh can be split into divergence-free and curl-free components; see [12].

2.2. Discrete spaces

Let Th be a quasi-uniform family of triangulations of Ω, where h > 0 is a
parameter representative of the diameter of the triangles; see [4]. We denote
the triangles of Th by T . For each nonnegative integer r, the Raviart-Thomas
space of index r is given by

Vh = {v ∈ H(div) : v|T ∈ Pr(T) + (x, y)Pr(T) for all T ∈ Th}. (2.1)

Here Pr(T) denotes the set of polynomials of degree at most r on T , and
H(div) = {σ ∈ (L2(Ω))

2 : ∇ · σ ∈ L2(Ω)}. We refer to [2] and references
therein for more detailed discussions on properties and implementations of
RT spaces.

2.3. The Helmholtz decomposition of Vh

Introduce the space

Wh = {s ∈ H1 : s|T ∈ Pr+1(T)}

of continuous piece-wise polynomials of degree at most r + 1 on T with a
derivative, as well as the space

Sh = {q ∈ L2 : q|T ∈ Pr(T)}

of (possibly discontinuous) piece-wise polynomials of degree at most r on T .
Define the discrete gradient operator gradh : Sh → Vh by

(gradhq,v) = −(q,∇ · v) ∀v ∈ Vh.

The discrete Helmholtz decomposition of Vh is given by

Vh = gradhSh ⊕ curlWh,

where curl = (− ∂
∂y ,

∂
∂x)

T ; cf. [1, 9]. Hence, a vector f ∈ Vh can be
decomposed according to

f = fdiv + fcurl, (2.2)

where fdiv ∈ gradhSh and fcurl ∈ curlWh. This decomposition is orthogonal
with respect to both standard L2 and H(div) inner products.

3

2.4. A variational problem

Our approach to computing the Helmholtz decomposition of a vector is
based on the equation

(∇ · σ,∇ · τ) + δ(σ, τ) = (f , τ) ∀ τ ∈ Vh. (2.3)

The above variational problem may be thought of as a realization of a partial
differential equation with the natural boundary condition, i.e., ∇ · σ =
0 on ∂Ω; see [1]. Note that the second term in the left-hand side of (2.3)
with the parameter δ > 0 makes the operator in the left-hand side positive
definite. As a result, the existence and uniqueness of the solution σ ∈ Vh

of (2.3) is guaranteed. Also, this term allows us to compute the components
fdiv and fcurl of f , satisfying fdiv ∈ gradhSh and fcurl ∈ curlWh, by using an
iterative method and taking advantage of the different convergence behaviors
of these components. We can observe in computed examples reported in
Section 5 that a smaller δ > 0 gives slightly more accurate approximations
of fdiv and fcurl, while also slightly increasing the number of iterations.

Remark 2.1. One can develop a method for computing the Helmholtz de-
composition based on the variational problem

(curlσ, curl τ) + δ(σ, τ) = (f , τ) ∀ τ ∈ Vh.

The analysis of such a method is almost identical to the analysis of our
method, which is based on (2.3).

2.5. Two linear operators

Define the linear operators A and Aδ by

(Aσ, τ) = (∇ · σ,∇ · τ) + (σ, τ) ∀ τ ∈ Vh,

(Aδσ, τ) = (∇ · σ,∇ · τ) + δ(σ, τ) ∀ τ ∈ Vh.

The operator A is symmetric and positive definite. Its smallest eigenvalue is
larger than or equal to 1. Hence, all eigenvalues of A−1 lie in the semi-open
interval (0, 1]. The operator Aδ can be expressed as

Aδ = A+ (δ − 1)I. (2.4)

This shows that Aδ also is symmetric and positive definite for δ > 0, with
its eigenvalues bounded below by δ.

Using orthogonality, one can show that the two summand spaces gradhSh

and curlWh are invariant under A and Aδ. Moreover, we have

Aψ = ψ and Aδψ = δψ ∀ψ ∈ curlWh. (2.5)

4

2.6. A linear equation

We would like to compute an accurate approximation of the Helmholtz
decomposition of a vector f ∈ Vh. To achieve this, we solve

Aδσh = f (2.6)

by an iterative method. The method splits f into a divergence-free com-
ponent fcurl and a curl-free component fdiv; cf. (2.2). To understand the
splitting procedure, we consider (2.6) as two problems with data vectors fcurl
and fdiv,

Aδ(σcurl) = fcurl and Aδ(σdiv) = fdiv. (2.7)

These two subproblems cannot be solved separately, because we do not
know the components fcurl and fdiv of f . Instead, we will apply our iterative
method to the solution of (2.6) and use the fact that the components of the
computed iterates associated with the solutions of the subproblems (2.7)
converge with different rates to separate f into fcurl and fdiv.

Thus, we apply our iterative method to (2.6). The iterates generated are
made up of a linear combination of approximations of σcurl and σdiv. The
rates of convergence of these approximations towards σcurl and σdiv differ.
This makes it possible to separate them and in this manner determine the
components fcurl and fdiv of f . In detail, using (2.5), we obtain

σcurl =
fcurl

δ
since Aδ

(

fcurl

δ

)

= fcurl.

Let σdiv satisfy
Aδ(σdiv) = fdiv.

Then

Aδ

(

σdiv +
fcurl

δ

)

= fdiv + fcurl = f . (2.8)

In our iterative method for the approximation of the solution of (2.8), the
rates of convergence towards the components σdiv and fcurl

δ of the solution
differ and depend on the choice of the parameter δ > 0. This is analyzed
in Section 3, and it allows us to split f into fcurl and fdiv. To simplify our
notation, we will in the remainder of this paper denote fdiv and fcurl by f1
and f2, respectively.

3. The iterative method

We first describe our iterative method, then analyze its convergence be-
havior, and finally discuss its application to the Helmholtz decomposition
of a vector.

5

3.1. Derivation of the iterative method

The splitting (2.4) yields

Aδσh = Aσh + (δ − 1)σh = f ,

which suggests that equation (2.8) be solved with the iterative method

σn+1 = (1− δ)A−1σn +A−1f . (3.1)

Here and below the iteration number is indicated by an integer subscript of
σ.

Remark 3.1. The convergence rate of the iterates (3.1) is very slow for
small δ > 0. In fact, the error reduction rate is 1− δ due to the divergence-
free component of f in curlWh. A convergence analysis is presented in
the next subsection. Because of the slow convergence of the divergence-free
component of the solution, a standard stopping criterion based on measuring
‖σn − σn−1‖ is not appropriate. Here the norm ‖ · ‖ is induced by the
standard inner product. Instead, we will use the quantities Fn defined in
line 6 of Algorithm 3.1 to determine when to terminate the iterations.

Algorithm 3.1 Iterative method

1: Input: tolerance TOL> 0 and given vector f

2: Output: Helmholtz decomposition of f and approximate solution σ∗

3: σ0 := 0

4: for n = 0, 1, 2, . . .

5: σn+1 := (1− δ)A−1σn +A−1f

6: if Fn := ‖σn − σn−1 − 1
(1−δ) (σn+1 − σn)‖ < TOL

7: σ∗ := σn + (1−δ)
δ

(σn − σn−1)

8: exit

9: end if

10: end for

At exit from Algorithm 3.1, σ∗ is an approximate solution of (2.6), and
σn−σn−1

(1−δ)n is an approximation of f2. The Helmholtz decomposition of f is

f = f1 + f2 =
(

f − σn − σn−1

(1− δ)n

)

+
σn − σn−1

(1− δ)n
.

6

Remark 3.2. The stopping criterion in Algorithm 3.1 based on the size
of Fn is meaningful since it removes the slowly convergent component; see
Lemma 3.2 below, and it is effective for computing the Helmholtz decom-
position. However, if one instead is interested in determining an accurate
approximate solution of (2.6), then a different stopping criterion should be
used. For instance, one might terminate the iterations when ‖σn − σn−1‖
is sufficiently small.

Remark 3.3. The application of A−1 in Algorithm 3.1 is carried out with
an algebraic multigrad method. We use the public domain code provided
by Notay [19]; see Section 5 for details. The algorithm therefore is sim-
ple to implement. Computed examples reported in Section 5 illustrate that
only fairly few iteration steps of the algorithm are required. This makes the
algorithm quite fast.

3.2. Convergence analysis

Recall that

f = f1 + f2, f1 ∈ gradhSh, f2 ∈ curlWh, (3.2)

and let σ1 and σ2 denote the solutions of

Aδσ1 = f1 and Aδσ2 = f2.

Then, clearly, σ = σ1 + σ2, and it follows that

σ1 = (1− δ)A−1σ1 +A−1f1,

σ2 = (1− δ)A−1σ2 +A−1f2.

These equations suggest that we decompose the iterates in (3.1) as

σn = σ1
n + σ2

n, (3.3)

where
σ1
n+1 = (1− δ)A−1σ1

n +A−1f1,

σ2
n+1 = (1− δ)A−1σ2

n +A−1f2.
(3.4)

We have the following identities for σ1
n and σ2

n.

Lemma 3.1. Let the sequences {σ1
n}∞n=0 and {σ2

n}∞n=0 be defined by (3.4)
with σ1

0 = 0 and σ2
0 = 0. Then

σ1
n =

n
∑

k=1

(1− δ)k−1A−kf1 ∈ gradhSh (3.5)

7

and

σ2
n =

n
∑

k=1

(1− δ)k−1f2 =
1− (1− δ)n

δ
f2 ∈ curlWh. (3.6)

Proof. Equation (3.5) is obtained from the first equation of (3.4) with
σ1
0 = 0. Turning to (3.6), we use that f2 ∈ curlWh and the relations (2.5)

to obtain

σ2
n = (1− δ)n−1f2 + (1− δ)n−2f2 + · · ·+ (1− δ)f2 + f2

=
1− (1− δ)n

1− (1− δ)
f2 =

1− (1− δ)n

δ
f2.

✷

Let {(λi,ψi)}mi=1 be the eigenpairs of A−1 on gradhSh, where {ψi}mi=1

is an orthonormal basis for gradhSh. Without loss of generality, we may
assume that λ1 is the largest eigenvalue, where we recall that 0 < λi ≤ 1 for
all i = 1, 2, . . . ,m. Then

f1 =

m
∑

i=1

ciψi (3.7)

for certain coefficients ci. Using (3.5), we obtain

σ1
n =

n
∑

k=1

m
∑

i=1

(1− δ)k−1λk
i ciψi.

Convergence of the sequence σ1
1,σ

1
2, . . . is fast due to the factors A−k in

(3.5), while convergence of the sequence σ2
1,σ

2
2, . . . defined by (3.6) is slow

when δ > 0 is small. On the other hand, σ2
n is a multiple of f2, and we can

take advantage of this fact to terminate the iterative process based on the
convergence of the sequence σ1

1,σ
1
2,

Lemma 3.2. Let

En := σn − σn−1 = (1− δ)n−1A−nf1 + (1− δ)n−1f2

and let Fn be defined as in line 6 of Algorithm 3.1, i.e.,

Fn = ‖En − 1

(1− δ)
En+1‖.

Then
(1− λ1)‖σ1

n − σ1
n−1‖ ≤ Fn ≤ ‖σ1

n − σ1
n−1‖, (3.8)

8

where 0 < λ1 ≤ 1 is the largest eigenvalue of A−1 on gradhSh. Moreover,

‖σ1
n − σ1

n−1‖ = (1− δ)n−1

(

m
∑

i=1

λ2n
i c2i

)1/2

. (3.9)

Proof. Using (3.5), (3.6) with (3.3), we obtain

En − 1

(1− δ)
En+1 = (1− δ)n−1A−nf1 − (1− δ)n−1A−n−1f1.

Now, (3.7) and the fact that {(λi,ψi)}mi=1 are eigenpairs of A−1 give

En−
1

(1− δ)
En+1 = (1−δ)n−1

m
∑

i=1

(λn
i −λn+1

i)ciψi = (1−δ)n−1
m
∑

i=1

λn
i (1−λi)ciψi.

Since λ1 is the largest eigenvalue and the eigenfunctions {ψi}mi=1 are or-
thonormal, we have

(1− λ1)
2(1− δ)2(n−1)

m
∑

i=1

λ2n
i c2i ≤ F 2

n ≤ (1− δ)2(n−1)
m
∑

i=1

λ2n
i c2i . (3.10)

Using (3.5), the fact that {(λi,ψi)}mi=1 are eigenpairs of A
−1, and (3.7) yield

σ1
n − σ1

n−1 = (1− δ)n−1
m
∑

i=1

λn
i ciψi.

Thus

‖σ1
n − σ1

n−1‖2 = (1− δ)2(n−1)
m
∑

i=1

λ2n
i c2i . (3.11)

Taking square roots on both sides, we obtain (3.9). Now, combining (3.11)
with (3.10) gives (3.8). This completes the proof. ✷

If Fn is small, then σ1
n is an accurate approximation of σ1. This was

already shown in [17]. However, even when σ1
n is an accurate approximation

of σ1,

σ2
n =

1− (1− δ)n

δ
f2

may be a poor approximation of σ2 = 1
δ f2 when (1−δ)n

δ f2 is large due to that
δ > 0 is small. We therefore define an approximate solution of (2.6) as in
line 7 of Algorithm 3.1, i.e.,

σ∗ = σn +
(1− δ)

δ
(σn − σn−1).

9

Define the projection of f onto the space curlWh by

Phf :=
σn − σn−1

(1− δ)n−1
. (3.12)

Theorem 3.3. Let f ∈ Vh have the Helmholtz decomposition f = f1 + f2,
where f1 ∈ gradhSh and f2 ∈ curlWh. Let σ = σ1

h + 1
δ f2 be the solution of

(2.6). Then

‖f2 − Phf‖ =
‖σ1

n − σ1
n−1‖

(1− δ)n−1
≤ TOL

(1− λ1)(1− δ)n−1
,

where the σ1
n and TOL are defined by Algorithm 3.1. Also, let σ∗ denote

the approximation of σ defined in line 7 of Algorithm 3.1. Then

‖σ − σ∗‖ ≤ ‖σ1
h − σ1

n‖+
1− δ

δ
‖σ1

n − σ1
n−1‖.

Proof. We obtain from (3.6) that

σn = σ1
n + σ2

n = σ1
n +

1− (1− δ)n

δ
f2. (3.13)

Again using (3.6), we have

σn − σn−1 = σ
1
n − σ1

n−1 + (1− δ)n−1f2. (3.14)

Thus,

f2 −
σn − σn−1

(1− δ)n−1
= −σ

1
n − σ1

n−1

(1− δ)n−1
. (3.15)

Combining (3.15) with (3.9), (3.8) and Fn < TOL gives

∥

∥

∥

∥

f2 −
σn − σn−1

(1− δ)n−1

∥

∥

∥

∥

=

(

m
∑

i=1

λ2n
i c2i

)1/2

≤ TOL

(1− λ1)(1− δ)n−1
.

Using (3.13) and (3.14), we obtain

(1− δ)

δ
(σn − σn−1) =

(1− δ)

δ
(σ1

n − σ1
n−1) +

(1− δ)n

δ
f2. (3.16)

Equations (3.13) and (3.16) show that

σ∗ = σn +
(1− δ)

δ
(σn − σn−1) = σ

1
n +

1

δ
f2 +

(1− δ)

δ
(σ1

n − σ1
n−1).

Thus

‖σ − σ∗‖ ≤ ‖σ1 − σ1
n‖+

1− δ

δ
‖σ1

n − σ1
n−1‖.

This completes the proof. ✷

10

Remark 3.4. It follows from (3.16) that

σn − σn−1

(1− δ)n−1
= f2 +

σ1
n − σ1

n−1

(1− δ)n−1
. (3.17)

Due to (3.11) and Lemma 3.2, the second term in the right-hand side is small
since Fn in our stopping criterion is of about the same size as ‖σ1

n−σ1
n−1‖.

The equality (3.17) therefore suggests the application of the projector (3.12)
onto curlWh.

4. The solution of nearly singular systems of equations

We consider the solution of nearly singular linear systems of equations
determined by the variational problem (2.3) with 0 < δ ≪ 1 very small,
and use Raviart-Thomas finite element spaces defined in Section 3 to ap-
proximate σ ∈ H(div). Solution methods for linear systems of equations
with a general singular or nearly singular matrix have received considerable
attention in the literature; see, e.g., [10, 11, 13, 14, 15, 23]. The problem
that we are considering has a structure that makes it possible to compute a
useful approximate solution in a simple manner.

4.1. Approximation properties

Let V = H(div). Define the subspace

Qr
h = {q ∈ L2(Ω) : q|K ∈ Pr(K) for each K ∈ Th},

and let LPh : L2(Ω) → Qr
h be the local L2 projection, i.e., for K ∈ Th,

(g − LPhg, vh)K =

∫

K
(g − LPh) · vhdx = 0 ∀ vh ∈ Qr

h.

The projector LPh onto Qr
h satisfies

‖v − LPh(v)‖ ≤ Chr+1‖v‖Hr+1(Ω)

for all v ∈ Hr+1(Ω); see [24].
Let the finite element space Qr

h × Vh be defined with respect to Th.
We let Vh be the Raviart-Thomas space of index r; see (2.1) and [22]. The
Raviart-Thomas projection operator Πh : V → Vh, discussed in [8], satisfies

∇ ·Πhτ = LPh(∇ · τ) ∀ τ ∈ Vh. (4.1)

We have the following approximation property, see [8],

‖τ −Πhτ‖ ≤ Chr+1‖τ‖Hr+1(Ω) ∀ τ ∈ (Hr+1(Ω))n. (4.2)

11

4.2. An error estimate

Define the approximate solution σh ∈ Vh of (2.3) by

(∇ · σh,∇ · τ h) + δ(σh, τ h) = (f , τ h) ∀ τ h ∈ Vh. (4.3)

We have the following basic error estimate.

Theorem 4.1. Let σ and σh satisfy (2.3) and (4.3), respectively. Then

‖σ − σh‖ ≤ ‖σ −Πhσ‖,

where Πh : V → Vh is the RT projection operator satisfying (4.1) and (4.2).

Proof. Subtracting (4.3) from (2.3) gives

(∇ · (σ − σh),∇ · τ h) + δ(σ − σh, τ h) = 0. (4.4)

Using (4.1), (4.4) and the Cauchy-Schwarz inequality, we get

‖σ − σh‖2 = (σ − σh,σ − σh)

≤ (σ − σh,σ − σh) +
1

δ
(∇ · (Πhσ − σh),∇ · (Πhσ − σh))

= (σ − σh,Πhσ − σh) +
1

δ
(∇ · (σ − σh),∇ · (Πhσ − σh))

+(σ − σh,σ −Πhσ)

= (σ − σh,σ −Πhσ)

≤ ‖σ − σh‖‖σ −Πhσ‖,

which yields the desired inequality. ✷

4.3. An iterative method for nearly singular systems

When δ > 0 is tiny, equation (2.6), or equivalently equation (2.3), are
nearly singular. The vector defined in line 7 of Algorithm 3.1 typically is
not an accurate approximation of the solution of (2.6) due to a large factor
1
δ . To overcome this difficulty, we combine Algorithm 3.1 with the iterative
method for solving nearly singular linear systems developed in [17]. The
iterative method described in [17] is applicable when f ∈ gradhSh. Here,
we extend the method to be applicable when f ∈ Vh ⊂ (L2(Ω))

2.
Consider the Helmholtz decomposition (3.2). We apply Algorithm 3.1 to

obtain an approximation Phf of f2, and use f1 = f−Phf as an approximation
of σ1. Note that the solution σh

2 of (4.3) corresponding to f2 is f2

δ , and the

12

Algorithm 4.1 Iterative method for nearly singular system

1: Input: tolerance TOL> 0 and f1

2: Output: approximate solution σ1
h

3: σ1
0 := 0

4: for n = 0, 1, 2, . . .

5: σ1
n+1 := (1− δ)A−1σ1

n +A−1f1

6: if ‖σ1
n − σ1

n−1‖ < TOL

7: σ1
h
:= σ1

n

8: exit

9: end if

10: end for

solution σ1
h of (4.3) corresponding to f1 can be determined by the iterative

method described in [17]. The computations are summarized by Algorithm
4.1.

We define the solution of (4.3) as σh
1+σ

h
2 . Computed examples reported

in [17] show that the number of iterations with Algorithm 4.1 to achieve a
desired accuracy can be reduced by vector extrapolation. We will not dwell
on extrapolation in the present paper, and instead refer to [17] as well as to
the references [5, 6, 16] for discussions on extrapolations methods.

5. Numerical examples

This section presents examples that illustrate the convergence behavior
of the iterative scheme defined by Algorithms 3.1 and 4.1. We refer to [2]
for details on the implementation of the FEM, such as the enumeration of
edges and nodes.

Let Ω = [0, 1]2 and discretize on a uniform mesh with mesh size h. Unless
stated otherwise, h = 1

32 . We use the lowest order Raviart-Thomas element
space, denoted by Vh, to approximate the space H(div) in our experiments.
Let φ1,φ2, . . . ,φN be an edge basis for Vh, i.e.,

Vh = span{φ1,φ2, . . . ,φN}.

For h = 1
32 , the total number of edges (which is the number of unknowns) is

N = 3136. For a function f =
∑N

i=1 fiφi ∈ H(div), we let~f = [f1, f2, . . . , fN]T

denote its vector representation with respect to the basis φ1,φ2, . . . ,φN .

13

The algebraic equation corresponding to line 7 of Algorithm 3.1 can be
written as

~σn+1 = (1− δ)S−1B~σn + S−1B~f ,

where

D = [dij], dij = (∇ · φj ,∇ · φi), B = [bij], bij = (φj ,φi),

and S = D+B; see [17] for more details. We use the AMG solver developed
and made available by Notay [18, 19, 20, 21] for the computation of S−1~y

for a vector ~y ∈ R
N .

Example 1: Helmholtz decomposition. We would like to compute the
Helmholtz decomposition of the vector f ∈ (L2(Ω))

2 defined by f = f1 + f2,
where

f1 = −gradh(2(x−x2)+(y−y2)+δ(x−x2)(y−y2)), f2 = φ1−φ33+
1√
2
φ34.

Note that f2 = curl ζ ∈ curlWh, where ζ is the piece-wise linear polynomial
with the value 1 at the vertex (0, 0) and the value 0 at the other vertices.

We compute the iterates σn by Algorithm 3.1 with TOL= 10−20. The
approximation Phf of f2 is defined as in (3.12). Table 5.1 shows the conver-
gence behavior of Phf . We see that Phf provides an accurate approximation
of f2. Moreover, f − Phf furnishes an approximation of f1 of the same accu-
racy since

f1 − (f − Phf) = f1 − (f1 + f2 − Phf) = −(f2 − Phf).

The vectors f1 and Phf are nearly orthogonal. Table 5.1 shows the inner
product (f1, Phf). Also note that

cos−1
((f1, Phf)

‖f1‖‖Phf‖
)

≈ 1.5708,

which is about π
2 .

Example 2: Nearly singular system. We solve the nearly singular system
defined by (4.3) with δ = 10−k, k = 6, 8, 10, 12. The mesh sizes are h = 1

32
and h = 1

64 . The problem data f is defined by f = f1 + f2, where

f1 = −gradh(2(x− x2) + 2(y − y2) + δ(x− x2)(y − y2)),

f2 = δ curl((x− x2)(y − y2)).

As described in Subsection 4.3, we first compute the approximation Phf

of f2 with Algorithm 3.1. We use TOL = 10−20 in the algorithm, which then
requires 9 iterations for all values of δ; see Table 5.2 for details.

14

Table 5.1: Performance for different δ values with h = 1

32
.

δ 0.1 0.3 0.5 0.7 0.9

‖f2 − Phf‖ 3.0 · 10−13 4.2 · 10−12 4.2 · 10−12 8.8 · 10−11 1.8 · 10−9

(f1, Phf) 5.8 · 10−11 1.2 · 10−11 1.3 · 10−11 2.7 · 10−10 5.6 · 10−9

‖∇ · Phf‖ 6.8 · 10−9 8.6 · 10−9 1.8 · 10−8 1.7 · 10−8 1.9 · 10−8

of iterations 9 8 8 7 6

Then we use f − Phf as input data for Algorithm 4.1 to determine an
approximation of σh

1 corresponding to the data f1. When computing the
approximation of σh

1 , we use TOL = 10−10 in Algorithm 4.1, which requires
4 iterations for all values of δ. Results are collected in Table 5.3. Note that
Phf

δ is our approximation of σ2
h.

Table 5.2: Performance for different δ values with h = 1

32
.

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖f2 − Phf‖ 6.6 · 10−13 6.6 · 10−15 1.6 · 10−16 1.5 · 10−16

‖σ1 − σ
h

1‖ 4.7 · 10−3 4.7 · 10−3 4.7 · 10−3 4.7 · 10−3

‖σ2 − σ
h

2‖ 7.6 · 10−3 7.6 · 10−3 7.8 · 10−3 2.1 · 10−1

‖σ2−σ
h

2
‖

‖σ2‖
5.0 · 10−8 5.1 · 10−10 5.3 · 10−12 1.4 · 10−12

Table 5.3: Performance for different δ values with h = 1

64
.

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖f2 − Phf‖ 5.8 · 10−14 5.9 · 10−16 8.4 · 10−17 8.3 · 10−17

‖σ1 − σ
h

1‖ 2.3 · 10−3 2.3 · 10−3 2.3 · 10−3 2.3 · 10−3

‖σ2 − σ
h

2‖ 3.8 · 10−3 3.8 · 10−3 6.4 · 10−3 5.1 · 10−1

‖σ2−σ
h

2
‖

‖σ2‖
2.5 · 10−8 2.5 · 10−10 4.3 · 10−12 3.4 · 10−12

Example 3: Our last two tables show the quality of the computed
solutions, σP

h , determined by our proposed iterative method (Algorithm
4.1), and compares them to the quality of the solutions, σD

h , computed
with the MATLAB direct solver \. Table 5.4 shows results when f =
f1+ δcurl(x−x2)(y−y2) and Table 5.5 for f = f1+

√
δcurl(x−x2)(y−y2).

Note that σP
h = σ1

h + σ2
h, where σ

1
h and σ2

h are defined in Example 2. Al-

15

gorithm 4.1 can be seen to yield higher accuracy when δ > 0 is small. The
entries − in Tables 5.4 and 5.5 indicate that the MATLAB direct solver was
not able to compute a solution. Further illustrations of the iterative method
can be found in [17].

Table 5.4: Performance of proposed solution σ
P

h and σ
D

h for different δ values with h = 1

128
.

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖σ1 − σ
h

1‖ 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3

‖σ2 − σ
h

2‖ 1.9 · 10−3 1.9 · 10−3 1.5 · 10−2 1.4 · 100

‖σ2−σ
h

2
‖

‖σ2‖
1.3 · 10−8 1.3 · 10−10 9.8 · 10−12 9.7 · 10−12

‖σ − σ
P

h ‖ 2.2 · 10−3 2.2 · 10−3 1.5 · 10−3 1.4 · 100

‖σ − σ
D

h ‖ 2.2 · 10−3 2.2 · 10−3 2.3 · 10−2 −

Table 5.5: Performance of proposed solution σ
P

h and σ
D

h for different δ values with h = 1

128
.

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖σ1 − σ
h

1‖ 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3

‖σ2 − σ
h

2‖ 1.9 · 100 1.9 · 101 1.9 · 102 1.9 · 103

‖σ2−σ
h

2
‖

‖σ2‖
7.8 · 10−6 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2

‖σ − σ
P

h ‖ 1.9 · 100 1.9 · 101 1.9 · 102 1.9 · 103

‖σ − σ
D

h ‖ 1.9 · 100 1.9 · 101 2.1 · 103 −

6. Conclusion

The paper describes a new iterative method for accurate approximation
of the Helmholtz decomposition of a given vector. The method can be
applied to a finite element solution for the simulation of incompressible fluids
to satisfy a divergence-free condition.

Acknowledgment

The research was supported in part by NSF grants DMS-1720259 and
DMS-1729509.

16

References

[1] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in
H(div) and applications, Math. Comp., 66 (1997), pp. 957–984.

[2] C. Bahriawati and C. Carstensen, Three MATLAB implemen-
tations of the lowest-order Raviart-Thomas MFEM with a posteriori
control, Comput. Methods Appl. Math., 5 (2005), pp. 333–361.

[3] H. Bhatia, G. Norgard, V. Pascucci and P.-T. Bremer, The
Helmholtz-Hodge decomposition – a survey, IEEE Trans. Vis. Comput.
Graph., 19 (2013), pp. 1386–1404.

[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite
Element Methods, Springer, New York, 2008.

[5] C. Brezinski and M. Redivo Zaglia, The genesis and early de-
velopments of Aitken’s process, Shanks’ transformation, the epsilon-
algorithm, and related fixed point methods, Numer. Algorithms, 80
(2019), pp. 11–133.

[6] C. Brezinski, M. Redivo Zaglia, and Y. Saad, Shanks sequence
transformations and Anderson acceleration, SIAM Rev., 60 (2018), pp.
646–669.

[7] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of
mixed finite elements for second order elliptic problems, Numer. Math.,
47 (1985), pp. 217–235.

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,
Springer, Berlin, 1991.

[9] F. Brezzi, M. Fortin, and R. Stenberg, Error analysis of mixed-
interpolated elements for Reissner-Mindlin plates, Math. Models Meth-
ods Appl. Sci., 1 (1991), pp. 125–151.

[10] P. N. Brown and H. F. Walker, GMRES on (nearly) singular
systems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 37–51.

[11] M. Eiermann and L. Reichel, On the application of orthogonal poly-
nomials to the iterative solution of singular linear systems of equations,
eds. J. Dongarra, I. Duff, P. Gaffney, and S. McKee, Vector and Parallel
Computing, Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 285–297.

17

[12] V. Girault and P. A. Raviart, Finite Element Methods for Navier-
Stokes equations, Springer, Berlin, 1986.

[13] W. W. Hager, Iterative methods for nearly singular linear systems,
SIAM J. Sci. Comput., 22 (2000), pp. 747–766.

[14] M. Hanke and M. Hochbruck, A Chebyshev-like semiiteration for
inconsistent linear systems, Electron. Trans. Numer. Anal., 1 (1993),
pp. 89–103.

[15] K. Hayami and M. Sugihara, A geometric view of Krylov subspace
methods on singular systems, Numer. Linear Algebra Appl., 18 (2011),
pp. 449–460, and 21 (2014), pp. 701–702.

[16] K. Jbilou and H. Sadok, Vector extrapolation methods. Applications
and numerical comparison, J. Comput. Appl. Math., 122 (2000), pp.
149–165.

[17] J. Ku and L. Reichel, Simple efficient solvers for certain ill-
conditioned systems of linear equations, including H(div) problems, J.
Comput. Appl. Math, 343 (2018), pp. 240–249.

[18] A. Napov and Y. Notay, An algebraic multigrid method with guar-
anteed convergence rate, SIAM J. Sci. Comput., 34 (2012), pp. A1079–
A1109.

[19] Y. Notay, AGMG software and documentation, available at
http://homepages.ulb.ac.be/∼ynotay/AGMG

[20] Y. Notay, An aggregation-based algebraic multigrid method, Electron.
Trans. Numer. Anal., 37 (2010), pp. 123–146.

[21] Y. Notay, Aggregation-based algebraic multigrid for convection-
diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2288–
A2316.

[22] P. A. Raviart and J. M. Thomas, A mixed finite element method for
second order elliptic problems, in Mathematical Aspects of the Finite
Element Method, eds L. I. Galligani and E. Magenes, Lecture Notes in
Mathematics, vol. 606, Springer, New York, 1977, pp. 292–315.

[23] L. Reichel and Q. Ye, Breakdown-free GMRES for singular systems,
SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1001–1021.

18

[24] L. Wahlbin, Superconvergence in Galerkin Finite Element Methods,
Lecture Notes in Mathematics, vol. 1605, Springer, Berlin, 1995

19

