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Abstract—Large-scale linear discrete ill-posed problems are
generally solved by Krylov subspace iterative methods. However,
these methods can be difficult to implement so that they execute
efficiently in a multiprocessor environment, because some of the
computations have to be carried out sequentially. This is due to
the fact that only one new basis vector of the Krylov solution
subspace is generated in each iteration. It is therefore interesting
to investigate the performance of other solution methods that
use a solution subspace basis that can be generated in parallel
and, therefore, more efficiently on many computers. This paper
proposes solution methods that use a solution subspace basis that
is made up of discretized Chebyshev polynomials. It compares
their performance to a Krylov subspace method that is based on
partial Golub–Kahan bidiagonalization of the system matrix, and
to a randomized method. The application of a solution subspace
basis made up of discretized Chebyshev polynomial is found to
be competitive when solving linear discrete ill-posed problems
in one space-dimension and for some problems in higher space-
dimensions.

Index Terms—Linear discrete ill-posed problems, Chebyshev
expansion method, Tikhonov regularization.

I. INTRODUCTION

We consider the solution of least squares problems

min
x∈Rn

‖Ax− b‖2, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (1)

that stem from the discretization of linear ill-posed problems,
such as a Fredholm integral equation of the first kind, say∫ 1

−1
κ(s, t)x(t)dt = b(s), −1 ≤ s ≤ 1, (2)

with a smooth kernel κ. Then the singular values of the matrix
A decay fairly rapidly to zero without a significant gap with
increasing index number. In particular, the matrix A is severely
ill-conditioned and may be rank deficient. The matrix A is
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allowed to be rectangular, i.e., we consider both the cases
m = n and m 6= n. The vector b in (1), or equivalently the
right-hand side function b(s) in (2), represent measured data
that are assumed to be contaminated by a measurement error
e ∈ Rm in (1) or e(s) in (2).

Most of this paper focuses on the solution of least squares
problems (1), which may stem from the discretization of
ill-posed problems that are more general than (2), but our
derivation of the solution methods is inspired by properties
of integral equations of the form (2).

Let bexact denote the unknown error-free vector associated
with b, i.e.,

b = bexact + e. (3)

Assume that the linear system of equations

Ax = bexact (4)

is consistent. We are interested in determining an accurate
approximation of the solution xexact of minimal Euclidean
norm of (4) by computing a suitable approximate solution of
(1).

Straightforward solution of (1) by using some factorization
of A generally does not yield a useful approximation of
xexact, because the ill-conditioning of A typically causes
severe propagation and amplification of the error e in b into
the computed solution of (1). A common technique to remedy
this difficulty is to replace the minimization problem (1) by
a nearby problem, whose solution is less sensitive to the
error e in b than the solution of (1). Such a replacement
is commonly referred to as regularization. One of the most
popular replacements is known as Tikhonov regularization,
which replaces the minimization problem (1) by a penalized
least squares problem of the form

min
x∈R

{
‖Ax− b‖22 + µ‖Lx‖22

}
, (5)

where L ∈ Rp×n is a regularization matrix and µ > 0 is a
regularization parameter. Throughout this paper ‖ · ‖2 denotes



the Euclidean vector norm or the spectral matrix norm. We
will assume that the matrix L is chosen so that

N (A) ∩N (L) = {0},

where N (M) stands for the null space of the matrix M . Then
the Tikhonov minimization problem (5) has a unique solution
xµ for any µ > 0.

The size of the regularization parameter µ determines how
sensitive the solution xµ of (5) is to the error e in b, and how
close xµ is to the desired solution xexact. We will determine
µ by the discrepancy principle, i.e., we choose µ > 0 so that

‖b−Axµ‖2 = ηε, (6)

where ε is an upper bound for ‖e‖2 and η > 1 is a user-
specified constant that is independent of ε. Such a choice of µ
is possible for most reasonable error bounds and determines a
unique value of µ. It can be shown that xµ → xexact as ε↘ 0;
see, e.g., Engl et al. [11] for a proof in Hilbert space setting.
We remark that application of the discrepancy principle re-
quires both knowledge of a bound ε and consistency of the
system (4). There are many so-called “heuristic” techniques
for determining a suitable value of the regularization parameter
that can be applied in situations when the discrepancy principle
cannot; see, e.g., [12], [19]–[22]. These techniques also can be
used in conjunction with the solution methods for (5) discussed
in the present paper.

Tikhonov minimization problems (5) of small to moderate
size can be conveniently solved by first computing the gen-
eralized singular value decomposition (GSVD) of the matrix
pair {A,L} and then determining both a suitable value of
the regularization parameter µ and the associated solution
xµ; see, e.g., [5], [8], [17]. We remark that when p > n,
it may be convenient to replace L by the upper triangular
n× n matrix of its “economical” QR factorization. However,
when the matrices A and L are large, the computation of the
GSVD of {A,L} may be prohibitively expensive. Large-scale
Tikhonov minimization problems therefore often are solved by
Krylov subspace methods; see, e.g., [4], [6], [13], [17].

Krylov subspace methods generally perform very well.
However, they are poorly suited for execution on computers
with many processors, because the basis vectors of the solution
subspace are generated sequentially one-by-one. This has
spurred interest in randomized methods that allow more effi-
cient execution in a multiprocessor environment. Randomized
methods for the solution of Tikhonov minimization problems
are described in, e.g., [2], [3], [26], [27]. A nice introduction to
these methods is presented by Halko, Martinsson, and Tropp
[15].

It is the purpose of the present paper to explore the use of
discretized Chebyshev polynomials to generate orthonormal
solution subspace bases. Solution methods for least squares
problems (1) when the matrix A and data vector b are given,
as well as solution methods for integral equations (2) when
the kernel κ and right-hand side function b are given and
have to be discretized, are discussed. The use of bases of
discretized Chebyshev polynomials is found to be competitive

with randomized methods both with regard to computing
time and quality of the computed solution. Both the use of
an orthonormal basis of discretized Chebyshev polynomials
and randomized methods turn out to be competitive with a
commonly used Krylov subspace method, based on partial
Golub–Kahan bidiagonalization of the matrix A, for solving
(5) when the underlying ill-posed problem is in one space-
dimension. These approaches also are competitive for certain
ill-posed problems in higher space dimensions.

This paper is organized as follows. Section II describes
our methods based on using solution subspaces defined by
discretized Chebyshev polynomials. The randomized methods
by Xiang and Zou [26], [27] are discussed in Sections III.
A Krylov subspace method based on partial Golub–Kahan
bidiagonalization is outlined in Section IV, and numerical ex-
amples that compare the performance of the methods discussed
are presented in Section V. Concluding remarks can be found
in Section VI.

II. SOLUTION METHODS WITH A SOLUTION SUBSPACE OF
DISCRETIZED CHEBYSHEV POLYNOMIALS

The solution methods described in the present section and
the randomized solution method reviewed in Section III seek
to determine a subspace S` ⊂ Rn of fairly small dimension
1 ≤ `� min{m,n} that allows quite accurate approximation
of the matrix A in (1) by a low-rank matrix. We illustrate
this with the singular value decomposition (SVD) even though
the computation of the SVD typically is too expensive to
be attractive for large matrices A. Assume for notational
simplicity that m ≥ n. Then the SVD of A is given by

A = WΣV T , (7)

where W = [w1,w2, . . . ,wm] ∈ Rm×m and V =
[v1,v2, . . . ,vn] ∈ Rn×n are orthogonal matrices, and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n.

The diagonal entries σj are known as the singular values of
A. They are nonnegative and ordered according to

σ1 ≥ σ2 ≥ . . . ≥ σn.

Let S` = span{w1,w2, . . . ,w`} and let PS` denote the
orthogonal projector onto S`. Then

σ`+1 = ‖A− PS`A‖2. (8)

Thus, the low-rank matrix PS`A furnishes an accurate approx-
imation of A if σ`+1 is small. It follows from the Eckart–
Young Theorem [9] that the right-hand side in (8) is as small
as possible in the sense that if PS` is an orthogonal projector
onto any `-dimensional subspace of Rm, then

σ`+1 ≤ ‖A− PS`A‖2. (9)

A subspace S` is well suited for the representation of
an approximate solution of (5) if it can be computed fairly
inexpensively, and the right-hand side of (9) is small. We will



explore the possibility of defining subspaces S` by discretizing
Chebyshev polynomials of the first kind,

Tj(t) = cos(j arccos(t)), −1 ≤ t ≤ 1, j = 0, 1, . . . , `−1,

for some ` ≤ m, at the zeros

ti = cos

(
2i− 1

2m
π

)
, i = 1, 2, . . . ,m, (10)

of the Chebyshev polynomial Tm of degree m. For future
reference, we define

θi =
2i− 1

2m
π, i = 1, 2, . . . ,m. (11)

Introduce the matrix U` = [ui,j ] ∈ Rm×` by

ui,1 =
1√
m
, 1 ≤ i ≤ m,

ui,j =

√
2

m
cos((j − 1)θi), 1 ≤ i ≤ m, 2 ≤ j ≤ `.

(12)

Then U` has orthonormal columns denoted by u1, u2, . . . , u`.
We let S` = range(U`) and define the orthogonal projector
PS` = U`U

T
` .

The matrix U` can be applied in several ways to deter-
mine an approximate solution of the Tikhonov minimization
problem (5). These different approaches lead to three different
numerical methods described below. The third method uses an
approach that is analogous to the one used in the randomized
method of Section III, but instead of using a Gaussian matrix
to determine the matrix U`, we use (12).

For problems with a Kronecker product structure it can be
attractive to use outer products of the columns uj of U` to
construct a basis. This is illustrated in Section V.

Method II.1. Replace the matrix A in the Tikhonov mini-
mization problem (5) by the matrix U`U

T
` A of rank at most

` � min{m,n}. Then we obtain the new minimization
problem

min
x∈Rn

{
‖U`UT` Ax− U`UT` b‖22 + µ‖Lx‖22

}
+ ‖(I − U`UT` )b‖22.

Requiring an approximate solution of the form x = U`y for
some y ∈ R`, and defining the QR factorization

Q`R` = LU`,

where the matrix Q` ∈ Rm×` has orthonormal columns and
the matrix R` ∈ R`×` is upper triangular, yield the low-
dimensional minimization problem

min
y∈R`

{
‖UT` AU`y − UT` b‖22 + µ‖R`y‖22

}
. (13)

Theorem 1 below provides a bound for the distance between
A and U`U

T
` A when A is a suitable discretization of the

kernel κ in (2). The result is not concerned with a particular
quadrature rule, but just discusses how smoothness of the
kernel translates into decay of the magnitude of coefficients
of the discrete cosine transform. Method II.2 illustrates how

Theorem 1 can be applied when the matrix A stems from a
quadrature rule.

Theorem 1. Assume that the function θ → κ(cos(θ), cos(τ))
and its partial derivatives through order ν − 1 are absolutely
continuous on [0, π], and suppose the νth partial derivative is
of bounded variation γ, uniformly for 0 ≤ τ ≤ π. Define the
matrix A ∈ Rm×m by discretizing the kernel of (2) according
to

A = [ai,j ]
m
i,j=1, ai,j =

π

m
κ(ti, tj), (14)

where the nodes ti are given by (10). This defines the matrix
of the least-squares problem (1). Let the matrix U` ∈ Rm×`
be given by (12). Then for m sufficiently much larger than `,
it holds

‖A− U`UT` A‖2 /
2γ

(`− ν)ν+1
(15)

for ` > ν.

We note that the discretization of the theorem is associated
with the discretization

bexact = [bi]
m
i=1, bi = b(ti),

of the right-hand side function b(s) in the integral equation (2).
The discretization of this function is not used in the theorem.

Proof. Due to the smoothness properties of the kernel, the
coefficients

a0(τ) =
1

π

∫ π

0

κ(cos(θ), cos(τ))dθ,

aj(τ) =
2

π

∫ π

0

κ(cos(θ), cos(τ)) cos(jθ)dθ, j = 1, 2, . . . ,

satisfy

|aj(τ)| ≤ 2γ

π(j − ν)ν+1
for 0 ≤ τ ≤ π, j ≥ ν + 1; (16)

see, e.g., [25, Theorem 7.1], where this bound is shown for
the coefficients of a Chebyshev expansion of a single function
that satisfies the smoothness conditions of the theorem.

Let the matrix Ũm−` = [ũi,j ] ∈ Rm×(m−`) be defined by

ũi,j =

√
2

m
cos((`+ j − 1)θi), 1 ≤ i ≤ m, 1 ≤ j ≤ m− `.

Then the concatenated matrix [U`, Ũm−`] ∈ Rm×m is orthog-
onal and I − U`UT` = Ũm−`Ũ

T
m−`. This yields the bound

‖A−U`UT` A‖2 ≤ ‖Ũm−`‖2‖ŨTm−`A‖2 = ‖ŨTm−`A‖2. (17)

We will use (16) to bound the right-hand side of (17). For
notational simplicity, we define the function

θ → f(cos(θ)) = κ(cos(θ), cos(θk)),

for some 1 ≤ k ≤ m. The coefficients in its Fourier expansion

f(cos(θ)) =

∞∑
j=0

aj(θk) cos(jθ) (18)



satisfy the inequality (16). For notational simplicity, we define

αj = aj(θk), j = 0, 1, 2, . . . . (19)

The vector f = [f(cos(θ1)), f(cos(θ2)), . . . , f(cos(θm))]T

is a tabulation of the function f . Define the (k + 1)st axis
vector ek+1 = [0. . . . , 0, 1, 0, . . . , 0]T of suitable dimension.
Then the kth Fourier coefficient of f is given by

α̂k = cke
T
k+1U

T
` f , 0 ≤ k < `.

where c0 = 1/
√
m and ck =

√
2/m for 1 ≤ k < `. Using

(18) and (19), we obtain, for 0 ≤ k < `,

α̂k = ck

∞∑
j=0

αje
T
k+1U

T
`


cos(jθ1)
cos(jθ2)

...
cos(jθm)


= c2k

∞∑
j=0

αj

(
m∑
p=1

cos(kθp) cos(jθp)

)
.

(20)

Let

sk,j =

m∑
p=1

cos(kθp) cos(jθp), j, k = 0, 1, . . . . (21)

When none of j ± k are multiples of 2m, we have

sk,j =
1

4

 sin(π(j − k))

sin
(
π(j−k)

2m

) +
sin(π(j + k))

sin
(
π(j+k)

2m

)
 = 0. (22)

For other values of j and k, the sum (21) may be evaluated
by taking limits in (22). For instance, when k = j ≥ 1 and k
is not a multiple of m, we obtain in this manner

sk,k =
1

4

 sin(π(2k))

sin
(
π(2k)
2m

) + 2m

 =
m

2
. (23)

If j − k or j + k are multiples of 2m, then we can use the
trivial bound ∣∣∣∣∣

m∑
p=1

cos(kθp) cos(jθp)

∣∣∣∣∣ ≤ m.
We conclude from (22) that most of the terms in the sum

over j in (20) vanish. In particular, for k ≥ 1,

α̂k =
2

m
(sk,kαk + sk,2m−kα2m−k + sk,2m+kα2m+k + . . . ).

When the function f is smooth, the coefficients αj converge
to zero in magnitude quite rapidly; cf. (16). In typical appli-
cations m � `. Hence, m � k, and it suffices to use the
approximation

α̂k ≈ αk (24)

when estimating the right-hand side of (17).
The entries of column i of the matrix ŨTm−`A are discrete

Fourier coefficients of the function

θ → π

m
κ(cos(θ), cos(θi)) (25)

with the coefficient for cos(`θ) in the first row. The bound (16)
suggests that the entries of each row of the matrix ŨTm−`A are
roughly of the same order of magnitude, and that typically
the matrix entries of largest magnitude can be found in the
first row. The latter entries provide the major contribution to
the norm of ŨTm−`A when the functions (25) have the same
smoothness for all i.

Denote the entries of the first column of ŨTm−`A by
α̃`, α̃`+1, . . . , α̃m−1; they are the discrete Fourier coefficients
of the function (25) for i = 1. The fact that the entries
in each row are of about the same magnitude suggests the
approximation

‖ŨTm−`A‖22 ≤ ‖ŨTm−`ATA‖2F ≈ (m−`)
m−1∑
j=`

α̃2
j < m

m−1∑
j=`

α̃2
j .

Using the approximation (24) and the scaling α̃j = π
m α̂j in

(25) gives

‖ŨTm−`A‖22 /
π2

m

m−1∑
j=`

α2
j .

The bound (16) for the right-hand side then yields

‖ŨTm−`A‖22 /
(m− `− 1)4γ2

m(`− ν)2ν+2
<

4γ2

(`− ν)2ν+2
for ` > ν.

This gives (15).

The above theorem shows that the left-hand side of (15) is
small when ` is large and the kernel κ is smooth, i.e., when
ν can be chosen fairly large. If the kernel κ is an analytic
function, which is the case in some ill-posed problems, then
the bound (15) can be strengthened by using bounds for the
Fourier coefficients [25, Theorem 8.1] of analytic functions in
a similar way as we applied [25, Theorem 7.1].

We remark that while Theorem 1 requires the discretization
(14) of the kernel of (2), the derivation of the reduced problem
(13) only demands that the columns of the matrix U` are
orthonormal. This is illustrated in the computed examples of
Section V.

The following method describes another discretization of
the integral equation (2).

Method II.2. The change of variables s = cos(θ) and t =
cos(τ) in the integral equation (2) gives∫ π

0

κ(cos(θ), cos(τ)) sin(τ)x(cos(τ))dτ = b(cos(θ)),

with 0 ≤ θ ≤ π. Application of a Nyström integration method
based on a composite midpoint rule with nodes θj = (2j −
1)π/(2m), j = 1, 2, . . . ,m, gives a least square problem (1)
defined by

A = [ai,j ]
m
i,j=1, ai,j = π

mκ(ti, tj) sin(θj),

bexact = [bi]
m
i=1, bi = b(ti),

where the ti are defined by (10). Thus, the matrix in this
method differs from the matrix in Theorem 1 by column



scaling. This implies that bounds analogous to (15) can be
shown similarly as in the proof of Theorem 1.

The following method describes a third way to apply the
solution subspace range(U`) to the solution of linear discrete
ill-posed problems.

Method II.3. Let the matrix U` ∈ Rn×` be defined similarly
as (12) with m replaced by n. Our approach to determine an
approximate solution of (1) is analogous to the one applied
in the randomized method described in Section III and [26],
[27]. First compute the QR factorization

Q`R` = AU`,

where Q` ∈ Rm×` has orthonormal columns and R` ∈ R`×`
is upper triangular. Then evaluate the reduced SVD

QT` A = W̃ Σ̃Ṽ T .

Thus, the matrices W̃ ∈ R`×` and Ṽ ∈ Rn×` have or-
thonormal columns, and Σ̃ ∈ R`×` is a diagonal matrix
with nonnegative nonincreasing diagonal entries. The matrix
Q`Q

T
` A is a low-rank approximation of A (of rank ≤ `) and

we have
Q`Q

T
` A = Q`W̃ Σ̃Ṽ T , (26)

where we consider the right-hand side an approximation of
the SVD of A. This approximate SVD of A can be evaluated
fairly inexpensively. The computation of the matrices Q`, W̃ ,
Σ̃, and Ṽ includes QR factorization that requires 2m`2− 2

3`
3

arithmetic floating point operations (flops) and about 14n`2 +
8`3 flops for the computation of the SVD of B = QT` A. We
also have to evaluate matrix-matrix products AU` and B. By
taking advantage of level-3 BLAS, these can be evaluated very
efficiently.

Replacing A by its low-rank approximation Q`QT` A in the
Tikhonov minimization problem (5) yields

min
x∈Rn

{‖Q`QT` Ax−Q`QT` b‖22 + µ‖Lx‖22}

+ ‖(I −Q`QT` )b‖22,
(27)

which is equivalent to the minimization problem

min
x∈Rn

{‖W̃ Σ̃Ṽ Tx−QT` b‖22 + µ‖Lx‖22}. (28)

We would like to determine a solution of as small norm as
possible. It is therefore natural to require the solution to be of
the form x = Ṽ y for some y ∈ R`. We then obtain

min
y∈R`
{‖Σ̃y − W̃TQT` b‖22 + µ‖LṼ y‖22}. (29)

Consider the QR factorization Q̃R̃ = LṼ , where Q̃ ∈ Rp×`
has orthonormal columns and R̃ ∈ R`×` is upper triangular
(we assume here that p ≥ `). The matrix R̃ typically is
nonsingular and fairly well-conditioned. Therefore, we can
make the change of variables z = R̃y, which transforms (29)
to a Tikhonov minimization problem in standard form. Thus,
we obtain

min
y∈R`
{‖Σ̃y − W̃TQT` b‖22 + µ‖R̃y‖22}. (30)

When L is the identity matrix, we have ‖LṼ y‖2 = ‖y‖2
and no change of variable is necessary.

We turn to the situation when m < n. Let ÛT` = U` ∈
Rm×` be defined as in (12) and compute the QR factorization

(Û`A)T = Q`R,

where Q` ∈ Rn×` and R ∈ R`×`. Then calculate the SVD of
AQ`,

AQ` = Ũ Σ̃W̃T .

An approximation of the SVD of A is furnished by

AQ`Q
T
` = Ũ Σ̃W̃TQT` ,

and an approximate solution of (5) can be determined by
solving

min
x∈R(Q`)

{‖AQ`QT` x− Ũ ŨT b‖22 + µ‖Lx‖22}.

The substitution x = Q`W̃y gives

min
y∈R`
{‖Σ̃y − ŨT b‖22 + µ‖LQ`W̃y‖22}. (31)

Using a similar approach as when m ≥ n, we determine
the QR factorization of LQ`W̃ to obtain an upper triangular
matrix R̃ ∈ R`×` which, generally, is nonsingular and fairly
well conditioned. The minimization problem (31) can be
transformed to standard form with the change of variables
z = R̃y.

The computations outlined can be supplemented by itera-
tions with the power method, similarly as described by Bai
et al. [3] and Halko et al. [15] in the context of randomized
methods. Such an approach determines the singular vectors of
the matrix M = (AA>)qA for a small integer q ≥ 1. Note
that the matrix M has the same singular vectors as A, while its
singular values satisfy σj(M) = σj(A)2q+1, j = 1, 2, . . . . It
follows that the singular values of M decay faster to zero than
the singular values σj(A) of A. In this approach, the matrix
M should not be explicitly formed; see [15] for more details.

We apply the discrepancy principle to determine the reg-
ularization parameter as described in [2]. We solve (5) by
computing the solution of (30) or (31). With the assumption
that the error e in b is normally distributed with zero mean
and variance ε2, since Q`QT` is an orthogonal projector, the
variance of Q`QT` e is the fraction `

nε
2. We therefore seek to

determine the regularization parameter µ such that

‖Σ̃y − W̃TQT` b‖2 = η

√
`

n
ε.

Thus, we replace ε by
√

`
nε in (6).

III. RANDOMIZED SVD METHODS

Randomized SVD methods can be applied to determine a
low-rank approximation of the SVD (7); see, e.g., [15]. This
approach is applied in truncated SVD methods, see, e.g., [3].
Xiang and Zou [26] describe how randomized SVD methods
can be used to compute approximate solutions of Tikhonov



regularization problems in standard form, i.e., when L = I in
(5), and in [27] propose several randomized methods for the
solution of Tikhonov minimization problems in general form,
i.e., when L 6= I . We outline these approaches in the following
paragraphs and compare their performance in Section V to the
approach described in Section II.

First consider the case m ≥ n. Let the entries of the matrix
Ω` ∈ Rn×`, where 1 ≤ ` � n, be identically and normally
distributed random numbers with zero mean and variance one,
and compute the QR factorization

Q`R` = AΩ`,

where Q` ∈ Rm×` has orthonormal columns and R` ∈ R`×` is
upper triangular and assumed to be nonsingular in [26]. Then
the columns of Q` form an orthonormal basis for R(AΩ`).
Let B = QT` A ∈ R`×n and compute the reduced SVD of B,

B = Ŵ Σ̂V̂ T , (32)

where the matrices Ŵ ∈ R`×` and V̂ ∈ Rn×` have or-
thonormal columns, and Σ̂ ∈ R`×` is a diagonal matrix with
nonnegative decreasing diagonal entries. The right-hand side
of

Q`B = Q`Q
T
` A = Q`Ŵ Σ̂V̂ T (33)

is an approximation of the SVD (7) of A. The decomposition
(33) is much cheaper to compute than (7) when m and n are
large and 1 ≤ `� n ≤ m. A bound for the distance between
A and Q`QT` A easily can be established. The lower bound of
the following theorem follows from the Eckart–Young theorem
and the upper bound is shown in [15, Corollary 10.9].

Theorem 2. Suppose that A ∈ Rm×n has the singular values
σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ≥ 0. Let Ω` ∈ Rn×` be a
Gaussian matrix with ` := k + p ≤ min{m,n} and p ≥ 4.
Let the columns of Q` form an orthonormal basis forR(AΩ`).
Then

σ`+1 ≤ ‖A−Q`QT` A‖2
≤ (1 + 6

√
`p log p)σk+1 + 3(`Σj>kσ

2
j )1/2

with probability not less than 1− 3p−p.

Replacing A by the approximation (33) in the minimization
problem (5) gives

min
x∈Rn

{‖Q`QT` Ax−Q`QT` b‖22 + µ‖Lx‖22}

+ ‖(I −Q`QT` )b‖22,

which is equivalent to

min
x∈Rn

{‖Ŵ Σ̂V̂ Tx−QT` b‖22 + µ‖Lx‖22}.

Since we would like a solution x of minimal Euclidean norm,
it is natural to require the solution to be of the form x = V̂ y
for some y ∈ R`. This gives the minimization problem

min
y∈R`
{‖Σ̂y − ŴTQT` b‖22 + µ‖LV̂ y‖22}.

When L = I , we have ‖V̂ y‖2 = ‖y‖2. For a general matrix
L ∈ Rp×n, we compute the QR factorization Q̂R̂ = LV̂ .
When the matrix R̂ is of full rank and fairly well-conditioned,
we proceed similarly as in Section II, i.e., we carry out the
substitution z = R̂y.

We turn to the situation when m < n and 1 ≤ ` � m.
We construct a random matrix Ω` ∈ R`×m with random
entries with distribution N(0, 1), and compute the economical
QR factorization (Ω`A)T = Q`R`, where Q` ∈ Rn×` has
orthonormal columns and R ∈ R`×` is upper triangular. Then
we proceed similarly as in Section II.

We determine the regularization parameter µ > 0 by
discrepancy principle, where we replace ε by

√
`
nε in (6),

similarly as in Section II.

IV. A SOLUTION METHOD BASED ON GOLUB–KAHAN
BIDIAGONALIZATION

This section reviews the use of Golub–Kahan bidiagonaliza-
tion to reduce the large matrix A in (1) to a small bidiagonal
matrix; see, e.g., [6], [14]. Application of 1 ≤ `� min{m,n}
steps of Golub–Kahan bidiagonalization to A with initial
vector b gives the decompositions

AV` = U`+1C̄`, ATU` = V`C
T
` , (34)

where the matrices U`+1 ∈ Rm×(`+1) and V` ∈ Rn×` have
orthonormal columns, U` ∈ Rm×` consists of the first `
columns of U`+1, and

U`+1e1 = b/‖b‖2. (35)

Moreover, range(V`) is the Krylov subspace

K`(ATA,AT b) = span{AT b, (ATA)AT b, . . . , (ATA)`−1AT b},
(36)

and the matrix

C̄` =



ρ1 0
τ2 ρ2

. . . . . .
τ`−1 ρ`−1

τ` ρ`
0 τ`+1


∈ R(`+1)×`

is lower bidiagonal with positive entries τk and ρk, and C` ∈
R`×` is obtained by removing the last row of C̄`. We assume
that ` is small enough so that the decompositions (34) with
the described properties exist. This is the generic situation.

We compute an approximate solution of (5) by minimizing
over the Krylov subspace (36) instead of over Rn,

min
x∈K`(ATA,AT b)

{‖Ax− b‖22 + µ‖Lx‖22}.

Letting x = V`y, the relations (34) and (35) give

min
y∈R`
{‖C̄`y − e1‖b‖2 ‖22 + µ‖LV`y‖22}. (37)

Denote the solution of (37) by yµ,`. Then xµ,` = V`yµ,` is
an approximate solution of (5).



First consider the situation when L = I . Then

‖Axµ,` − b‖2 = ‖C̄`yµ,` − e1‖b‖2 ‖2. (38)

Therefore, it suffices to choose µ > 0 so that the right-hand
side satisfies the discrepancy principle; see [6] for details. It
follows that it is quite inexpensive to determine a value of
µ > 0 so that the approximate solution xµ,` = V`yµ,` of
(5) satisfies (6). A discussion on how this can be done by
Newton’s method can be found in [6]. Other zero-finders are
discussed in [5], [23].

The number of bidiagonalization steps, `, does affect the
value of µ, since (38) decrease as ` increases. We choose `,
as small as possible to satisfy the discrepancy principle for
some 0 < µ <∞, i.e., we choose ` so that

‖C̄`yµ,` − e1‖b‖2 ‖2 < ηε ≤ ‖C̄`−1yµ,`−1 − e1‖b‖2 ‖2.

When L 6= I , there are several different approaches; see,
e.g., [7], [10], [18]. In the present paper, we will apply the
method described in [18] in experiments: Let L ∈ Rp×n and
assume that ` in (34) satisfies 1 ≤ ` ≤ min{p, n}. Compute
the QR factorization Q`R` = LV`, where Q` ∈ Rn×` has
orthonormal columns and R` ∈ R`×` is upper triangular. Then
(37) becomes

min
y∈R`
{‖C̄`y − e1‖b‖2 ‖22 + µ‖R`y‖22}.

The matrix R` is typically nonsingular and not very ill-
conditioned. Then the change of variables z = R`y results
in the minimization problem

min
z∈R`
{‖C̄`R−1` z − e1‖b‖2 ‖22 + µ‖z‖22}.

If µ is determined so that the solution zµ,` satisfies
‖C̄`R−1` z − e1‖b‖2 ‖2 = ηε, then the associated approximate
solution xµ,` = V`R

−1
` zµ,` of (5) satisfies the discrepancy

principle (6).

V. COMPUTED EXAMPLES

We consider a few examples from Regularization Tools [16],
and compare the three solution methods that use a solution
subspace made up of discretized Chebyshev polynomials de-
scribed in Section II to the randomized and Krylov methods
outlined in Sections III and IV, respectively. The methods are
compared with respect to efficiency and accuracy. To measure
the time, we solve all the problems by all the methods 100
times and report average timings. The accuracy is measured
by the Relative Restoration Error (RRE),

RRE(x) =
‖x− xexact‖2
‖xexact‖2

,

where xexact denotes the desired minimal-norm solution of the
linear system of equations (4). We are particularly interested
in assessing how the performance of the methods depend on
the dimension ` of the solution subspace.

The exact data vector is defined by bexact = Axexact.
To simulate error-contaminated data, we add a vector e that

models normally distributed Gaussian noise with zero mean
and with the variance chosen to achieve a specified noise level

δ =
‖e‖2
‖bexact‖2

;

cf. (3).
We will consider two examples in one space-dimension

and two examples in two space-dimensions. All examples
are discretizations of Fredholm integral equations of the first
kind (2). For problems in one space-dimension, we use the
regularization matrix

L = L1 =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ,
i.e., the Laplacian matrix in one space-dimension, while for
examples in two space-dimensions, we use the Laplacian
matrix in two space-dimensions. The latter is defined by

L = L1 ⊗ I + I ⊗ L1,

where I is the identity matrix and ⊗ denotes the Kronecker
product.

In all the examples, we consider A ∈ R4096×4096. In the
tables we denote by
• “Cheb. basis” the method described in Method II.1;
• “Cheb.-Nyström” the method described in Method II.2;
• “Cheb. projection” the method described in Method II.3;
• “Randomized” the method described in Section III;
• “Krylov” the method described in Section IV.
All computations were carried out using MATLAB 2019b

with approximately 15 significant decimal digits running on a
desktop computer with an Intel Core i5-9400 @2.90GHz CPU
and 8 GB of RAM under Windows 10.

a) Baart: We first consider the Baart example. The
kernel k(s, t) in (2) is defined by

k(s, t) = es cos(t), s ∈ [0, π/2], t ∈ [0, π], (39)

and the right hand-side is given by b(s) = 2 sinh(s)/s. Then
the solution is given by x(t) = sin(t). This integral equation is
described in [1]. We discretize the integral equation (2) in two
ways: For the “Cheb. basis” and “Cheb-Nyström” methods,as
described in Methods II.1 and II.2. For the method described
in Method II.3 as well as for the randomized and Krylov
methods of Sections III and IV, we use the discretization
provided by the MATLAB function baart.m in [16]. This
function discretizes (2) by a Galerkin method with piece-wise
constant test and trial functions. Both discretizations furnish
the error-free data vector bexact to which we add a vector e that
represents normally distributed Gaussian noise as described
above. This vector is scaled to correspond to the noise level
δ = 0.01.

We carry out computations with all methods for subspaces
of dimensions ` ∈ {1, 2, . . . , 50}. Tables I and II report the



RRE and CPU time for all methods for ` ∈ {10, 25, 50}. We
observe that the methods described in Methods II.1 and II.2
require about the same CPU time and are faster than the other
methods considered. The fact that the CPU time demanded
by the “Cheb. basis” and “Cheb-Nyström” methods are about
the same depends on that the computations are essentially
the same. The “Cheb. projection” method requires about the
same CPU time as the “randomized” method, because the
computations are quite similar; they only differ in that the
starting point for the “Cheb. projection” method is an or-
thonormal basis of discretized Chebyshev polynomials, while
the starting point for the “randomized” method is a Gaussian
random matrix. Both the latter methods require more CPU
time than the “Cheb. basis” and “Cheb-Nyström” methods.
The last method in our comparison is the Krylov subspace
Tikhonov regularization method based on partial Golub–Kahan
bidiagonalization. This method is referred to as “Krylov”.
Table II shows this method to require the most CPU time.
The behavior of the CPU time as a function of the dimension
` of the solution subspace is reported in Figure 3(a).

Turning to the error in the computed approximate solutions,
we can observe that the “Cheb-Nyström” method provides the
most accurate reconstructions, while the other two Chebyshev
methods outperform the randomized and Krylov methods. We
report the RRE obtained for solution subspace dimensions 1 ≤
` ≤ 50 in ` in Figure 2(a).

b) Shaw: The integral equation (2) of this example is
described by Shaw [24]. It has the kernel

k(s, t) = (cos(s) + cos(t))

(
sin(u)

u

)2

,

where u = π(sin(s) + sin(t)) and s, t ∈ [−π, π]. The exact
solution is x(t) = α1e−γ1(t−τ1)

2

+ α2e−γ2(t−τ2)
2

, where the
αj , γj , and τj are given constants. Discretization gives the
matrix A and the vector xexact. The error-free data vector
bexact is obtained by multiplying A and xtrue. The error-
contaminated data vector b is determined by (3). The noise
level is δ = 0.03.

Similarly as in the previous example, we report the CPU
time required and the RRE for the different methods and
for three solution subspace dimensions in Tables I and II.
The results for this example are similar to those for the
previous one. Also in this example the “Cheb. basis” method
outperforms all the other considered methods both in terms
of accuracy and computational cost. Figure 2(a) displays all
the RREs obtained for different choices of solution subspace
dimension `. We can observe that all the methods, except
for the “Cheb-Nyström” method, achieve minimal RRE for
` = 6. After this minimum is reached the RRE stabilizes.
The “Cheb. basis” method provides the most consistent result.
Finally, Figure 3(b) displays the CPU time as a function of
the dimension of the solution subspace `.

c) Blur: Our first example in two space-dimensions is an
image deblurring problem. We blur the image in Figure 1(a)
by the Gaussian PSF shown in Figure 1(b). The PSF is defined
by the MATLAB function blur.m from [16] with parameters

band = 30 and sigma = 1.5. The blurred but noise-free image
is represented by a vector bexact. We add 2% white Gaussian
noise to this vector to obtain the blurred and noisy image
shown in Figure 1(c). The latter image is represented by the
data vector b.

The “Cheb. basis” method of Method II.1 can be applied
because the matrix A in (13) can be an arbitrary square matrix;
it does not have to be determined by the discretization method
of Theorem 1. However, the “Cheb.-Nyström” method of
Method II.2 requires the discretization used in the description
of the method. Since the MATLAB function blur.m provides a
different discretization, the “Cheb.-Nyström” cannot be used.
This is a limitation of the “Cheb.-Nyström” method.

The RREs and CPU times for the methods in our compari-
son are reported in Tables I and II. As in the previous exam-
ples, the Krylov method is the slowest among the considered
algorithms. However, differently from the examples above, the
non-Krylov methods do not provide accurate reconstructions.
For the randomized method a similar observation is reported in
[2]. The reason for the poor performance of the randomized
method is that the singular values of the matrix A do not
decay to zero fast enough to make the right-hand side of the
inequality of Theorem 2 small. This means that the dimension
` of the solution subspace has to be very large to be able to
determine an accurate approximation of the desired solution.
Expansion in terms of discretized Chebyshev polynomials
does not yield high accuracy either, because when the kernel
is regarded as a function in one space-dimension it is not
smooth. Therefore, its Fourier coefficients will decay slowly
with increasing index number. Figures 2(c) and 3(c) report
the RREs and CPU times for all methods and values of `
considered.

d) Baart2D: Our last example in two space-dimensions
is the tensor product of two Baart examples. Let A1 ∈ R64×64

be a discretization of (39). Then we define

A = A1 ⊗A1.

The exact solution and the right-hand side are obtained as
tensor products of the counterparts in one space-dimension.
To simulate realistic data we add 2% white Gaussian noise.

We can observe from the RREs reported in Table I and in
Figure 2(d) that the Krylov method, the randomized method,
and the “Cheb. projection” method determine accurate re-
constructions. The latter two methods are able to determine
approximate solutions of high quality due to the fact that
the singular values of A decay to zero with increasing in-
dex extremely fast; this was already observed in [2]. The
“Cheb. basis” and “Cheb-Nyström” methods do not provide
satisfactory results. This is due to the fact that we represent a
smooth two-dimensional surface in one space-dimension, and
when considered as a function in one space-dimension the
function is not smooth. We report the CPU times in Table II
and Figure 3(d).

The Baart2D problem also can be represented as A1XA1 ≈
B, where X,B ∈ R64×64, and B represents the available
contaminated data. We represent the solution as a linear



(a) (b)

(c) (d)
Fig. 1. Blur test case: (a) exact image (64 × 64 pixels), (b) PSF (64 × 64
pixels), (c) blurred and noisy image (δ = 2%), (d) Reconstruction obtained
with the considered Krylov method.

combination of outer products of discretized Chebyshev poly-
nomials. Thus, let the uj , j = 1, 2, . . . , denote orthonor-
mal vectors obtained by discretizing Chebyshev polynomi-
als at 64 nodes. This is analogous to the construction of
the vectors uj in Section II. Then define the matrix basis
{u1uT1 , u1uT2 , u1uT3 , u2uT1 , u2uT2 }. We seek to determine an
approximate solution of the Baart2D problem as a linear
combination of these matrices. The noise level in B is chosen
to be the same as for the computations reported for Baart2D
in Table I. When using the 5-dimensional basis described, we
obtain the RRE 1.96 ·10−1, and when discretizing the integral
equation by the trapezoidal rule in two space-dimensions,
we achieve RRE 1.98 · 10−1. The randomized and Krylov
methods with ` = 5 basis vectors yield the RREs 3.22 · 10−1

and 2.23 · 10−1, respectively. We conclude that discretized
Chebyshev expansions can be competitive when the problem
to be solved has a Kronecker product structure.

VI. CONCLUSION

We have presented three methods that use solution sub-
spaces defined by discretized Chebyshev polynomials for the
solution of ill-posed inverse problems. These methods can
be used to solve large-scale problems and are found to be
competitive with methods that are based on randomization and
partial Golub–Kahan bidiagonalization for certain ill-posed
problems.
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Fig. 2. RRE against ` for all considered examples and methods. The blue line
with asterisks reports the results obtained using the Chebyshev basis, the red
line with triangles reports the results obtained with the Nyström discretization,
the magenta line with stars reports the results obtained projecting using the
Chebyshev basis, the black solid line reports the results obtained with the
randomized method, and the black dotted line reports the results obtained
with the considered Krylov method. Panel (a) refers to the Baart example,
panel (b) refers to the Shaw example, panel (c) refers to the Blur example,
and panel (d) refers to the Baart2D example.
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Fig. 3. CPU time (sec.) against ` for all considered examples and methods.
The blue line with asterisks reports the results obtained using the Chebyshev
basis, the red line with triangles reports the results obtained with the
Nystrom discretization, the magenta line with stars reports the results obtained
projecting using the Chebyshev basis, the black solid line reports the results
obtained with the randomized method, and the black dotted line reports the
results obtained with the considered Krylov method. Panel (a) refers to the
Baart example, panel (b) refers to the Shaw example, panel (c) refers to the
Blur example, and panel (d) refers to the Baart2D example.

TABLE I
RRE OBTAINED WITH THE CONSIDERED EXAMPLES FOR THE DIFFERENT

METHODS AND SELECTED VALUES OF `.

Example Method ` = 10 ` = 25 ` = 50

Baart

Cheb. basis 8.26 · 10−2 7.11 · 10−2 6.86 · 10−2

Cheb.-Nyström 4.75 · 10−3 7.22 · 10−3 9.24 · 10−3

Cheb. projection 9.05 · 10−2 8.36 · 10−2 7.61 · 10−2

Randomized 9.77 · 10−2 8.38 · 10−2 7.68 · 10−2

Krylov 7.85 · 10−2 7.19 · 10−2 7.14 · 10−2

Shaw

Cheb. basis 1.05 · 10−1 1.06 · 10−1 1.06 · 10−1

Cheb.-Nyström 1.49 · 10−1 1.92 · 10−1 2.39 · 10−1

Cheb. projection 1.37 · 10−1 1.49 · 10−1 1.44 · 10−1

Randomized 1.37 · 10−1 1.63 · 10−1 1.73 · 10−1

Krylov 2.09 · 10−1 2.14 · 10−1 2.14 · 10−1

Blur

Cheb. basis 8.44 · 10−1 8.35 · 10−1 8.32 · 10−1

Cheb. projection 8.35 · 10−1 8.26 · 10−1 8.22 · 10−1

Randomized 9.52 · 10−1 8.71 · 10−1 7.54 · 10−1

Krylov 3.36 · 10−1 3.28 · 10−1 3.28 · 10−1

Baart2D

Cheb. basis 4.76 · 101 8.21 · 101 2.06 · 102
Cheb.-Nyström 7.19 · 101 5.97 · 101 5.80 · 101
Cheb. projection 3.69 · 10−1 2.69 · 10−1 4.37 · 101
Randomized 2.31 · 10−1 2.35 · 10−1 4.15 · 10−1

Krylov 3.28 · 10−1 2.74 · 10−1 2.83 · 10−1

TABLE II
CPU TIME(SEC.) OBTAINED WITH THE CONSIDERED EXAMPLES FOR THE

DIFFERENT METHODS AND SELECTED VALUES OF `.

Example Method ` = 10 ` = 25 ` = 50

Baart

Cheb. basis 2.87 · 10−2 3.86 · 10−2 5.35 · 10−2

Cheb.-Nyström 2.76 · 10−2 3.78 · 10−2 5.49 · 10−2

Cheb. projection 4.36 · 10−2 5.98 · 10−2 9.36 · 10−2

Randomized 4.38 · 10−2 5.95 · 10−2 9.47 · 10−2

Krylov 1.85 · 10−1 4.39 · 10−1 8.71 · 10−1

Shaw

Cheb. basis 3.51 · 10−2 4.03 · 10−2 5.51 · 10−2

Cheb.-Nyström 2.64 · 10−2 3.53 · 10−2 5.16 · 10−2

Cheb. projection 4.96 · 10−2 6.05 · 10−2 9.45 · 10−2

Randomized 4.97 · 10−2 6.08 · 10−2 9.57 · 10−2

Krylov 1.95 · 10−1 4.45 · 10−1 8.77 · 10−1

Blur

Cheb. basis 3.91 · 10−1 9.36 · 10−1 1.82 · 10−1

Cheb. projection 7.45 · 10−2 1.79 · 10−1 3.47 · 10−1

Randomized 7.48 · 10−2 1.79 · 10−1 3.48 · 10−1

Krylov 1.81 · 10−1 4.28 · 10−1 8.60 · 10−1

Baart2D

Cheb. basis 2.75 · 10−2 3.71 · 10−2 5.18 · 10−2

Cheb.-Nyström 2.79 · 10−2 3.77 · 10−2 5.22 · 10−2

Cheb. projection 4.20 · 10−2 5.85 · 10−2 9.30 · 10−2

Randomized 4.18 · 10−2 5.87 · 10−2 9.26 · 10−2

Krylov 1.90 · 10−1 4.52 · 10−1 9.06 · 10−1
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