
Restoration of Blurred Images Corrupted by
Impulse Noise via Median Filters and `p-`q

Minimization
Majed Alotaibi

Department of Mathematical Sciences
Kent State University

Kent, Ohio, USA
malota15@kent.edu

Alessandro Buccini
Department of Mathematics and Computer Science

University of Cagliari
Cagliari, Italy

alessandro.buccini@unica.it

Lothar Reichel
Department of Mathematical Sciences

Kent State University
Kent, Ohio, USA

reichel@math.kent.edu

Abstract—This paper proposes a two-phase fully automatic
scheme for restoring images that have been corrupted by blur,
impulse noise, and, possibly, Gaussian noise. In a first phase, a
median filter is used to partially correct most of the pixels that
are contaminated by impulse noise. Then the image is restored by
solving the `p-`q minimization. This problem consists of a fidelity
term, that is defined in terms of a p-norm, and a regularization
term, that is defined in terms of a q-norm. We allow 0 < p, q ≤
2. In particular, the p-norm is not a norm when 0 < p < 1;
similarly for the q-norm. The relative influence of the fidelity and
regularization terms is determined by a regularization parameter.
We describe how this parameter can be chosen without user
interaction. The numerical scheme described in this paper can
restore images that have been contaminated by blur and with up
to 70% of the pixels contaminated by salt-and-pepper noise.

Index Terms—`p-`q minimization, modified cross validation,
generalized cross validation, impulse noise, median filter.

I. INTRODUCTION

This paper is concerned with the restoration of images that
have been contaminated by blur and impulse noise possibly
along with Gaussian noise. We consider problems of the form

min
x∈Rn

‖Ax− bδ‖22, (1)

where ‖ · ‖2 denotes the Euclidean norm, A ∈ Rm×n is a
severely ill-conditioned matrix, i.e., a matrix whose singular
values decay rapidly and with no significant gap, bδ ∈ Rm
collects the measured data that we assume is affected by noise
and blur, and x ∈ Rn is the unknown image that we wish to
recover. We are interested in image deblurring problems where

A.B. is a member of the GNCS group of INdAM. A.B. is partially supported
by the Regione Autonoma della Sardegna research project “Algorithms and
Models for Imaging Science [AMIS]” (RASSR57257, intervento finanziato
con risorse FSC 2014-2020 - Patto per lo Sviluppo della Regione Sardegna).
Research by L.R. is supported in part by NSF grant DMS-1720259.

(1) is the discretization of a Fredholm integral equation of the
first kind

g(u, v) =

∫
R2

K(s, t, u, v)f(u, v)dudv,

where K is a smooth integral kernel with compact support and
g and f are the continuous version of b, i.e., the noise-free data
in (1), and x, respectively. The kernel K is often referred to
as a Point Spread Function (PSF) and describes how a single
point is spread across its neighborhood. If we assume that the
blur is spatially invariant, i.e., that it does not depend on the
location of the point, the integral equation above is reduced to
a convolution. In this case, and if the entries of x and bδ are
ordered in a lexicographical way, the matrix A can be written
as

A = T + E +R,

where T is a block Toeplitz with Toeplitz blocks matrix, E
has small norm, and R is of small rank. The matrices E and
R collect the imposed boundary conditions. Here we stress
that, thanks to its structure, matrix-vector products with A
can be performed cheaply; see [14] for more details on image
deblurring.

Due to the ill-conditioning of A and the presence of noise
in bδ , the naı̈ve solution A†bδ of (1), where A† denotes the
Moore–Penrose pseudo-inverse of A, usually does not provide
a meaningful approximation of the true image xtrue = A†b.
Here the vector b := Axtrue represents the unavailable blurred
but noise-free image associated with xtrue. We assume that the
noise that corrupts the data is a mixture of impulsive, salt-and-
pepper, and Gaussian noise; see below for more details.

To recover an approximation of xtrue, we proceed as
follows. We preprocess the data to remove the impulse and
salt-and-pepper noise by applying a median filter to bδ . This



gives the vector b̂δ . Then to deblur the image, we solve the
minimization problem

min
x∈Rn

J (x), J (x) :=
1

p
‖Ax− b̂δ‖pp +

µ

q
‖Lx‖qq, (2)

where 0 < p, q ≤ 2, the map x 7→ ‖x‖pp is defined by

‖x‖pp =

n∑
j=1

|xj |p, x = [x1, x2, . . . , xn]T ,

and L ∈ Rr×n is a regularization matrix. Note that, if p ≥ 1,
then ‖x‖p is a norm. The choice of the parameters 0 < p, q ≤
2 affects the quality of the computed restoration as well as the
properties of the functional J (x). This functional is convex
and smooth when 1 < p, q ≤ 2, and non-convex and non-
smooth when 0 < p < 1 or 0 < q < 1. We discuss the
choices of p and q below. Minimization problems of the form
(2) have been discussed extensively in the literature, see, e.g.,
[1]–[5], [8], [10].

The first term in the expression for J (x) often is referred
to as the fidelity term, whereas the second term is called the
regularization term. The purpose of the regularization term is
to avoid a solution of (2) that is severely contaminated by
propagated and amplified noise; the regularization parameter
µ > 0 determines the relative importance of the fidelity and
regularization terms. This parameter will be determined by the
numerical method presented.

The choice of 0 < p ≤ 2 in the fidelity term should depend
on the type of noise that contaminates bδ . For Gaussian noise,
the value p = 2 is appropriate, while for impulse noise, p ≤ 1
yields good results; see [2], [19] for discussions and illustra-
tions. The choice of 0 < q ≤ 2 in the regularization term
determines the sparsity of the computed solution; the smaller
the q-value, the better the computed solution approximates a
sparse solution, i.e., a solution with many vanishing entries.
The value q = 1 is commonly used, because it provides a
sparse solution and makes the functional (2) convex if p ≥ 1.
However, solutions of higher quality often can be determined
when 0 < q < 1; see [4], [15] for illustrations.

We will solve the minimization problem (2) using algo-
rithms described in [15]. These algorithms consist of two
stages. First, one determines a quadratic surrogate functional
x 7→ Q(x, x(k)) that locally approximates the functional J (x)
at the currently available approximation x(k) of the minimum
of J (x); the functional Q(x, x(k)) is chosen to be a quadratic
tangent majorant of J (x) at x(k); see Section II for more
details. Then x 7→ Q(x, x(k)) is minimized in a generalized
Krylov subspace. This furnishes an improved approximation,
x(k+1), of the minimizer of J (x). We refer to this kind of
minimization schemes for (2) as majorization-minimization
generalized Krylov subspace (MM-GKS) methods; details and
convergence results can be found in [15].

The choice of the regularization parameter µ > 0 is
important for the quality of the computed restoration. A too
large value of µ may result in unnecessary lack of details in
the restored image, while a too small value of µ > 0 may

lead to significant propagation of the noise in b̂δ into the
computed restoration. We consider two automatic strategies for
determining the regularization based on cross validation (CV)
and generalized cross validation (GCV). They have previously
been presented in [3], [5]; here we apply them in a different
way.

The data b̂δ for the minimization problem (2) is obtained
by applying a median filter to bδ . We will use the median
filters proposed in [9], [16]. These filters detect and replace the
pixels that have been corrupted by impulse noise by a weighted
median of neighboring pixel values. The application of median
filters may produce images with blurred edges. However, since
the given images also are corrupted by blur, we apply an `p-
`q minimization method outlined above to determine a better
approximation of xtrue than b̂δ . This is similar to the approach
of outlier smoothing followed by deblurring described by Cai
et al. [6]. We note that the regularization parameter in the
methods presented in [6] is tuned by the user. In our method,
this parameter is chosen without user interaction. Sciacchitano
et al. [20] propose a two-phase method that does not require
a user to specify a regularization parameter, but this method
is not designed to remove mixed noise, i.e., noise that is
made up of both impulse noise and Gaussian noise. Our image
restoration methods consist of the following two steps:

1) Noise reduction of the given data bδ by application of a
median filter.

2) Edge-preserving restoration by solving the minimization
problem (2) with an automatic selection of the regular-
ization parameter.

These steps define fully automatic image restoration methods
that can handle images with more impulse noise combined
with Gaussian noise than available automatic restoration meth-
ods, such as those described in [3], [5].

This paper is organized as follows: Section II reviews the
majorization and minimization steps of the MM-GKS methods
that are applied to the minimization of (2), discusses how
to determine the regularization parameter µ in (2), describes
the median filters used, and, finally, presents the proposed
schemes. Computed examples are reported in Section III, and
concluding remarks can be found in Section IV.

II. THE PROPOSED APPROACHES

We describe the details of our algorithms. First, we discuss
the majorization-minimization approaches described in [15].
Then we report two automatic ways to determine the regular-
ization parameter proposed in [3], [5]. This is followed by a
discussion on two median filters [7], [9]. Finally, we describe
our methods.

A. Majorization-minimization
1) Majorization: The majorization steps considered have

been proposed in [15]. At the kth step, we seek to find a
quadratic tangent majorant Q(x, x(k)) of J (x) at the point
x(k).

Definition 1. Let J (x) : Rn → R be a continuously differ-
entiable function. The function Q(x, x(k)) : Rn × Rn → R is



said to be a quadratic tangent majorant for J (x) if and only
if for any y ∈ Rn all the following conditions hold:
• Q(x, y) is quadratic;
• Q(x, y) ≥ J (x) for all x ∈ Rn;
• Q(y, y) = J (y) and ∇xQ(y, y) = ∇xJ (y), where ∇x

denotes the gradient with respect to the variable x.

Definition 1 asserts that both the majorant and the objective
function must have the same gradient at the current point x(k).
Since J (x) defined in (2) is not smooth for 0 < p, q ≤ 1, it is
common to smooth J (x) by introducing a smoothed “norms”
as follows: Define

Φz,ε(t) :=
(√

t2 + ε2
)z

with

{
ε > 0 if z ∈ (0, 1],

ε = 0 if z ∈ (1, 2].

We then replace the non-smooth `p-`q minimization problem
(2) (for our values of p and q) by a smoothed minimization
problem

Jε(x) :=
1

p

m∑
i=1

Φp,ε

((
Ax− b̂δ

)
i

)
+
µ

q

r∑
i=1

Φq,ε ((Lx)i) ,

Huang et al. [15] discussed the construction of fixed or
adaptive majorants. The fixed majorant is a quadratic func-
tional, whose aperture does not depend on x(k) and which
is translated so that it is tangent to Jε at x(k). The adaptive
majorant is the quadratic tangent majorant of Jε at x(k) that
has the widest aperture possible.

In the fixed case, a majorant with a fixed aperture is
constructed and translated at each iteration step. It has the
appealing computational advantage over using adaptive majo-
rants that the required QR factorizations, which are used when
solving certain least squares problems defined below, can be
updated in each step; the use of adaptive majorants requires
that the QR factorizations be recomputed from scratch in every
iteration step. Let

v(k) := Ax(k) − b̂δ,
u(k) := Lx(k).

The fixed majorant QF (x, x(k)) of Jε(x) at the point x(k)

is given by

QF
(
x, x(k)

)
=
εp−2

2

(
‖Ax− b̂δ‖22 − 2

〈
ω

(k)
fid , Ax

〉)
+
µεq−2

2

(
‖Lx‖22 − 2

〈
ω(k)

reg , Lx
〉)

+ c,

(3)

where c is a constant that is obtained by collecting all terms
that are independent of x, and

ω
(k)
fid = v(k)

(
1−

(
(v(k))

2
+ε2

ε2

)p/2−1
)
,

ω
(k)
reg = u(k)

(
1−

(
(u(k))

2
+ε2

ε2

)q/2−1
)
,

where all operations are component-wise.
For adaptive majorization, the quadratic majorant is con-

structed so that it has the maximal aperture possible at each

iteration step. The adaptive majorant QA(x, x(k)) of Jε(x) at
the point x(k) is given by

QA
(
x, x(k)

)
=

1

2

∥∥∥∥(W (k)
fid

)1/2 (
Ax− b̂δ

)∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

Lx

∥∥∥∥2

2

+ c,

(4)

where

W
(k)
fid = diag

((
v(k)

)2
+ ε2

)p/2−1

,

W
(k)
reg = diag

((
u(k)

)2
+ ε2

)q/2−1

,

and c is a constant independent of x.
2) Minimization: Minimizing (4) and (3) over x can be

done by solving the normal equations associated with the fixed
and adaptive MM-GKS methods(

ATA+ ηLTL
)
x = AT (̂bδ + ω

(k)
fid ) + ηLTω(k)

reg , (5)(
ATW

(k)
fid A+ µLTW (k)

regL
)
x = ATW

(k)
fid b̂

δ, (6)

respectively, where

η := µ
εq−2

εp−2
.

We remark that for numerical reasons, we compute the so-
lutions of (5) or (6) without explicitly forming the normal
equations; see below. The linear systems of equations (5) and
(6) have unique solutions if only if, for the fixed case

N
(
ATA

)
∩N

(
LTL

)
= {0},

and for the adaptive case

N
(
ATW

(k)
fid A

)
∩N

(
LTW (k)

regL
)

= {0},

for all k, where N (M) denotes the null space of the matrix
M . These conditions are satisfied in image restoration by the
definition of A and L and by the fact that W (k)

fid and W (k)
reg are

positive definite matrices.
a) The Fixed Case: We seek a solution of (5) in a low-

dimensional search space. Let Vk ∈ Rn×mk with 0 < mk �
n, where the columns of Vk form an orthonormal basis for the
search space. By letting

x(k+1) = Vky
(k+1), (7)

we find y(k+1) by solving the following minimization problem

y(k+1) := arg miny∈Rmk

∥∥∥∥∥
[

AVk
η1/2LVk

]
y −

[
b̂δ + ω

(k)
fid

η1/2ω
(k)
reg

]∥∥∥∥∥
2

2

. (8)

Let us consider the following QR factorizations

AVk = QARA with QA ∈ Rm×mk , RA ∈ Rmk×mk ,
LVk = QLRL with QL ∈ Rr×mk , RL ∈ Rmk×mk ,

(9)



where QA and QL have orthonormal columns and RA and
RL are upper-triangular matrices. By substituting (9) into (8),
we obtain the minimization problem

y(k+1) := arg miny∈Rmk

∥∥∥∥∥
[

RA
η1/2RL

]
y −

[
QTA

(
b̂δ + ω

(k)
fid

)
η1/2QTLω

(k)
reg

]∥∥∥∥∥
2

2

with associated normal equations(
RTARA + ηRTLRL

)
y(k+1) =RTAQ

T
A

(
b̂δ + ω

(k)
fid

)
+ ηRTLQ

T
Lω

(k)
reg .

Substituting (7) into (5) gives the residual vector

r(k+1) :=AT
(
AVky

(k+1) − b̂δ − ω(k)
fid

)
+ ηLT

(
LVky

(k+1) − ω(k)
reg

)
.

As suggested by Lampe et al. [18], we start with the initial
solution subspace V1. Then Vk is expanded to Vk+1 by
adding vnew := r(k+1)/‖r(k+1)‖2, i.e., Vk+1 = [Vk, vnew] for
k = 1, 2, . . . . These solution subspaces are referred to as a
generalized Krylov subspace. The space V1 can be determined,
for instance, by a few steps of Golub–Kahan bidiagonalization
applied to A with initial vector b̂δ; see, e.g., [15], [18]. In our
experiments, we let V1 = AT b̂δ/

∥∥∥AT b̂δ∥∥∥
2
.

The QR factorizations in (9) are updated according to

AVk+1 = [AVk, Avnew ] = [QA, q̃A]

[
RA rA
0T τA

]
,

LVk+1 = [LVk, Lvnew ] = [QL, q̃L]

[
RL rL
0T τL

]
,

where

rA = QTA (Avnew) , qA = Avnew −QArA,
τA = ‖qA‖2 , q̃A = qA/τA,

rL = QTL (Lvnew) , qL = Lvnew −QLrL,
τL = ‖qL‖2 , q̃L = qL/τL.

b) The Adaptive Case: Similarly to the fixed case, we
determine an approximate solution x(k+1) of (6) restricted to
the column space of Vk by determining the solution y(k+1) of
the minimizing problem

miny∈Rmk

∥∥∥∥∥∥∥


(
W

(k)
fid

)1/2

AVk

µ1/2
(
W

(k)
reg

)1/2

LVk

 y − [ (W (k)
fid

)1/2

b̂δ

0

]∥∥∥∥∥∥∥
2

2

(10)

and then computing x(k+1) = Vky
(k+1). To this end, we

calculate the QR factorizations(
W

(k)
fid

)1/2

AVk = QARA with QA ∈ Rm×mk , RA ∈ Rmk×mk ,(
W (k)

reg

)1/2

LVk = QLRL with QL ∈ Rr×mk , RL ∈ Rmk×mk .
(11)

Substituting (11) into (10) yields the minimization problem

min
y∈Rmk

∥∥∥∥[ RA
µ1/2RL

]
y −

[
QTAW

1/2
fid b̂δ

0

]∥∥∥∥2

2

,

which we solve for y(k+1) = y. This solution satisfies the
normal equations(

RTARA + µRTLRL
)
y(k+1) = RTAQ

T
A

(
W

(k)
fid

)1/2

b̂δ. (12)

The residual of the normal equations (6) associated with
x(k+1) = Vky

(k+1) is given by

r(k+1) := ATW
(k)
fid

(
AVky

(k+1) − b̂δ
)

+µLTW (k)
regLVky

(k+1).

Similarly to the fixed case, we start with the initial solution
subspace V1 = AT b̂δ/

∥∥∥AT b̂δ∥∥∥
2
. Subsequently Vk is expanded

to Vk+1 by including the vector r(k+1)/‖r(k+1)‖2.

B. Choice of the Regularization Parameter

This section describes two methods for choosing the reg-
ularization parameter, the MCV and GCV methods. These
methods have previously been described in [3], [5].

1) Modified Cross Validation: The classical Cross Valida-
tion (CV) method splits the data into two complementary
sets: the training set and the testing set. These sets consist
of complementary subsets of equations. The training set is
used for solving the problem with different regularization
parameters, and the second set is used to validate the choice of
regularization parameter. Specifically, the CV method chooses
the parameter µ such that the solution determined by using the
training set provides a small residual error when substituted
into the data of the testing set.

The Modified Cross Validation (MCV) method uses a
modified version of the CV approach. Instead of seeking to
reconstruct entries of the data vector b̂δ , the method applies CV
to the computed solutions. Thus, MCV compares predictions
of computed solutions for different parameters µj . Roughly,
the MCV method determines the parameter µ that is least
sensitive to loss of data. The MCV method usually gives
approximations of the desired solution of higher quality than
the CV method; see [5].

Consider solving problem (2) with an appropriate regular-
ization parameter choice. Let I1 and I2 be two distinct sets of
d distinct random integers between 1 and n. Let Ãi and b̃δi be
defined by removing the rows with index in Ii from A and b̂δ ,
respectively, for i ∈ {1, 2}. This gives the matrix Ãi ∈ Rm̃×n
and vector b̃δi ∈ Rm̃, where m̃ < m, for i ∈ {1, 2}. Let
{µj}lj=1 be a set of positive regularization parameters, and let

x
(i)
µj be defined by

x(i)
µj := arg min

x∈Rn

{
1

p

m̃∑
s=1

Φp,ε

((
Ãix− b̃δi

)
s

)
+
µj
q

r∑
s=1

Φq,ε ((Lx)s)

}
, i = 1, 2.

Then we calculate the quantities

∆xj =
∥∥∥x(1)

µj − x
(2)
µj

∥∥∥
2
, j = 1, 2, . . . , l.



This procedure is repeated K times to reduce statistical
variability. Each step k provides a regularization parameter
µ(k), obtained by

µ(k) := arg min
µj

∆xj .

Then the regularization parameter µ = µ∗ is chosen to be the
average of the parameter values µ(k), i.e.,

µ∗ =
1

K

K∑
k=1

µ(k).

Finally, we use the determined parameter µ∗ to compute

x∗ := arg min
x∈Rn

{
1

p
‖Ax− b̂δ‖pp +

µ∗

q
‖Lx‖qq

}
.

To numerically solve all the minimization problems above, we
used the fixed majorization version of MM-GKS. We could
have used the adaptive version of MM-GKS instead, but the
computations for this method are more demanding, since the
matrices Q and R in (11) have to be computed from scratch in
each iteration. Algorithm 1 summarizes the fixed majorization
version of MM-GKS and Algorithm 2 describes the MCV
procedure.

Algorithm 1: MM-GKS
1 Let 0 < p, q ≤ 2 and µ > 0. Consider A ∈ Rm×n and

L ∈ Rr×n. Fix ε > 0 and η = µ ε
q−2

εp−2 ;
2 Choose the initial vector x1 = AT b̂δ and let

V1 = AT b̂δ/
∥∥∥AT b̂δ∥∥∥ ;

3 Compute and store AV1 = QARA and LV1 = QLRL;
4 for k = 1, 2, . . . do
5 v(k) = Ax(k) − b̂δ ;
6 u(k) = Lx(k) ;

7 ω
(k)
fid = v(k)

(
1−

(
(v(k))

2
+ε2

ε2

)p/2−1
)

;

8 ω
(k)
reg = u(k)

(
1−

(
(u(k))

2
+ε2

ε2

)q/2−1
)

;

9 y(k+1) =(
RTARA + ηRTLRL

)−1
(
RTAQ

T
A

(
b̂δ + ω

(k)
fid

)
+ ηRTLQ

T
Lω

(k)
reg

)
;

10 r = AT
(
AVky

(k+1) − b̂δ − ω(k)
fid

)
+

ηLT
(
LVky

(k+1) − ω(k)
reg

)
;

11 vnew = r/‖r‖2;Vk+1 = [Vk, vnew ] ;
12 Update the QR factorizations AVk+1 = QARA and

LVk+1 = QLRL ;
13 x(k+1) = Vky

(k+1);
14 end

Note that in Algortihm 2 we use Algorithm 1 to compute
x

(k,i)
µj , where xinit

k,j,i = ÃTi b̃
δ
i for j = 1, . . . , l, k = 1, . . . ,K,

and i = 1, 2, and V init
k,j,i = ÃTi b̃

δ
i /
∥∥∥ÃTi b̃δi∥∥∥

2
for j = 1, . . . , l,

k = 1, . . . ,K, and i = 1, 2. These choices allow us to run the
various instances of the MM-GKS algorithm in parallel.

Algorithm 2: MM-GKS-MCV
1 Let A ∈ Rm×n and L ∈ Rr×n. Let d < m, and let K > 0

be an integer. Let {µj}lj=1 be a set of positive
regularization parameters;

2 for k = 1, 2, . . . ,K do
3 Construct two distinct sets I(k)

1 and I(k)
2 of d distinct

random integers between 1 and n; For i = 1, 2, let Ãi
and b̃δi be obtained by removing the rows with indices
in I(k)

i from A and b̂δ, respectively;
4 for j = 1, 2, . . . l do
5 for i = 1, 2 do
6 x

(k,i)
µj =

MM-GKS
(
Ãi, L, b̃

δ
i , p, q, µj , ε, x

init
k,j,i, V

init
k,j,i

)
;

7 end
8 Compute ∆x

(k)
j =

∥∥∥x(k,1)
µj − x(k,2)

µj

∥∥∥
2

;
9 end

10 j∗ = arg min1≤j≤l

{
∆x

(k)
j

}
;

11 µ(k) = µj∗ ;
12 end
13 Compute µ = 1

K

∑K
k=1 µ

(k) ;

2) Generalized Cross Validation: In this scheme, µ is
chosen such that the GCV function is minimized at each
iteration. We use the adaptive version of MM-GKS since
the normal equation (12) associated with the minimization
problem are of the form

y(k+1) = arg min
y∈Rmk

{∥∥∥∥RAy −QTA (W (k)
fid

)1/2

b̂δ
∥∥∥∥2

2

+µ ‖RLy‖22
}
.

which is analogous to Tikhonov regularization in general form.
Since RA and RL are constructed from projecting a large
problem to low-dimensional subspace νk, where dim(νk) =
mk � n, we can use the GSVD for the GCV computation to
determine a suitable value of the regularization parameter µ,
see, e.g., [11], [12]. The GSVD of the matrix pair {RA, RL}
is given by

RA = UΣAY
T ,

RL = V ΣLY
T ,

where the matrices U and V have orthonormal columns, ΣA
and ΣL are nonnegative diagonal matrices, and Y is a non-
singular matrix; see [13] for details. We define the following
quantities for µ > 0,

r(k+1)
µ =

∥∥∥∥QTA (W (k)
fid

)1/2

b̂δ −RAy(k+1)

∥∥∥∥2

2

(13)

=

∥∥∥∥UTQTA (W (k)
fid

)1/2

b̂δ

−Σ2
A

(
Σ2
A + µΣ2

L

)−1
UTQTA

(
W

(k)
fid

)1/2

b̂δ
∥∥∥∥2

2



and

t(k+1)
µ =

(
trace

(
I −RA

(
RTARA + µRTLRL

)−1
RTA

))2

=
(

trace
(
I − Σ2

A

(
Σ2
A + µΣ2

L

)−1
))2

. (14)

The above derivation uses equation (12) and the fact that ΣA
and ΣL are square matrices. Then the regularization parameter
determined by the GCV method is given by

µ(k+1) = arg min
µ

r
(k+1)
µ

t
(k+1)
µ

;

see [3] for a derivation. If the solution of the above mini-
mization problem is not unique, then the largest minimizer is
chosen. We summarize these computations in Algorithm 3.

Algorithm 3: MM-GKS-GCV

1 Let 0 < p, q ≤ 2. Consider A ∈ Rm×n and L ∈ Rr×n.
Fix ε > 0 and choose the initial vector x1 = AT b̂δ;

2 Let V1 = AT b̂δ/
∥∥∥AT b̂δ∥∥∥; compute and store AV1 and

LV1 ;
3 for k = 1, 2, . . . do
4 v(k) = Ax(k) − b̂δ;
5 u(k) = Lx(k) ;

6 ω
(k)
fid :=

((
v(k)

)2
+ ε2

)p/2−1

;

7 ω
(k)
reg =

((
u(k)

)2
+ ε2

)q/2−1

;

8 W
(k)
fid = diag

(
ω

(k)
fid

)
;

9 W
(k)
reg = diag

(
ω

(k)
reg

)
;

10 Compute the QR factorization

QARA =
(
W

(k)
fid

)1/2

AVk ;
11 Compute the QR factorization

QLRL =
(
W

(k)
reg

)1/2

LVk ;
12 Compute the GSVD of the pair {RA, RL} ;

13 µ = arg minµ
r(k+1)
µ

t
(k+1)
µ

, where r(k+1)
µ and t(k+1)

µ are

defined in (13) and (14);
14 y(k+1) =(

RTARA + µRTLRL
)−1

RTAQ
T
A

(
W

(k)
fid

)1/2

b̂δ ;

15 r = ATW
(k)
fid

(
AVky

(k+1) − b̂δ
)

+

µLTW
(k)
reg LVky

(k+1) ;
16 vnew = r/‖r‖2; Vk+1 = [Vk, vnew ] ;
17 Compute and store AVk+1 and LVk+1 ;
18 x(k+1) = Vky

(k+1) ;
19 end

3) Convergence properties: We now briefly comment on
the convergence properties of the two rules for the selection of
the regularization parameter. Both rules are so-called heuristic
parameter choice rules and, therefore, we are not able to
show regularization properties; see, e.g., [17] for a discussion

of several heuristic parameter choice rules. However, for the
MCV algorithm we can state that the procedure converges and
provides a value for µ in a finite amount of time. On the other
hand, at this time, we are not able to assure that the GCV
method converges. Nevertheless, in practice the MM-GKS-
GCV algorithm always converges and provides approximate
solutions that are, in general, more accurate than the ones
obtained with MCV.

C. Median Filters

1) Adaptive Median Filter: This section summarizes prop-
erties of the adaptive median filter (AMF) described in [16].
We use the description of the AMF method presented in
[7]. Let b̃ be an r1 × r2 matrix reshape of bδ such that
b̃i,j is the gray level of the noisy image at pixel (i, j),
where (i, j) ∈ {1, 2, . . . , r1} × {1, 2, . . . , r2} and, obviously
m = r1r2. Denote by [̃bmin, b̃max] the dynamic range of b̃. Let
b be the unknown noise-free image that has the same size and
dynamic range as b̃. When b̃ is corrupted by salt-and-pepper
noise, it is given by

b̃i,j =

 b̃min with probability σ1,

b̃max with probability σ2,
bi,j with probability 1− σ1 − σ2,

where σ = σ1 +σ2 is the noise level and bi,j is the noise-free
image at pixel (i, j). Let Bwi,j be a window of size w × w
centered at (i, j) defined by

Bwi,j = {(s1, s2) : |s1 − i| ≤ w and |j − s2| ≤ w},

and let wmax denote the maximal window size. Let b̃w,min
i,j ,

b̃w,max
i,j , and b̃w,median

i,j stand for the minimum, maximum, and
median values of the pixels in b̃ with index Bwi,j , respectively.

We now describe how we denoise a pixel. Fix a starting
value w and compute b̃w,min

i,j , b̃w,max
i,j , and b̃w,median

i,j . If

b̃w,min
i,j < b̃w,median

i,j < b̃w,max
i,j ,

then we assume that the pixel is not noisy; otherwise, we
identify this pixel as noisy and substitute it by b̃w,median

i,j .
On the other hand, if either b̃w,median

i,j = b̃w,min
i,j or

b̃w,median
i,j = b̃w,max

i,j , then we enlarge the size of the window
by 2, i.e., we set wnew = w + 2. If wnew is larger than the
maximum size of the window wmax, then we assume that the
pixel b̃i,j is noisy and substitute it by b̃w,median

i,j ; otherwise we
reiterate the procedure above with w = wnew.

Algorithm 4 summarizes these computations. The maximum
window size wmax in Algorithm 4 depends on the salt-and-
pepper noise level. As the noise level increases, the value of
wmax should increase accordingly. However, as suggested in
[7], the value of wmax is set to 39 if the noise level is not
known. Even though this is a large value for the maximum
window size, Algorithm 4 will terminate the while loop in step
5 earlier when the noise level is small than when the noise level
is large. This automatically reduces the computational effort
and makes AMF capable of filtering images with any noise
level.



Algorithm 4: The AMF method

1 Consider the blurred and noisy image data bδ and let b̃
be the matrix reshape of the given image bδ;

2 Choose a maximum window size wmax;
3 for each pixel location (i, j) do
4 w = 3;
5 while w ≤ wmax do
6 Compute b̃w,min

i,j ,̃bw,max
i,j , and b̃w,median

i,j ;
7 if b̃w,min

i,j < b̃w,median
i,j < b̃w,max

i,j then
8 if b̃w,min

i,j < b̃i,j < b̃w,max
i,j then

9 The pixel b̃i,j is not noisy;
10 Exit while cycle;
11 else
12 b̃i,j = b̃w,median

i,j ;
13 Exit while cycle;
14 end
15 else
16 w = w + 2;
17 if w > wmax then
18 b̃i,j = b̃w,median

i,j ;
19 end
20 end
21 end
22 end
23 Convert the matrix b̃ into a stacked column vector b̂δ;

2) Directional Weighted Median Filter: This section sum-
marizes properties of the directional weighted median filter
(DWMF) proposed in [9]. Let b̃ be defined as in the previous
section, but assume now that it is corrupted by random-valued
impulse noise. Then

b̃i,j =

{
âij with probability σ,
bi,j with probability 1− σ,

where σ often is referred to as noise level and âij is a ran-
dom number chosen with uniform distribution in the interval
[̃bmin, b̃max]. The DWMF method detects noisy pixels by using
the sum of weighted absolute differences between each pixel
and its neighbors aligned in four main directions; see Figure 1.
Then the noisy pixel is replaced using a weighted median
operator constructed as

m = median
{
w̃ � b̃`

}
,

where � is the repetition operator defined by k � a =
k times︷ ︸︸ ︷

a, a, . . . . . . , a applied element-wise; the vector b̃` ∈ R`
contains the pixels of the adjacent neighbors in the four main
directions, and w̃ ∈ N` assigns more weight to the pixels that
are in the most clustered main direction. In detail, assume that
we would like to denoise the (0, 0) pixel of an image y that

Fig. 1. The Four Main Directions of the DWMF.

is indexed on Z2. Define

S1 := {(−2,−2), (−1,−1), (0, 0), (1, 1), (2, 2)},
S2 := {(0,−2), (0,−1), (0, 0), (0, 1), (0, 2)},
S3 := {(2,−2), (1,−1), (0, 0), (−1, 1), (−2, 2)},
S4 := {(−2, 0), (−1, 0), (0, 0), (1, 0), (2, 0)}.

Each Sk denotes one of the four directions in Figure 1. Let
S0
k := Sk \ (0, 0) and define Ω := {(d1, d2) : −1 ≤ d1, d2 ≤

1}. Compute the quantities, for k = 1, . . . , 4,

g(k) =
∑

(d1,d2)∈S0
k

wd1,d2 |yd1,d2 − y0,0|,

where

wd1,d2 =

{
2, (d1, d2) ∈ Ω,
1, otherwise.

Let γ = arg mink{g(k)}. If γ < T , where T is a user-defined
threshold, then we assume that the (0, 0) pixel is not affected
by noise and we terminate the procedure; otherwise we apply
the median filter as follows: For each direction, compute the
standard deviations σ(k), i.e.,

(σ(k))2 =
1

4

 ∑
(d1,d2)∈S0

k

y2
d1,d2 −

 ∑
(d1,d2)∈S0

k

yd1,d2

2
 .

We determine which direction has the smallest standard devi-
ation and denote it by C, i.e.,

C = arg min
k
{σ(k)},

and substitute the noisy pixel y by the weighted median given
by

ŷ = median {w̃d1,d2 � yd1,d2 : (d1, d2) ∈ Ω} ,

where

w̃d1,d2 =

{
2, (d1, d2) ∈ S0

C ,
1, otherwise.

We repeat this procedure for each pixel in the image.
Algorithm 5 summarizes the computations for the direc-

tional weighted median filter. We set T = 510 in Algorithm 5;
see below.

To improve the results, Algorithm 5 can be repeated with
decreasing thresholds Tz = 0.8Tz−1, with T1 = 520 and z =
2, 3, . . . , Nmax. These threshold choices are suitable for 8-bit
gray-level images.



Algorithm 5: The DWMF method.

1 Consider the blurred and noisy image data bδ and let b̃ be
the matrix reshape of the given image bδ . Let T be a
user-defined parameter;

2 Compute and store S0
k for k = 1 to 4;

3 for each pixel location (i, j) do
4 for k = 1 to 4 do
5 g

(k)
i,j =

∑
(d1,d2)∈S0

k
wd1,d2

∣∣∣̃bi+d1,j+d2 − b̃i,j∣∣∣,
where wd1,d2 =

{
2, (d1, d2) ∈ Ω
1, otherwise ;

6 end
7 γi,j = mink

{
g

(k)
i,j

}
for k = 1 to 4;

8 if γi,j > T then
9 Calculate the standard deviation σ(k)

i,j of b̃i+d1,j+d2
with (d1, d2) ∈ S0

k and k = 1 to 4;
10 Ci,j = arg mink

{
σ

(k)
i,j : k = 1 to 4

}
;

11 b̃i,j =

median
{
w̃d1,d2 � b̃i+d1,j+d2 : (d1, d2) ∈ Ω

}
where w̃d1,d2 =

{
2, (d1, d2) ∈ S0

Ci,j

1, otherwise
;

12 end
13 end
14 Convert the matrix b̃ into a stacked column vector b̂δ ;

D. MCV and GCV using Median Filters

We now describe our algorithms. To improve the quality of
the images restored by the MM-GKS-MCV and MM-GKS-
GCV methods, we preprocess the given images with median
filters described in the previous sections. This gives the filtered
data b̂δ . Then an edge-preserving restoration by MCV or GCV
deblurs and further denoises the filtered data b̂δ . We determine
b̂δ from bδ using Algorithm 4 when the noise is of salt-and-
pepper-type, and we compute b̂δ using Algorithm 5 when the
noise in bδ is random-valued impulse noise. Then b̂δ is used
in the minimization problem (2). We will refer to the MCV
and GCV methods with preprocessing with a median filter as
the M-MCV and M-GCV methods, respectively.

Note that since a median filter may fail to remove all
the impulse or salt-and-pepper noise and does not remove
the Gaussian noise, one has to regularize the minimization
problem. Moreover, since some of the impulsive noise may
still be present, it is beneficial to select 0 < p < 1 in the `p-`q

minimization problem.

III. EXPERIMENTS AND COMPARISONS

In this section, we present numerical examples to illustrate
the performance of the proposed methods for image restora-
tion. We compare the performance of the M-MCV and M-
GCV methods to the performance of the MCV and GCV
methods by showing images that have been restored by all
these methods, as well as by computing the peak signal-to-
noise ratio (PSNR) of the restored image. The PSNR for an

image x is defined by

PSNR(x) = 10 log10

2552

n‖x− xtrue‖22
,

where xtrue denotes the original image and 255 is the max-
imum value achievable by the entries of xtrue. All images
are represented by 8-bit pixels. Therefore, the pixel values
are in the interval [0, 255]. To model salt-and-pepper noise,
a certain percentage (noise level) of randomly chosen entries
of the blurred but noise-free image b are set to 0 or 255.
Impulse noise is modeled by letting a certain percentage (noise
level) of randomly chosen entries of the blurred but noise-free
image b be randomly chosen uniformly distributed integers
in the interval [0, 255]. White Gaussian noise is modeled by
pseudo-random numbers with a Gaussian distribution with
zero mean and a specified variance. The noise level for
this case is the ratio ‖δ‖2

‖b‖2 , where δ is the error in bδ . In
the Peppers example, we consider salt-and-pepper noise of
different percentages. Subsequently, we consider a mixture of
random-valued impulse noise and white Gaussian noise for the
Cameraman example, as well as a mixture of salt-and-pepper
noise and white Gaussian noise for the Clock example.

In Algorithm 4 and 5, one has to pad b̃ before the first
element and after the last element of each dimension by
introducing new pixels around the edges of the image. This
border provides space for handling of the boundary. For both
the AMF and DWMF methods, we implement symmetric
boundary padding. The maximum window size for the AMF
is set to 39 throughout the tests. For the DWMF it suffices to
set Nmax = 6, since repeating the DWMF on an image too
many times may produce blurred edges.

We set p = 0.8 in all the examples, and we set q = 0.1
for the Peppers and Cameraman examples. This choice of q-
value is explained in the Clock example, where restorations
for different values of q are compared. Also, we fix ε = 1.
This value is small compared to the elements of bδ that are
in the range [0, 255]. In Algorithm 2, we let K = l = 10,
d =

[
n

200

]
, and let the µj be equispaced in a logarithmic scale.

In Algorithms 1 and 3, we terminate the iterations either after
100 iterations or when two consecutive iterates are sufficiently
close, i.e., when ∥∥x(k+1) − x(k)

∥∥
2∥∥x(k)

∥∥
2

< 10−4.

This choice of stopping criterion is suitable for many of the
images that we considered.

The matrix A is the blurring operator. We represent the com-
puted solution in terms of a framelet basis that is determined
by linear B-splines similarly as in [3], and let the regularization
operator L be the analysis opertor. The matrix L so defined is
very sparse. This makes the matrix-vector product evaluations
with L and LT cheap; see [3], [5] for more information about
the definition of L. The numerical examples are carried out in
MATLAB R2020a running on a Windows 10 laptop computer
with an i5-4210H CPU @ 2.40 GHz and 6GB of RAM.



(a) (b) (c)
Fig. 2. Peppers test case: (a) Original Peppers image (246× 246 pixels) (b)
PSF (9× 9 pixels) (c) blurred image and noise-free image.

a) Pepper: In this example we consider the Peppers
image of size 246× 246 pixels shown in Figure 2(a) and we
blur it with a PSF that simulates motion blur; see Figure 2(b).
We obtain the blurred and noise-free image in Figure 2(c). We
crop the boundaries to simulate realistic data; see [14] for more
details on boundary conditions. We enforce reflexive boundary
conditions. Salt-and-pepper noise is added at the levels of
20%, 40%, 55%, and 70%; see the first row of Figure 3.

Table I shows the PSNR for each method and Figure 3
shows the restored images. We notice that M-GCV and M-
MCV produce better restorations with higher PSNR com-
pared to MCV and GCV. MCV cannot handle images with
salt-and-pepper noise level higher than 20%. GCV produces
oversmoothed reconstructions as the noise level increases.
Both the M-MCV and M-GCV methods determine high-
quality images. Overall, we observe that M-GCV yields a very
accurate reconstruction which, in particular, is more accurate
than the one obtained with M-MCV. These observations are
confirmed by visual inspection of the reconstructions displayed
in Figure 3 and by the PSNR values in Table I. Another
advantage of M-GCV is that the GCV method demands much
less CPU time than the MCV method. This is due to the fact
that MCV requires several runs of the MM-GKS algorithm,
while the GCV method only carries out a single run; see [3]
for a discussion.

b) Cameraman: Our second example considers a 252×
252 pixels image shown in Figure 4(a). The image is blurred
by the average blur PSF displayed in Figure 4(b). We show the
blurred and noise-free image in Figure 4(c). We added random-
valued impulse noise with noise levels 20%, 30%, 40%, and
50%, as well as 1% white Gaussian noise. We enforce reflexive
boundary conditions.

Figure 5 shows the blurred and noisy images (first row)
and the restorations produced by each method. We report the
PSNR-values in Table I. The approximate solutions computed
with both GCV and MCV are not satisfactory. Moreover,
for high random-valued impulse noise levels, the images
reconstructed by M-MCV were not of high quality. M-GCV
provides the best reconstructions in terms of suppressing noise
and preserving edges and details. Again, M-GCV achieves a
significantly higher PSNR than the other methods; see Table I.

c) Clock: For our final example, we use the clock image
and blur it with an average blur; see Figure 6. Our goal
here is to show the influence of q in the quality of the

Fig. 3. Blurred and noisy image and restorations for the Peppers test
case. The first row reports the noisy and blurred image, the second row
reports the restorations obtained with MM-GKS-MCV, the third row reports
the restorations obtained with MM-GKS-GCV, the fourth row reports the
restorations obtained with M-MCV, and the fifth row reports the restorations
obtained with M-GCV. The noise increases from left to right, we considered
the noise levels 20%, 40%, 55%, and 70%.

(a) (b) (c)
Fig. 4. Cameraman test case: (a) original image (252× 252 pixels) (b) PSF
(9× 9 pixels) (c) blurred image and noise-free image.

TABLE I
PSNR OF RESTORED IMAGES OBTAINED FOR EACH NOISE LEVEL AND

RESTORATION METHOD

Image Noise Level MCV GCV M-MCV M-GCV

Peppers

20% 23.32 26.52 27.6 27.96
40% 18.77 25.18 26.17 27.47
55% 17.07 24.17 25.41 26.22
70% 15.57 23.89 24.55 24.28

Cameraman

20% 22.89 22.33 25.64 28.09
30% 19.53 21.24 22.92 26.22
40% 18.13 23.89 22.70 25.05
50% 16.75 21.55 23.21 23.86



Fig. 5. Blurred and noisy image and restorations cameraman test case. All
the images are corrupted by a mixture of Gaussian and impulse noise. The
first row reports the noisy and blurred image, the second row reports the
restorations obtained with MM-GKS-MCV, the third row reports the restora-
tions obtained with MM-GKS-GCV, the fourth row reports the restorations
obtained with M-MCV, and the fifth row reports the restorations obtained with
M-GCV. The noise increases from left to right, the Gaussian noise is always
1%, while we considered impulse noise levels 20%, 30%, 40%, and 50%.

TABLE II
PSNR OF THE RESTORED CLOCK IMAGE WITH DIFFERENT VALUES OF q

OBTAINED USING M-GCV.

q 1 0.8 0.5 0.3 0.2 0.1
PSNR 27.38 27.85 26.17 27.11 28.39 28.60

reconstructed solutions in M-GCV. Therefore, we fix the noise.
The image is corrupted by 20% salt-and-pepper noise and 3%
white Gaussian noise. Similarly, we impose reflexive boundary
conditions.

We vary the value of q to show how M-GCV per-
forms for different values. Specifically, we let q ∈
{1, 0.7, 0.5, 0.3, 0.2, 0.1}. The restorations are shown in Fig-
ure 7. From visual inspection of the reconstructions, we notice
that the noise gets less evident as q gets closer to zero. The
PSNR in Table 2 confirms that M-GCV provides a better
restoration for q = 0.1 than for larger values of q.

IV. CONCLUSIONS

We presented a two-phase method for restoring images
that are contaminated by blur and impulse noise combined

(a) (b) (c)
Fig. 6. Clock test case: (a) original image (252×252 pixels) (b) PSF (9×9
pixels) (c) blurred and noisy image (20% of salt-and-pepper noise and 3%
white Gaussian noise).

q = 1 q = 0.7 q = 0.5

q = 0.3 q = 0.2 q = 0.1

Fig. 7. Restoration of the clock image with different values of q obtained
using the M-GCV method. The image is corrupted by motion blur with 20%
of salt-and-pepper noise and 3% white Gaussian noise.

with Gaussian noise. The proposed approach is completely
automatic and does not require any estimate of the regulariza-
tion parameter. We showed that combining the majorization-
minimization optimization framework with median filters and
a modified version of cross validation and generalized cross
validation produces high quality restorations. Numerical re-
sults show that M-GCV can handle noisy images contaminated
by blur, Gaussian noise, and with up to 70% of the pixels
contaminated by salt-and-pepper noise.

REFERENCES

[1] A. Buccini, M. Pasha, and L. Reichel, “Modulus-based iterative methods
for constrained `p-`q minimization,” Inverse Problems, vol. 36, Art.
084001, 2020.

[2] A. Buccini, O. De la Cruz Cabrera, M. Donatelli, A. Martinelli, and
L. Reichel, “Large-scale regression with non-convex loss and penalty,”
Applied Numerical Mathematics, vol. 157, pp. 590–601, 2020.

[3] A. Buccini and L. Reichel, “Generalized cross validation for `p-`q
minimization,” Numerical Algorithms, in press.

[4] ——, “An `2-`q regularization method for large discrete ill-posed
problems,” Journal of Scientific Computing, vol. 78, no. 3, pp. 1526–
1549, 2019.

[5] ——, “An `p-`q minimization method with cross-validation for the
restoration of impulse noise contaminated images,” Journal of Com-
putational and Applied Mathematics, vol. 375, Art. 112824, 2020.

[6] J.-F. Cai, R. H. Chan, and M. Nikolova, “Two-phase approach for
deblurring images corrupted by impulse plus gaussian noise,” Inverse
Problems & Imaging, vol. 2, no. 2, pp. 187–204, 2008.



[7] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal
by median-type noise detectors and detail-preserving regularization,”
IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479–
1485, 2005.

[8] R. H. Chan and H.-X. Liang, “Half-quadratic algorithm for `p-`q
problems with applications to TV-`1 image restoration and compressive
sensing,” in Efficient algorithms for global optimization methods in
computer vision, A. Bruhn, T. Pock, and X.-C. Tai, Eds. Berlin:
Springer, 2014, pp. 78–103.

[9] Y. Dong and S. Xu, “A new directional weighted median filter for
removal of random-valued impulse noise,” IEEE Signal Processing
Letters, vol. 14, no. 3, pp. 193–196, 2007.

[10] C. Estatico, S. Gratton, F. Lenti, and D. Titley-Peloquin, “A conjugate
gradient like method for p-norm minimization in functional spaces,”
Numerische Mathematik, vol. 137, no. 4, pp. 895–922, 2017.

[11] C. Fenu, L. Reichel, and G. Rodriguez, “GCV for Tikhonov regulariza-
tion via global Golub–Kahan decomposition,” Numerical Linear Algebra
with Applications, vol. 23, no. 3, pp. 467–484, 2016.

[12] C. Fenu, L. Reichel, G. Rodriguez, and H. Sadok, “GCV for Tikhonov
regularization by partial SVD,” BIT Numerical Mathematics, vol. 57,
no. 4, pp. 1019–1039, 2017.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed.
Baltimore: Johns Hopkins University Press, 2013.

[14] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images:
Matrices, Spectra, and Filtering. Philadelphia: SIAM, 2006.

[15] G. Huang, A. Lanza, S. Morigi, L. Reichel, and F. Sgallari,
“Majorization–minimization generalized Krylov subspace methods for
`p-`q optimization applied to image restoration,” BIT Numerical Math-
ematics, vol. 57, no. 2, pp. 351–378, 2017.

[16] H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms
and results,” IEEE Transactions on Image Processing, vol. 4, no. 4, pp.
499–502, 1995.

[17] S. Kinderman, “Convergence analysis of minimization-based noise level-
free parameter choice rules for linear ill-posed problems,” Electronic
Transactions on Numerical Analysis, vol. 38, pp. 233–257, 2011.

[18] J. Lampe, L. Reichel, and H. Voss, “Large-scale tikhonov regulariza-
tion via reduction by orthogonal projection,” Linear Algebra and Its
Applications, vol. 436, pp. 2845–2865, 2012.

[19] A. Lanza, S. Morigi, L. Reichel, and F. Sgallari, “A generalized Krylov
subspace method for `p-`q minimization,” SIAM Journal on Scientific
Computing, vol. 37, no. 5, pp. S30–S50, 2015.

[20] F. Sciacchitano, Y. Dong, and M. S. Andersen, “Total variation based
parameter-free model for impulse noise removal,” Numerical Mathe-
matics: Theory, Methods and Applications, vol. 10, no. 1, pp. 186–204,

2017.


