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INTERNALITY OF AVERAGED GAUSS QUADRATURE RULES FOR

CERTAIN MODIFICATION OF JACOBI MEASURES

D.LJ. DJUKIĆ1, R.M. MUTAVDŽIĆ DJUKIĆ1, L. REICHEL2, M.M. SPALEVIĆ1

Abstract. The internality of quadrature rules, i.e., the property that all nodes lie in the interior
of the convex hull of the support of the measure, is important in applications, because this allows
the application of these quadrature rules to the approximation of integrals with integrands that
are defined in the convex hull of the support of the measure only. It is known (see [1,6]) that the
averaged Gauss and optimal averaged Gauss quadrature rules with respect to the four Chebyshev
measures modified by a linear divisor are internal. This paper investigates the internality of
similarly modified Jacobi measures, namely measures defined by weight functions of the forms

w(x) =
1

z − x
(1− x)a(1 + x)b or w(x) = (z − x)(1− x)a(1 + x)b

with a, b > −1 and z ∈ R, |z| > 1. We will show that in some cases, depending on the exponents
a and b, the averaged and optimal averaged Gauss rules for these measures are internal if the
number of nodes is large enough.

Keywords: Gauss quadrature, generalized averaged Gauss quadrature, truncated generalized
averaged Gauss quadrature, internality of quadrature rule, modified Jacobi measure.
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1. Introduction

Let w(x) be a nonnegative weight function on the real interval [−1, 1] with infinitely many

points of support and with all of its moments µk =
∫ 1
−1 x

kw(x)dx for k = 0, 1, . . . well defined.
We are concerned with the approximation of integrals of the form

I(f) =
∫ b

a
f(x)w(x)dx (1)

by a quadrature rule. Gauss quadrature rules are well suited for this purpose. These rules are
closely related to the sequence of monic orthogonal polynomials P0, P1, . . . associated with the
inner product

⟨f, g⟩ =
∫ 1

−1
f(x)g(x)w(x)dx,

where degPk = k. Thus, the polynomials Pj have leading coefficient one and satisfy ⟨Pj , Pk⟩ = 0
whenever j ̸= k and ⟨Pk, Pk⟩ > 0.

Clearly P0(x) ≡ 1, and we define P−1(x) ≡ 0. It is well known that the polynomials Pk satisfy
a three-term recurrence relation of the form

Pk+1(x) = (x− αk)Pk(x)− βkPk−1(x), k ⩾ 0, (2)

where the coefficients (αk)k⩾0 and (βk)k⩾1 are given by αk = ⟨xPk,Pk⟩
⟨Pk,Pk⟩ and βk = ⟨Pk,Pk⟩

⟨Pk−1,Pk−1⟩ > 0.

It is convenient to define β0 = ∥P0∥2 =
∫ b
a w(x)dx. The orthogonal polynomial Pn has n distinct

real zeros, all of which are in the open interval (−1, 1). For proofs of these propeties as well as
for other properties of orthogonal polynomials see, e.g., [8, 15].
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Among all interpolatory quadrature rules with n nodes for approximating the integral (1),
the rule with maximal algebraic degree of precision is the n-node Gauss quadrature rule with
respect to the weight function w,

Gn(f) =

n∑
i=1

wif(ξi). (3)

The nodes ξ1, . . . , ξn are the zeros of the orthogonal polynomial Pn and the weights w1, . . . , wn

are positive; see, e.g., [8,15] for proofs. The degree of precision of the Gauss rule Gn is 2n−1, i.e.,
Gn(p) = I(p) whenever p is a polynomial of degree not exceeding 2n−1. The nodes and weights
of the Gauss rule (3) can be computed efficiently (in O(n2) arithmetic floating point operations)
by applying the Golub-Welsch algorithm [9] to the symmetric tridiagonal Jacobi matrix:

Jn =



α0
√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1

0
√
βn−1 αn−1


The nodes ξ1, . . . , ξn are the eigenvalues of the Jacobi matrix, whereas the weights w1, . . . , wn

are the squares of the first components of suitably normalized eigenvectors.

The Gauss rule (3) is said to be internal, because all its nodes are in the in the support of the
measure [−1, 1]. This property is important because it allows the application of the Gauss rule
to the approximation of the integral (1) for any integrand that is defined in the interval (−1, 1).

It is important to be able to estimate the magnitude of the quadrature error,

εn(f) = |(I − Gn)(f)|, (4)

because this makes it possible to determine a suitable value of n when applying the Gauss rule
(3) to approximate the integral (1) to a prescribed accuracy. An unnecessarily large value of
n requires the computation of needlessly many nodes and weights, as well as the evaluation
of the integrand f at excessively many nodes, while a too small value of n does not yield an
approximation of desired accuracy. The development of methods for estimating the error (4)
therefore has received considerable attention over many years.

A popular approach to estimate the error (4) is to use another quadrature rule Q with ℓ > n
nodes and with degree of precision higher than 2n− 1. One then can use the difference

|(Q− Gn)(f)|
as an estimate of (4). Ideally, the nodes of the rule Q should include the nodes of Gn, because
then one can use the values of f needed to evaluate the Gauss rule (3) also when evaluating
Q(f).

A classical choice for the rule Q is the Gauss-Kronrod rule associated with Gn. The Gauss-
Kronrod rule uses the n nodes of Gn and n+ 1 additional nodes chosen to achieve the maximal
algebraic degree of precision, which is at least 3n + 1 in this case. However, the n + 1 extra
nodes are not guaranteed to be in the the interval (−1, 1) and, in fact, they might not be real;
see [12] for a recent discussion on Gauss-Kronrod rules.

An alternative approach is to choose a quadrature rule Un+1(f) with n + 1 new nodes and
suitable weights such that the stratified rule

Q2n+1(f) = θ · Gn(f) + (1− θ) · Un+1(f) (5)

has degree of precision at least 2n+1. For any fixed θ > 0, this quadrature rule is unique. Then
the (2n + 1)-node rule Q2n+1 can be used as the rule Q to estimate the quadrature error (4);
see [10, 13] for discussions of this approach. Thus, the rule Q2n+1 uses the n Gauss nodes ξi of
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(3) and the n + 1 nodes of Un+1. The nodes of Un+1 are the zeros of a polynomial P ∗ that is
orthogonal to P0, P1, . . . , Pn−2 and Pn and has the form

P ∗ = Pn+1 − β∗
n+1Pn−1 (6)

for some constant β∗
n+1 depending on θ in (5).

Two choices of θ in (5) are common:

• For θ = 1
2 , the resulting rule QL

2n+1 = Q2n+1 is the averaged Gauss rule introduced by
Laurie [11]. Its degree of precision is at least 2n+ 1.

• For θ = βn

βn+βn+1
, the resulting rule QS

2n+1 = Q2n+1 is the optimal averaged Gauss rule

described by Spalević [14]. Its degree of precision is at least 2n + 2. The choice of θ
leading to this property is unique. Special cases of optimal averaged rules had previosuly
been described by Ehrich [7].

Spalević [14] showed that the averaged and optimal averaged rules QL
2n+1 and QS

2n+1 can be
represented by a symmetric tridiagonal Jacobi matrix of the form

Ĵ2n+1 =

α0

α1

αn−2

αn−1

αn

αn−1

α1

α0

. . .
. . .

. . .

. . .
. . .

. . .

√
β1√

β1
√
β2

√
βn−2

√
βn−1√

βn−1
√
βn√

βn
√
β∗
n+1√

β∗
n+1

√
βn−1

√
β2

√
β1√

β1

where β∗
n+1 = βn in the averaged rule QL

2n+1 and β∗
n+1 = βn+1 in the the optimal averaged rule

QS
2n+1. Their nodes and weights can be determined by applying the Golub-Welsch algorithm to

the matrix Ĵ2n+1.

Differently from Gauss-Kronrod rules, these averaged and optimal averaged Gauss rules are
guaranteed to have real nodes that interlace the Gauss nodes, and to have positive weights.
However, their outermost nodes might be outside of the interval [−1, 1]. As can be seen from
(6), the smallest and largest nodes are internal (i.e., lie in the interval [−1, 1]) if and only if

Pn+1(−1)

Pn−1(−1)
⩾ β∗

n+1 and
Pn+1(1)

Pn−1(1)
⩾ β∗

n+1, (7)

respectively.

A possible way to avoid external nodes is to reduce the Jacobi matrix associated with the
optimal averaged rule by deleting a number of its last rows and columns; see [4]. By the
interlacing property, the two outermost nodes move towards the middle, while the degree of
precision does not fall below 2n+ 2. Thus, the highest chance to obtain an internal quadrature
rule in this manner is to delete the n − 1 last rows and columns. The order of the resulting
Jacobi matrix is n+2. We denote the quadrature rule so obtained by Qt

n+2. Its n+2 nodes are
the zeros of the polynomial

P t
n+2(x) = (x− αn−1)Pn+1(x)− βn+1Pn(x).
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We refer to Qt
n+2 as a truncated quadrature rule. Since only the two outermost nodes are not

guaranteed to be internal, the rule Qt
n+2 is internal if and only if

xn+2P t
n+2(x) ⩾ 0 for x = ±1. (8)

This paper investigates internality of quadrature rules with weight functions of the forms

w(x) =
1

z − x
(1− x)a(1 + x)b or w(x) = (z − x)(1− x)a(1 + x)b

with a, b > −1 and z ∈ R, |z| > 1. Our analysis shows that some averaged, optimal averaged
Gauss rules, and truncated quadrature rules for these measures are internal for suitable expo-
nents a and b if the number of nodes is large enough. Analogous results on the internality of
Gauss-Kronrod rules are discussed, e.g., in [12]. Our analysis complements and extends results
reported in [1–3,5, 6] on the internality of modified Chebyshev measures of the forms

1

z − x
(1− x)±

1
2 (1 + x)±

1
2 and

u− x

z − x
(1− x)±

1
2 (1 + x)±

1
2 ,

where u = u(z) is a function of z ∈ R, |z| > 1. Our interest in the modification of Jacobi weight
functions stems from the attention that modification methods and their applications, e.g., to
computing the Hilbert transform, have received in the literature; see Gautschi [8, Section 2.4]
for a thorough discussion of modification algorithms and some applications.

This paper is organized as follows. In Section 2 we outline properties of Jacobi weight functions
considered as generalizations of the four Chebyshev weight functions. Section 3 investigates
asymptotic properties of recurrence coefficients (2) for Jacobi weight functions modified by a
linear divisor, and then discusses conditions under which the averaged and optimal averaged
rules are internal. Some computed illustrations also are provided. In Section 4 we do the
same for Jacobi weight functions that are modified by a linear factor. Section 5 illustrates the
performance of the quadrature rules considered. Concluding remarks can be found in Section 6.

2. Jacobi weight function

The functions w(x) = wa,b(x) = (1− x)a(1 + x)b, −1 < x < 1, (9)

where a, b ∈ (−1,+∞) are some constants are known as Jacobi weight functions. This section
reviews available results on the internality of averaged and optimal averaged Gauss quadrature
rules associated with these weight functions.

Given the exponents a and b, the recurrence coefficients (2) are, see, e.g., [8],

αn =
b2−a2

(2n+a+b)(2n+a+b+2)
for n ⩾ 0,

βn =
4n(n+a)(n+b)(n+a+b)

(2n+a+b)2(2n+a+b+1)(2n+a+b−1)
for n ⩾ 1,

β0 =
2a+b+1Γ(a+1)Γ(b+1)

Γ(a+b+2)
.

(10)

For n > 0, these coefficients can be expanded as power series in 1
n :

αn =
A2

n2
+

A3

n3
+ · · · , βn =

1

4

(
1 +

B2

n2
+

B3

n3
+ · · ·

)
as n → ∞. (11)

These power series converge for n > a+b+2
2 and n > a+b+1

2 , respectively. In particular,

A2 =
b2−a2

4
, A3 =

(a2−b2)(a+b+1)

4
,

B2 =
1−2a2−2b2

4
, B3 =

(a+b)(2a2+2b2−1)

4
.

(12)
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The monic orthogonal polynomials Pk take the following values at x = ±1:

Pk(1) = 2k
(
a+k
k

)(
a+b+2k

k

) , Pk(−1) = (−2)k
(
b+k
k

)(
a+b+2k

k

) . (13)

Laurie [11] showed that the anti-Gaussian formulas, and consequently also the averaged Gauss
formulas, associated with the Jacobi weight function (9) for n ⩾ 1 are internal if and only if the
following two conditions hold:

(2a+1)n2 + (2a+1)(a+b+1)n+ 1
2(a+1)(a+b)(a+b+1) ⩾ 0,

(2b+1)n2 + (2b+1)(a+b+1)n+ 1
2(b+1)(a+b)(a+b+1) ⩾ 0.

Similarly, the optimal averaged Gauss formulas are internal if and only if the following conditions
are satisfied (see [14]):

(2a+1)n2 + (2a+1)(a+b+1)n+ 1
2(a+b)[(a+1)(a+b+1)+2(a−b)] ⩾ 0,

(2b+1)n2 + (2b+1)(a+b+1)n+ 1
2(a+b)[(b+1)(a+b+1)+2(b−a)] ⩾ 0.

Hence, when n is large enough,

• if a, b > −1
2 or |a| = |b| = 1

2 , then both the averaged and optimal averaged formulas are
internal;

• if a < −1
2 or b < −1

2 , then both formulas are external;

• if a = −1
2 , then for b ∈ (−1

2 ,
1
2) only the optimal averaged formulas are internal, and for

b > 1
2 only the averaged formulas are internal.

3. Modifications by a linear divisor

This section considers weight functions of the form

w̃(x) =
(1− x)a(1 + x)b

z − x
for − 1 < x < 1, (14)

where z is a given real constant with |z| > 1. The latter condition is conveniently secured by
setting

z = 1
2(c+

1
c ) with − 1 < c < 1. (15)

We first discuss asymptotic properties of orthogonal polynomials associated with these weight
functions, and subsequently discuss properties of averaged and optimal averaged quadrature
rules.

3.1. Orthogonal polynomials. It follows from [8, Theorem 2.52 (Uvarov)]) that the monic

orthogonal polynomials P̃n with respect to the weight function (14) satisfy

P̃n = Pn − rn−1Pn−1, (16)

where

rn =

∫ 1
−1 Pn+1(x)w̃(x) dx∫ 1
−1 Pn(x)w̃(x) dx

.

The sequence rn can be computed recursively by using the relations

r−1 =

∫ 1

−1

w(t)

z − t
dt and rn = z − αn − βn

rn−1
, n ⩾ 0. (17)

The orthogonal polynomials P̃n satisfy a three-term recursion relation of the form

P̃k+1(x) = (x− α̃k)P̃k(x)− β̃kP̃k−1(x), k ⩾ 0,
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analogously to the polynomials Pk; cf. (2). An algorithm described by Gautschi [8, eqs. (2.4.26-

27)] gives the recurrence coefficients α̃n and β̃n in terms of the sequence rn:

α̃n = αn + rn − rn−1 and β̃n = βn−1 ·
rn−1

rn−2
. (18)

However, there is apparently no closed formula for the rn for n ⩾ 0, and r−1 can be expressed
in the form of a hypergeometric function

r−1 = 2F1(1, b+1; a+b+2; 2
z+1).

Therefore, only asymptotic expressions as n → ∞ can be determined for the rn and for the
coefficients α̃n and β̃n.

Since the terms rn approach c
2 , where c is given by (15), we write rn = c

2 + δn, with δn → 0
as n → ∞. Then (17) becomes

δn =
1

2c
− αn − βn

rn−1
=

1− 4βn
2c

− αn −
( βn
rn−1

− 2βn
c

)
= pn−1 + qn−1δn−1,

where

pn =
1− 4βn+1

2c
− αn+1, qn =

2βn+1

crn
. (19)

We observe that pn is explicitly computable by (10), whereas qn is related to rn. Thus,

n2pn → 2(1 + c)a2 + 2(1− c)b2 − 1

8c
and qn → 1

c2
as n → ∞.

Therefore,

rn − c

2
= δn =

1

qn
δn+1 −

pn
qn

=
1

qnqn+1
δn+2 −

pn
qn

− pn+1

qnqn+1
= · · ·

=
1

qnqn+1 · · · qn+k
δn+k+1 −

k∑
i=0

pn+i

qnqn+1 · · · qn+i
.

(20)

As k increases, the terms δn+k+1/(qnqn+1 · · · qn+k) approach zero exponentially fast (recall that
limn→∞ qn > 1). Analyzing the remaining sum over i gives us the following result.

Lemma 1. When n → ∞, we have

rn =
c

2

(
1 +R2n

−2 + o(n−2)
)
, where R2 =

1− 2(1 + c)a2 − 2(1− c)b2

4(1− c2)
. □

Using (18) and taking (10) into account establishes the following theorem.

Theorem 1. When n → ∞, we have

α̃n = αn + o(n−2) = A2n
−2 + o(n−2),

β̃n = βn + o(n−2) =
1

4

(
1 +B2n

−2 + o(n−2)
)
,

where A2 and B2 are given by (11). □

3.2. Internality of averaged quadrature rules. It follows from (7) and (16) that the aver-
aged Gauss formulas with n nodes have no node larger than x = 1 if and only if

Pn+1(1)− rnPn(1)

Pn−1(1)− rn−2Pn−2(1)
⩾ β∗

n+1,

which reduces to

L = dn−1dn−2 ·
dn − rn

dn−2 − rn−2
⩾ β∗

n+1, where dk =
Pk+1(1)

Pk(1)
. (21)
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The values of the Pk(1) are known (13). We obtain

dk =
2(k + a+ 1)(k + a+ b+ 1)

(2k + a+ b+ 1)(2k + a+ b+ 2)
=

1

2

(
1 +

2a+ 1

2k

)
+ o(k−1). (22)

Straightforward computations yield that the left-hand side of (21) satisfies

L =
1

4

(
1 +

1 + 2a

n
+ o(n−1)

)
.

On the other hand, the particular values of β∗
n+1 in the (2n+ 1)-node averaged and optimal

averaged Gauss formulas, which are β̃n and β̃n+1, respectively, are both asymptotically equal to

β∗
n+1 = βn + o(n−2) =

1

4
+

1− 2a2 − 2b2

16n2
+ o(n−2).

Thus, for a ̸= −1
2 and n sufficiently large, L − β∗

n+1 and 1 + 2a have the same sign. It follows
that the largest node in both the (2n+1)-node averaged and optimal averaged quadrature rules
is internal if a > −1

2 , and external if a < −1
2 .

Internality and externality of the smallest node can be established similarly by switching the
exponents a and b in (9). This gives the following results.

Theorem 2. Let the weight function be defined by (14). Then for n large enough:

• The largest node in the averaged and optimal averaged Gauss rules is internal if a > −1
2 , and

external if a < −1
2 .

• The smallest node in the averaged and optimal averaged Gauss rules is internal if b > −1
2 ,

and external if b < −1
2 . □

We conclude that both the averaged and optimal averaged quadrature rules are internal if
min{a, b} > −1

2 , and both are external if min{a, b} < −1
2 .

As for the truncated quadrature rule Qt
n+2, all its nodes being bounded above by one is by

(8) equivalent to (1− α̃n−1)P̃n+1(1)/P̃n(1) ⩾ β̃n+1, which can be expressed as

(1− α̃n−1)dn−1 ·
dn − rn

dn−1 − rn−1
⩾ β̃n+1.

When n → ∞, the left-hand side and the right-hand side approach 1
2 and 1

4 , respectively. This
gives the following result.

Theorem 3. The truncated formula Qt
n+2 associated with the weight function (14) is internal

when n is large enough. □

Numerical experiments suggest that, generally, n does not have to be very large in order for
the rule Qt

n+2 to be internal.

3.3. Borderline cases. When a = −1
2 , the asymptotic expansions of the two sides of (21)

agree up to the n−2-term. Consequently, Theorem 2 is not helpful for establishing internality
if min{a, b} = −1

2 . This section investigates this situation. Due to symmetry, it suffices to

consider the case a = −1
2 .

By Lemma 1, we can determine the quantity qn, given by (19), to o(n−2) accuracy. Substitut-
ing this expression into (20) allows us to improve Theorem 1. The next term in the asymptotic
expansions for rn is of the form O(n−3) and can be determined by comparing the coefficients in
the second relation of (17). We obtain that

rn =
c

2

(
1 +R2n

−2 +R3n
−3 + o(n−3)

)
, (23)
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where the coefficient R2 is defined in Lemma 1 and R3 is a suitable coefficient to be determined
below. Using the identity (n− 1)−2 =

∑∞
i=2(i− 1)n−i, we obtain

rn−1 =
c

2

(
1 +R2n

−2 + (R3 + 2R2)n
−3 + o(n−3)

)
. (24)

The quantities (12) can for a = −1
2 be expressed as

A2 =
4b2 − 1

16
, A3 =

(1 + 2b)(1− 4b2)

32
, B2 =

1− 4b2

8
, B3 =

(1− 2b)(1− 4b2)

16
. (25)

Moreover, the value of R2 defined in Lemma 1 can be expressed as

R2 =
1− 4b2

8(1 + c)
.

Writing the relation (17) in the form

(z − αn − rn)rn−1 = βn

and substituting the expressions (23) and (24), as well as the formulas (15) and (11), into the
above formula yields

c

2

(
1 +

R2

n2
+

2R2 +R3

n3

)( 1

2c
− A2

n2
− A3

n3
− c

2

(R2

n2
+

R3

n3

))
+ o(n−3) =

1

4

(
1 +

B2

n2
+

B3

n3

)
.

Equating coefficients for n−3 in this expression gives

R3 =
2cA3 +B3 − 2R2

1− c2
= (4b2 − 1)

2 + (1 + c)(1 + 2b)

16(1 + c)2
.

Using the same notation as in (21), we obtain

dn =
1

2

(
1 +

1− 4b2

16n2
− (1 + b)(1− 4b2)

16n3
+ o(n−3)

)
. (26)

This makes the left-hand side of condition (21) easy to evaluate:

L = dn−1dn−2 ·
dn − rn

dn−2 − rn−2
=

1

4

(
1 +

1− 4b2

8n2
+

1− 4b2

8n3

(
2− b− 2

1 + c

)
+ o(n−3)

)
.

On the other hand, we obtain from (18) that

β̃n =
1

4

(
1 +

B2

n2
+

B̃3

n3
+ o(n−3)

)
,

where B2 is the same as in (25) and

B̃3 = B3 −
2c

1− c2
(2A2 + cB2) =

1− 4b2

8

(5
2
− b− 2

1 + c

)
.

Also, β̃n+1 = β̃n − 1
2B2n

−3 + o(n−3). This leads to

β̃n = L+
1− 4b2

64n3
and β̃n+1 = L− 3(1− 4b2)

64n3
.

We have shown the following result.

Theorem 4. Let the weight function be given by (14) with a = −1
2 . Then for n large enough:

• The largest node of the averaged quadrature rule is internal if |b| > 1
2 and external if |b| < 1

2 .

• The largest node of the optimal averaged quadrature rule is internal if |b|< 1
2 and external if

|b|> 1
2 .
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Note that internality of the smallest node is determined by Theorem 2. For instance, if
b < a = −1

2 , then neither the averaged Gauss rules nor the optimal averaged Gauss rules are
internal, because the smallest node is not in the interval [−1, 1].

We turn to the case b = ±1
2 . Then the Jacobi weight function reduces to the Chebyshev

weight functions of the first and third kind. The following results are shown in [1, 2] for these
weight functions.

Theorem 5. Let a = −1
2 and |b| = 1

2 . Then both the averaged Gauss rules and the optimal
averaged Gauss rules for the weight function (14) have the largest node equal to 1. □

3.4. Numerical experiments. This section shows the smallest and largest nodes of averaged
Gauss rules QL

2n+1, optimal averaged Gauss rules QS
2n+1, and truncated rules Qt

n+2 for several
values of the parameters a, b, and z in (14). These examples provide some insight into how large
n has to be in order for Theorems 2-4 to hold. We will use following notation:

• xL1 , x
L
2n+1 – the smallest and largest node of the averaged Gauss rule QL

2n+1;

• xS1 , x
S
2n+1 – the smallest and largest node of the optimal averaged Gauss rule QS

2n+1;
• xt1, x

t
n+2 – the smallest and largest node of the truncated rule Qt

n+2.

All computations reported in this paper are carried out using high-precision arithmetic with 250
significant decimal digits.

Example 1. We first consider two weight functions with the pole z clear from the interval of
integration. For both weight functions, the conclusions of Theorems 2-3 hold already for fairly
small values of n. Letting the exponents a and b be close to 1/2 does not affect the results
significantly.

Let a = b = −0.49 and z = −2. Then both averaged quadrature rules are internal in agree-
ment with the theory developed. This is illustrated by Table 1.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.9998247263 0.9997788824 −0.9998172516 0.9997705095
10 −0.9999528072 0.9999470482 −0.9999523297 0.9999465425
20 −0.9999877576 0.9999870321 −0.9999877271 0.9999870007
40 −0.9999968820 0.9999967908 −0.9999968800 0.9999967888
TABLE 1: a = b = −0.49 and z = −2. The outermost nodes of QL

2n+1 and QS
2n+1.

Tables 2 and 3 illustrate the situation when a = −0.4, b = −0.6, and z = −2. Since b < −1
2 ,

the two averaged rules are external on the left, and only the truncated rules are internal.

n xL1 xL2n+1 xS1 xS2n+1

5 −1.0014527400 0.9974394481 −1.0014472497 0.9974314399
10 −1.0003868438 0.9993914472 −1.0003868936 0.9993915161
20 −1.0001000472 0.9998513623 −1.0001000621 0.9998513822
40 −1.0000254560 0.9999632512 −1.0000254573 0.9999632529

TABLE 2: a = −0.4, b = −0.6, and z = −2. The outermost nodes of QL
2n+1 and QS

2n+1.

n xt1 xtn+2

5 −0.9824832306 0.9669509440
10 −0.9937839070 0.9889895506
20 −0.9980988847 0.9967726483
40 −0.9994700459 0.9991222850

TABLE 3: a = −0.4, b = −0.6, and z = −2. The outermost nodes of Qt
n+2.

Example 2. In this example, we let z be very close to the interval of integration. Then n is
required to be fairly large in order for Theorems 1-4 to apply.
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We first consider the situation when a = −0.49, b = −0.51, and z = −1.0001. Table 4 shows
the leftmost node of the two averaged rules to be outside the interval [−1, 1] for n ∈ {40, 80}.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.9999924559 0.9997492426 −0.9999917740 0.9997371106
10 −0.9999980692 0.9999437037 −0.9999980066 0.9999431487
20 −0.9999998919 0.9999866353 −0.9999998861 0.9999866073
40 −1.0000002646 0.9999967425 −1.0000002641 0.9999967411
80 −1.0000001990 0.9999991958 −1.0000001990 0.9999991957

TABLE 4: a = −0.49, b = −0.51, and z = −1.0001. The outermost nodes of QL
2n+1 and QS

2n+1.

Table 5 shows the extreme nodes for the truncated rules. These rules can be seen to be
internal.

n xt1 xtn+2

5 −0.9989970694 0.9702919604
10 −0.9994415796 0.9904720093
20 −0.9997123781 0.9972701298
40 −0.9998624948 0.9992669443

TABLE 5: a = −0.49, b = −0.51, and z = −1.0001. The outermost nodes of Qt
n+2.

We turn to the situation when a = 1.25, b = −0.25, and z = −1.0001. Table 6 shows all the
nodes of the averaged and optimal averaged quadrature rules to be internal for large enough
values of n. Although |a| and |b| are fairly far away from 1/2, a quite large value of n is needed
for these rules to be internal.

n xL1 xL2n+1 xS1 xS2n+1

5 −1.0003182001 0.9017842279 −1.0004069381 0.9028177507
10 −1.0000701380 0.9727616281 −1.0000788231 0.9728393495
20 −0.9999998281 0.9928311164 −1.0000006315 0.9928363352
40 −0.9999891268 0.9981614842 −0.9999891969 0.9981618140
80 −0.9999927041 0.9995345048 −0.9999927099 0.9995345250

TABLE 6: a = −1.25, b = −0.25, and z = −1.0001. The outermost nodes of QL
2n+1 and QS

2n+1.

Example 3. This example considers the borderline case a = −0.5 and b = 0.1. We first let
z = −5. Table 7 shows, as expected, the averaged Gauss quadrature rules to be external on the
right, whereas the optimal averaged quadrature rules are internal already for small values of n.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.9804450981 1.0000182366 −0.9803287379 0.9999434585
10 −0.9947080011 1.0000013035 −0.9946995406 0.9999960545
20 −0.9986223673 1.0000000873 −0.9986217953 0.9999997375
40 −0.9996484831 1.0000000057 −0.9996484459 0.9999999830
TABLE 7: a = −0.5, b = 0.1, and z = −5. The outermost nodes of QL

2n+1 and QS
2n+1.

When, instead, z = −1.0001, we must let n reach 100 in order for the optimal averaged Gauss
rule QS

2n+1 to be internal. This is illustrated by Table 8.

n xL1 xL2n+1 xS1 xS2n+1

5 −1.00159499240735 0.99996309034376 −1.00167693059885 1.00011671645370
10 −1.00019143001357 0.99999828051999 −1.00019556972029 1.00000522571056
20 −0.99995952217561 0.99999992479868 −0.99995972978294 1.00000022638554
40 −0.99995213324585 0.99999999736607 −0.99995214187641 1.00000000791011
80 −0.99997375844002 0.99999999996768 −0.99997375856818 1.00000000009703
100 −0.99997971296502 1.00000000000379 −0.99997971294907 0.99999999998865

TABLE 8: a = −0.5, b = 0.1, and z = −1.0001. The outermost nodes of QL
2n+1 and QS

2n+1.
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4. Modifications by a linear factor

This section considers weight functions that are obtained by modifying the Jacobi measure
by a linear factor. Thus, we consider weight functions of the form

w̃(x) = (z − x)(1− x)a(1 + x)b for − 1 < x < 1, (27)

where z is a given real constant with |z| > 1. Similarly as above, we have z = 1
2(c+

1
c ) for some

c ∈ (−1, 1).

4.1. Orthogonal polynomials. It follows from [8, Theorem 2.52 (Uvarov)]) that the monic

orthogonal polynomials P̃n with respect to the weight function (27) satisfy

(x− z)P̃n(x) = Pn+1(x)− snPn(x), (28)

where

sn =
Pn+1(z)

Pn(z)
.

The scalars sn can be computed recursively by using the relations

s0 = z − α0 and sn = z − αn − βn
sn−1

, n ⩾ 1. (29)

The orthogonal polynomials P̃n satisfy a recursion relation analogous to (2),

P̃k+1(x) = (x− α̃k)P̃k(x)− β̃kP̃k−1(x), k ⩾ 0.

Gautschi [8, eqs. (2.4.12-13)] describes an algorithm for computing the recursion coefficients α̃n

and β̃n by using the relations

α̃n = αn+1 + sn+1 − sn and β̃n = βn · sn
sn−1

. (30)

Similarly as above, we determine asymptotic expressions for sn, α̃n, and β̃n as n → ∞. The
scalars sn converge to 1

2c as n → ∞. We therefore have

sn =
1

2c

(
1 + S2n

−2 + S3n
−3 + o(n−3)

)
. (31)

Relation (29) implies that

zsn−1 − snsn−1 − αnsn−1 = βn.

Equating the coefficients for n−2 and n−3 yields

S2 =
c

c2 − 1
(2A2 + cB2), S3 =

c

c2 − 1
(2A3 + cB3)−

2c3

(c2 − 1)2
(2A2 + cB2),

where A2, A3, B2, B3 are the same as in (11). Now (30) leads to

α̃n = αn+1 − 2S2n
−3 + o(n−3), β̃n = βn(1− 2S2n

−3) + o(n−3).

We obtain analogously to Theorem 1 the following result.

Theorem 6. When n → ∞, we have

α̃n = αn + o(n−2), β̃n = βn + o(n−2).
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4.2. Internality of averaged quadrature rules. It follows from (7) and (28) that averaged
Gauss formulas with n nodes have no node larger than x = 1 if and only if

Pn+2(1)− sn+1Pn+1(1)

Pn(1)− sn−1Pn−1(1)
⩾ β∗

n+1.

This expression reduces to

L = dndn−1 ·
dn+1 − sn+1

dn−1 − sn−1
⩾ β∗

n+1, (32)

where the terms sn are the same as in (29) and the dk are given by (22). Thus, similarly as in
Section 3, the left-hand side of (32) is

L =
1

4

(
1 +

1 + 2a

n
+ o(n−1)

)
.

This leads to a result analogous to Theorem 2.

Theorem 7. Let the weight function be given by (27). Then for n large enough:

• The largest node in the averaged and optimal averaged Gauss rules is internal if a > −1
2 , and

external if a < −1
2 .

• The smallest node in the averaged and optimal averaged Gauss rules is internal if b > −1
2 ,

and external if b < −1
2 . □

The internality condition for the truncated quadrature Qt
n+2 at x = 1 is equivalent to

(1− α̃n−1)dn−1 ·
dn − sn

dn−1 − sn−1
⩾ β̃n+1;

see the analogous discussion in Section 3. When n → ∞, the left-hand side and the right-hand
side approach 1

2 and 1
4 , respectively. This leads to the following result which is analogous to

Theorem 3.

Theorem 8. The truncated formula Qt
n+2 corresponding to the weight function (27) is internal

when n is large enough. □

4.3. Borderline cases. Let a = −1
2 . Then the two sides of (32) coincide up to order n−2. We

therefore have to compare the n−3-term. With the quantities A2, A3 and B2, B3 defined as in
(25), the coefficients S2, S3 in (31) achieve the values

S2 =
c

8(1 + c)
(1− 4b2), S3 =

c

16(1 + c)2
(1− 4b2)

(
2− (1 + c)(3 + 2b)

)
.

Using (26), it is easy to compute the left-hand side of (32):

L =
1

4

(
1 +

1− 4b2

8n2
+

1− 4b2

8n3

(
− b− 2 +

2

1 + c

)
+ o(n−3)

)
.

On the other hand, (30) gives

β̃n =
1

4

(
1 +

B2

n2
+

B̃3

n3
+ o(n−3)

)
,

where the B2, B3 are as in (11) and

B̃3 = B3 − 2S2 =
1− 4b2

16

(
− b− 3

2
+

2

1 + c

)
.

Since β̃n+1 = β̃n − 1
2B2n

−3 + o(n−3), we have

β̃n = L+
1− 4b2

64n3
+ o(n−3) and β̃n+1 = L− 3(1− 4b2)

64n3
+ o(n−3).

A discussion on internality at x = −1 is completely analogous. This leads to the following result,
which is analogous to Theorem 4.
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Theorem 9. Let the weight function be given by (27) with a = −1
2 . Then for n large enough:

• The largest node of the averaged Gauss rules is internal if |b| > 1
2 and external if |b| < 1

2 .

• The largest node of the optimal averaged Gauss rules is internal if |b| < 1
2 and external if

|b| > 1
2 .

4.4. Numerical experiments. The following examples display the two outermost nodes for
several values of the parameters a, b, and z in (27). We use the same notation as in Examples
1-3, i.e.,

• xL1 , x
L
2n+1 – the smallest and largest nodes of the averaged Gauss rule QL

2n+1;

• xS1 , x
S
2n+1 – the smallest and largest nodes of the optimal averaged rule QS

2n+1;
• xt1, x

t
n+2 – the smallest and largest nodes of the truncated rule Qt

n+2.

Example 4. Let a = b = −0.49 and z = −2. Then both the averaged and optimal averaged
quadrature rules are internal also for small values of n. This is illustrated by Table 9.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.9997627594 0.9998141741 −0.9997518675 0.9998044845
10 −0.9999453234 0.9999513602 −0.9999447838 0.9999508511
20 −0.9999868267 0.9999875693 −0.9999867944 0.9999875378
40 −0.9999967657 0.9999968579 −0.9999967637 0.9999968560
TABLE 9: a = b = −0.49 and z = −2. The outermost nodes of QL

2n+1 and QS
2n+1.

Example 5. Let a = −0.5, b = 0.3, and z = −1.01. Then, as can be expected, the optimal
averaged Gauss rules are internal and the averaged Gauss rules have one node larger than 1,
but only for n ⩾ 20; see Table 10.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.9170823706 0.9999279798 −0.9177926205 1.0002244899
10 −0.9790156490 0.9999957207 −0.9790590130 1.0000130275
20 −0.9959004096 1.0000000185 −0.9959002360 0.9999999466
40 −0.9992391377 1.0000000065 −0.9992390807 0.9999999804

TABLE 10: a = −0.5, b = 0.3, and z = −1.01. The outermost nodes of QL
2n+1 and QS

2n+1.

In a seemingly very similar situation when a = −0.5, b = 0.7, and z = −1.01, the averaged
and optimal averaged quadrature rules exchange their properties already for small values of n,
i.e., the averaged Gauss rules are internal while the optimal averaged Gauss rules are not. This
is illustrated by Table 11.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.8884614682 0.9998798570 −0.8897461069 1.0003754707
10 −0.9689191262 0.9999903625 −0.9690265012 1.0000292821
20 −0.9930610853 0.9999995928 −0.9930655522 1.0000012275
40 −0.9986089985 0.9999999899 −0.9986091010 1.0000000303

TABLE 11: a = −0.5, b = 0.7, and z = −1.01. The outermost nodes of QL
2n+1 and QS

2n+1.

5. Performance of the quadrature rules

We apply the two kinds of averaged quadrature rules and the truncated rules to estimate the
quadrature error in the Gauss rule (3) for a few integrands f and weight functions w of the
types (14) and (27). The results for several values of n are reported in the following examples.
We use the notation:

• EL – the estimate |QL
2n+1(f)−Gn(f)| of the magnitude of the quadrature error obtained

with the averaged Gauss rule QL
2n+1;
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• ES – the estimate |QS
2n+1(f)−Gn(f)| of the magnitude of the quadrature error obtained

with the optimal averaged Gauss rule QS
2n+1;

• E t – the estimate |Qt
n+2(f)− Gn(f)| of the magnitude of the quadrature error obtained

with the truncated rule Qt
n+2;

• Error – an accurate approximation of the magnitude of the quadrature error |I(f) −
Gn(f)| obtained by evaluating |Gm(f)− Gn(f)| for some large m ≫ n.

In practice, one typically would use the values QL
2n+1(f), QS

2n+1(f), or Qt
n+2(f) not only to

estimate the error in Gn(f), but also as approximations of I(f), but use the computed error
estimates.

Example 6. We first consider an example with an integrand and weight function such that the
integral (1) can be approximated to high accuracy. Specifically, we let

f(x) = cos(πx), w(x) =
1

2 + x
(1− x)0.45(1 + x)−0.45. (33)

Table 12 shows the averaged and optimal averaged Gauss rules to approximate the integral
very accurately. The actual value of the integral I(f) is about 0.835728. The table shows the
averaged Gauss rules, the optimal averaged Gauss rules, as well as the truncated rules to yield
very accurate estimates of the quadrature error.

n EL ES E t Error
5 3.2385× 10−5 3.2385× 10−5 3.2376× 10−5 3.2385× 10−5

10 5.0719× 10−15 5.0719× 10−15 5.0718× 10−15 5.0719× 10−15

20 1.3524× 10−40 1.3524× 10−40 1.3524× 10−40 1.3524× 10−40

40 1.1145× 10−103 1.1145× 10−103 1.1145× 10−103 1.1145× 10−103

TABLE 12: Estimates of the quadrature error |I(f)− Gn(f)| in (33) determined with the rules
QL

2n+1, QS
2n+1, and Qt

n+2, as well as the quadrature error.

Our next example involves an integrand with a singularity at x = 1 and a “borderline” case
for the weight function,

f(x) = sin3(1− x) ln(1− x), w(x) =
1

1.25 + x
(1− x)−0.5(1 + x)0.45. (34)

For this weight function, the rightmost node for the averaged Gauss rules is larger than 1, and
we note that the integrand f is not defined at this node. The actual value of the integral I(f)
is about −0.220893.

Table 13 displays the computed results. The table shows the optimal averaged Gauss rules
to yield very accurate estimates of the quadrature error. The estimates determined by the
truncated rules are less accurate, but still within a factor 4 of the actual error.

n EL ES E t Error
5 n/a 6.0108× 10−5 5.5562× 10−5 5.9785× 10−5

10 n/a 3.5557× 10−7 2.5369× 10−7 3.5285× 10−7

20 n/a 2.8474× 10−9 1.3712× 10−9 2.8252× 10−9

40 n/a 2.2648× 10−11 6.4857× 10−12 2.2470× 10−11

TABLE 13: Estimates of the quadrature error |I(f)− Gn(f)| in (34) determined with the rules QL
2n+1, QS

2n+1
and Qt

n+2, as well as the actual quadrature error. The rule QL
2n+1 cannot be evaluated.

Our last integrand and weight function illustrate a situation when z is close to −1 and neither
the averaged rules nor the optimal averaged rules can be applied for large values of n. Let

f(x) = 999.1log10(1+x), w(x) = (1.001 + x)(1− x)−0.75(1 + x)−0.75. (35)

The smallest node of both the averaged Gauss rules and the optimal averaged Gauss rules is
external for n large as is illustrated by Table 5. Thus, the averaged Gauss rules and the optimal
averaged Gauss rules can be used for n = 5, 10, 20, but not for n = 40 and larger. Note that the
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external rightmost nodes do not cause difficulties, since the integrand is well defined for x > 1.
The actual value of the integral I(f) is about 29.2258.

Table 14 shows the averaged Gauss and optimal averaged Gauss rules to furnish accurate
estimates of the quadrature error when they are applicable. The error estimates achieved with
the truncated quadrature rules are within a factor 6 of the quadrature error.

n xL1 xL2n+1 xS1 xS2n+1

5 −0.9747819187 1.0025469501 −0.9748406050 1.0025679849
10 −0.9955647026 1.0006637461 −0.9955602512 1.0006621830
20 −0.9999198797 1.0001696633 −0.9999178565 1.0001688989
40 −1.0001191621 1.0000428475 −1.0001191382 1.0000428356
80 −1.0000210001 1.0000107716 −1.0000210052 1.0000107752
TABLE 14: The outermost nodes of QL

2n+1 and QS
2n+1 for the weight function (35).

Table 15 shows computed error estimates as well as the actual error.

n EL ES E t Error
5 5.5276× 10−9 5.5288× 10−9 5.1902× 10−9 5.5227× 10−9

10 1.8259× 10−11 1.8257× 10−11 1.4011× 10−11 1.8183× 10−11

20 7.4403× 10−14 7.4382× 10−14 3.8282× 10−14 7.2916× 10−14

40 n/a n/a 1.0638× 10−16 3.4033× 10−16

80 n/a n/a 2.9548× 10−19 1.7538× 10−18

TABLE 15: Estimates of the quadrature error |I(f)− Gn(f)| in (35) determined with the rules QL
2n+1, QS

2n+1 and
Qt

n+2, as well as the actual quadrature error. The rules QL
2n+1 and QS

2n+1 cannot be evaluated for large values of n.

6. Conclusion

This paper considers two modifications of Jacobi weight functions, namely

w̃1(x) = (z − x)−1(1− x)a(1 + x)b and w̃2(x) = (z − x)(1− x)a(1 + x)b

for z real and of magnitude strictly larger than 1. We derived asymptotic properties of the
recurrence coefficients for orthogonal polynomials associated with these weight functions. This
allowed us to discuss conditions under which the averaged Gauss rules and optimal averaged
Gauss rules are internal. When a or b are equal to −1

2 , only one of these averaged rules is
internal for large values of n. We observed that when z is close to the interval [−1, 1], the value
of n may have to be large to achieve internality for certain averaged quadrature rules. The
estimates of quadrature errors determined with the aid of averaged Gauss rules and optimal
averaged Gauss rules are very accurate, but these rules are not applicable for all integrands and
weight functions. The truncated quadrature rules are applicable to more integrands and weight
functions and deliver useful estimates of the quadrature error.
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