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Abstract Bregman-type iterative methods have received considerable atten-
tion in recent years due to their ease of implementation and the high quality of
the computed solutions they deliver. However, these iterative methods may re-
quire a large number of iterations and this reduces their usefulness. This paper
develops a computationally attractive linearized Bregman algorithm by pro-
jecting the problem to be solved into an appropriately chosen low-dimensional
Krylov subspace. The projection reduces the computational effort required
for each iteration. A variant of this solution method, in which nonnegativity
of each computed iterate is imposed, also is described. Extensive numerical
examples illustrate the performance of the proposed methods.

A.B. is a member of the GNCS-INdAM group that partially supported this work with
the Young Researchers Project (Progetto Giovani Ricercatori) “Variational methods for
the approximation of sparse data”. Moreover, A.B. research is partially supported by the
Regione Autonoma della Sardegna research project “Algorithms and Models for Imaging
Science [AMIS]” (RASSR57257, intervento finanziato con risorse FSC 2014-2020 - Patto per
lo Sviluppo della Regione Sardegna). The work of L.R. is partially supported by NSF grants
DMS-1720259 and DMS-1729509.

A. Buccini

Department of Mathematics and Computer Science
University of Cagliari

Via Ospedale 72, 09124 Cagliari, Italy

E-mail: alessandro.bucciniQunica.it

M. Pasha

Department of Mathematical Sciences
Kent State Univeristy

1300 Lefton Esplanade, Kent, 44242 OH
E-mail: mpashal@kent.edu

L. Reichel

Department of Mathematical Sciences
Kent State Univeristy

1300 Lefton Esplanade, Kent, 44242 OH
E-mail: reichel@math.kent.edu



2 Alessandro Buccini et al.

Keywords Linearized Bregman iteration - Ill-posed problem - Krylov
subspace - Nonnegativity constraint

Mathematics Subject Classification (2000) 65F22 - 65K10 - 65R32

1 Introduction

Many applications in science and engineering require the solution of minimiza-
tion problems of the form
min [|Au — bl|2, (1)
u€R”™

where A € R™*"™ is a matrix, whose singular values gradually decay to zero
with no significant gap; the matrix may be rank deficient. Throughout this
paper ||-||2 stands for the Euclidean vector norm. The vector b € R™ represents
data that is corrupted by an unknown error e € R™, which may stem from
measurement or discretization inaccuracies. We will refer to the error e as
“noise”. Problems of this kind arise, for instance, from the discretization of
Fredholm integral equations of the first kind and are commonly referred to as
linear discrete inverse ill-posed problems; see, e.g., [I7,22,23] for discussions on
discrete inverse ill-posed problems. We are primarily interested in the situation
when m < n, but the methods described also can be applied when m > n.
Let byrue denote the unknown error-free vector associated with b, i.e.,

b= btruc + e,

and let R(A) denote the range of A. We will assume that byye € R(A) and
that a fairly accurate bound for the error,

llellz <e, (2)

is known. This allows application of the discrepancy principle; see below.

Let AT denote the Moore—Penrose pseudo-inverse of A. We would like to
determine an accurate approximation of tyue = Afbyue, i.€., of the minimum-
norm solution of

min [|Au — beryel|2-
u€ER™

We remark that the exact solution of can be expressed as ATb. Due to the
error e in b and the clustering of the singular values of A at the origin, the
vector

ATh = AMbue + Afe = ugpue + Ale
typically is dominated by the propagated error Afe and, therefore, is not a
useful approximation of tgyye.

A possible approach to reducing the propagation of the error e into the
computed solution when m < n and b € R(A) is to seek a sparse solution of
. This can be achieved by minimizing the ¢;-norm of the computed solution,
i.e., by solving the constrained minimization problem

min U 3
subject to Au=b H ”17 ( )
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where

n
laly =S wl, w= s uz, ]
=1

Here and throughout this paper the superscript 7 denotes transposition. The
solution of might not be unique, since the ¢;-norm is not strictly convex.
Uniqueness of the solution can be ensured by replacing by

. 1
= ang i Ll + 5ol Au = o} (1)

where 1 > 0 and 0 < § < 1/p(AT A) are user-defined constants, with p(M)
denoting the spectral radius of the square matrix M. The upper bound for ¢§
secures convergence of the Bregman iterations defined below. We will refer to
the parameter p > 0 in as the regularization parameter. One of the most
popular algorithms for the solution of is the linearized Bregman algorithm,
which is an iterative method; see, e.g., [BII2/T3,B32L35] or below.

The solutions of many linear discrete ill-posed problems have a sparse
representation in a suitably chosen basis. For instance, in image restoration
problems, images usually have sparse representations in terms of wavelets or
framelets. To make use of the sparsity, we transform the problem so that
its solution has a sparse representation.

The iterates generated by the linearized Bregman algorithm might con-
verge only slowly to the solution of . Its application therefore may be quite
expensive for some problems. This paper describes an approach to reduce
the computational cost of Bregman iteration. Specifically, the problem to be
solved is projected into a Krylov subspace of small dimension d < min{m,n}
by applying d steps of Golub—Kahan bidiagonalization to the matrix A. The
dimension d is chosen large enough so that the space contains a vector u* € R”
that satisfies the discrepancy principle, that is

[Au” = b}z < 7e, ()

where € satisfies and 7 > 1 is a user-supplied constant that is independent
of €. Once we have constructed the appropriate subspace, we solve there.
Since the dimension d of the subspace selected is usually much smaller than
min{m, n}, the iterations with the Bregman algorithm in this space are cheaper
to carry out than in R™.

In many applications it is known that the desired solution ut,e lies in a
closed and convex set. In this situation, it is generally beneficial to impose
constraints on the Bregman algorithm such that the generated iterates lie
in this closed and convex set. For instance, in image restoration problems,
the entries of the desired solution represent pixel values of the image. Pixel
values are nonnegative and, therefore, it is generally meaningful to solve the
constraint minimization problem

. 1
i = angmig {ululs -+ g5l s A= 0
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instead of . When the desired solution u,e is nonnegative, it is usually ben-
eficial to impose a nonnegativity constraint on the computed solution of ;
see [I[6LI5129,33136] for illustrations. In particular, the vector uf{ is usually a
more accurate approximation of u¢rue than u,. We remark that a closed form
for ul'f is generally not available. Section [3| describes a solution method for the
problem @, based on first projecting the problem into a Krylov subspace of
fairly small dimension and then projecting computed approximate solutions
into the nonnegative cone.

This paper is organized as follows. Section [2| presents the linearized Breg-
man algorithm and discusses how to include a transformation to the framelet
domain. In Section [3] we describe our projected method and discuss the use of
a nonnegativity constraint. A faster converging variant of the unconstrained
Bregman iterations is briefly discussed in Section [ and Section [5] presents
a few numerical examples that illustrate the performance of the methods de-
scribed in this paper. Finally, Section [f] contains concluding remarks.

2 The linearized Bregman algorithm

The linearized Bregman algorithm was introduced in [10,35]. It is designed to
solve problems of the form

in{J(u): Au=1»
min {J(u) : Au = b},
where J(u) is a continuous, convex functional. We briefly review some prop-
erties of the linearized Bregman algorithm. Let DY (u, v) denote the (nonneg-
ative) quantity
D (u,v) = J(u) — J(v) — (p,u —v),

where p € 9J(v) is an element of the subgradient of the functional J at the
point v, and (u,w) denotes the standard inner product of elements u, w € R™.
The quantity D" (u,v) is commonly referred to as the Bregman distance [527]
based on the convex functional J between the points v and v. Note that the
Bregman distance in general is not a metric in the usual sense, since it does
not satisfy the triangle inequality and it is not symmetric, i.e., DY (u,v) may
be different from D% (v,u). Nevertheless, the Bregman distance measures the
closeness between u and v, since D (u,v) > 0, and D5 (u,v) = 0 if u = v]]

We will assume that m < n and that A is a surjective matrix. Then the
linear system of equations Au = b has at least one solution for any right-hand
side b. Given u® = v° = 0, the linearized Bregman iteration can be expressed
as

{u’”l = argminyepn {55 |u — (¥ — 6AT (AuF — b))|13 + pDT* (u, u*)},

vFtl = ok — M%S(u’“rl —uk) — iAT(Au’C —b)

1 D (u,v) = 0 if and only if u = v when J is a strictly convex functional.
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for k =0,1,.... These iterations can be written as

Rl = oF — AT (AuF —b),
uFt = §prox; (vF L ),

(8)

for k = 0,1,... , where prox,(v**1, ;1) denotes the proximal operator of the
functional J, i.e.,

prox, (v, 1) = arg min v — ul}3 + uJ (w);
u

see [ITI[12] for details. The special case when J(u) = |jull; is of particular
interest to us. Then

proxj(v, lu') = Tu(v)v

where T),(v) denotes the soft-thresholding operator, i.e.,

T,(v) = [tu(vl),tu(vg),...,tu(vn)]T cR" for v= [vl,vg,...,vn]T,
where £ lal
0 if |z| < p,
tu(z) =19 .. . -
#(@) {mgn<x><|x| —p) it e >
We summarize the linearized Bregman algorithm for J(u) = ||ull; in Algo-
rithm [

Algorithm 1 Linearized Bregman iteration.

Input: Surjective matrix A € R™*" with m < n. Parameters p > 0 and
0 < 8 < 1/p(AT A). Soft-thresholding operator T},.
ud =00 =0.
for £ =1,2,... until convergence
vEtl = ok — AT (AuF —b)
ukt1l = (STM(karl)
end for
Output: Approximate solution u*+1,

0w N OO O WN P

Algorithm [1]is concise, simple to program, and requires only matrix-vector
product evaluations, vector additions, and soft-thresholding. The iterations
are terminated when two consecutive iterates are sufficiently close; see Section
[l for details.

We note that Algorithm [1| may require many iterations to give an accurate
approximation of the solution of ; see below. Moreover, in some applica-
tions, the matrix-vector product evaluations with A and A” may be expensive.
Applications of the algorithm include basis pursuit problems, which arise in
compressed sensing and allow images and signals to be reconstructed from
small amounts of data.

The condition number of A with respect to the spectral matrix norm is
defined as the ratio of the largest to smallest singular values of A. A matrix
is said to be ill-conditioned when this ratio is large. When the matrix A is
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ill-conditioned, the convergence of the sequence w1, us,... generated by Algo-
rithm [I| to the solution of (4)) may be very slow. This prompted Cai et al. [13]
to propose the use of a preconditioner. The preconditioner described in [I3] is
attractive to use for certain matrices A. An approach based on replacing the
stationary iteration in Algorithm [I| by a nonstationary one to speed up the
convergence has recently been discussed by Huang et al. [26]. Numerical as-
pects of the latter kind of iterations are considered in [7]. Moreover, extensions
of the method proposed in [26] were considered in [4[14]. We also note that
when A is severely ill-conditioned and the vector b is contaminated by noise,
the iterates generated by Algorithm [I| do not converge to Uexact With increas-
ing iteration number. More precisely, there is an index ¢ such that the first ¢
iterates u; approach ueyact as @ increases and is bounded by ¢, but the iterates
u; move away from Ueyact as ¢ > £ increases. This behavior of the iterates is
commonly referred to as semiconvergence. This difficulty can be remedied by
terminating the iteration process sufficiently early. Early termination of the
iterations can be achieved with the aid of the discrepancy principle, but other
stopping criteria also can be used.

We conclude this section with a discussion on the application of framelets to
represent the solution. Many solutions of interest have a sparse representation
in terms of framelets; see, e.g., [R12L[13,26]. Framelets are frames with local
support.

Definition 1 Let W € R™*" with n < r. The set of rows of W is said to be
a tight frame for R™ if Vu € R™ it holds

T

= (wiw)?, 9)

j=1

where w; € R™ is the j-th row of W (written as a column vector), i.e., W =
[wy,wa, ..., w.]T. The matrix W is called an analysis operator and W7 a
synthesis operator.

Equation ({9) is equivalent to the perfect reconstruction formula z = W7y,
y = Wz, ie., W is a tight frame if and only if W7 W = I. In general, WIW7T #£
I, unless » = n and the framelets are orthogonal.

We can transform our given linear discrete ill-posed problem into the
framelet domain by using the identity W2 W = I: inserting this identity into
Au = b yields

AWTWu = b.

Let Z = AW?T and y = Wu. Then the above equation can be written as
Zy =0b.

The entries of the vector y are the framelet coeflicients of the solution. In many
applications, the vector y is sparse. Linearized Bregman-type iteration, which
aims to determine a sparse solution, is a suitable iterative solution method.
Note that the matrix Z is not explicitly formed when applying Algorithm [I]
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Since typically the matrix W is very sparse, the evaluations of matrix-vector
products with W and W7 are very cheap. Thus, the computational cost of
transforming a linear discrete ill-posed problem to a framelet domain is almost
negligible.

3 Projected linearized Bregman and nonnegative linearized
Bregman algorithms

This section first introduces a projected Bregman algorithm, which is based on
projecting the given linear discrete ill-posed problem into a Krylov subspace
of fairly small dimension. Subsequently, we introduce a projected Bregman
algorithm with nonnegativity constraint.

3.1 Projection into a Krylov subspace

We seek an approximate solution of the problem in a Krylov subspace
Ka(AT A, ATb) = span{ATb, AT AATH, (AT A)?ATb,. .., (AT A1 AT} (10)

of low dimension d < min{m,n}. An orthonormal basis for this space is
constructed with the Golub—Kahan bidiagonalization method applied to the
matrix A with initial vector b; see, e.g., [2I]. Application of ¢ steps of Golub—
Kahan bidiagonalization gives the decompositions

AVy =Upi1Beiry, ATUp = ViBf,, (11)

where Uyt € R™*(+1) and V; € R"*¢ have orthonormal columns, the first
column of Upiq is b/||b||2, and the matrices Byy1p € REFD*E and By €
R*¢ are lower bidiagonal; the matrix By, is the leading ¢ x ¢ submatrix
of Byi1,.. The columns of V;, for £ = d, span the Krylov subspace ; in
particular, v; = ATb/||ATb||2. We tacitly assume that d is sufficiently small
so that the decompositions exist for £ = d. This is the generic situation.
If this condition does not hold, then the computations simplify. This situation
is rare and we will therefore not dwell on it further.

We would like to choose d as small as possible, but such that the discrep-
ancy principle can be satisfied by an element in Kgz(AT A, ATb), i.e., we
would like d to satisfy

d = arg min {E: ||[Au — bl|2 STe}.

min
uEK (AT A,ATb)
Once we have determined d, we substitute with ¢ = d into to obtain

. . (a) .
minyeic, (a7 a,a7p) [|Au = b3 = min [AVay = b[|3 = min [|Ugt1Bat1,ay — b3
y€ER4 y€ER?

o .
= min || Bat1,ay — [|bll2e1 13
y€eRd
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where e; = [1,0,...,0]T denotes the first axis vector. Here (a) follows by
substituting the decomposition (1], and (b) follows from the facts that the
columns of Ugyy are orthonormal and U b = |[b]e;.

Let W € R"™ ™ be a framelet analysis operator, define

K = Byy1aViW?",

and observe that VdTWTWVd = I. We would like to apply linearized Bregman
iteration to solve

. 1 .
min {M||Z|1 + =215 2 € argmin || Kz — ||b||261||§} : (12)
z€R" 1 z
where z = WV,y. These iterations can be expressed as

k+1 _ k T k _
{U = v = KO (K2 = bllzer), gy o

ZHHL = 6T, (vFH),

which can be written in the form

o = ok — WVngH,d(BdH,dVdTWTZk — |Ibllz€1), E—0.1.9
2R+ = 5T, (vkH1), =0,1,2,... .
(13)
The sequence z',z2,... converges to the solution of (12)). Since the original

(large) problem has been projected into a subspace of small dimension, the
iterations generally do not display semiconvergence. We observe that the large
matrix K does not have to be explicitly formed to carry out the iterations
. In fact, all required matrix-vector product evaluations involve only fairly
small or sparse matrices. We refer to the algorithm defined by as the Pro-
jected Linearized Bregman (PLB) algorithm. Convergence is secured for 0 <
§ < 1/p(KTK), where we note that p(K”K) = p(BJ, 4Bay1.a) < p(AT A).
This means that the PLB algorithm allows a wider range of d-values than the
linearized Bregman iteration (Algorithm . In particular, the PLB method
may give a convergent sequence of iterates also when linearized Bregman iter-
ation does not. Moreover, the small size of By;1,4 makes it easy to compute
p(Bg;H’dBdH,d) and thereby to determine a bound for the parameter 6. We
summarize the computations of the PLB iterations in Algorithm 2] where, with
slight abuse of notation, we use u* instead of z*. Iterations with the algorithm
are terminated when consecutive iterates are sufficiently close; see Section

3.2 Nonnegativity constraint

In many application, such as medical imaging and astronomy, the exact solu-
tion of is known to live in a closed and convex set §2. Often approximations
of higher accuracy of the desired solution can be determined by constraining
the iterates of the PLB algorithm to (2. In this section, as well as in the
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Algorithm 2 PLB

1: Input: Surjective matrix A € R™*" with m < n. Noise-corrupted data

2 vector b € R™. Bound ¢ for the norm of the noise in b. Parameters 7 > 1,
3 0<d< 1/p(Bg_~_17dBd+17d)7 and p > 0. Analysis operator W € R"*"™ and
4: soft-thresholding operator 7},.

5: for k=1,2,...

6 Compute the decompositions

7 if miny || Bri1,5y — ||bll2ell2 < Te

8
9

d=k
: exit
10: end if
11: end for
12: for k=1,2,... until convergence
13: R = ok — W (Va(BT, | 4(Bat1,a(VI (WTuk)) — [[bl|2e1)))
14: uFtl = 6T, (vFF1)

15: end for
16: Output: Approximate solution uF+1

computed examples presented in Section [5| the set {2 is chosen to be the non-
negative cone
0={ueR":u; >0, i=1,2,...,n}.

However, the theory developed in the following easily can be adapted to more
general closed and convex sets.
Define the indicator function iy for 2y,

. 0 if z € (29,
io(x) = {oo else. ’

We insert the nonnegativity constraint on u = W7z into to obtain
. 1 . .
ang i {1+ 5118 +i0(¥72) s 2 € angmin €= ~ bl 3}

To solve this problem, we introduce the proximal operator for
J(2) = plizlh +io(WT2). (14)

Definition 2 Let 2 C R" be a closed and convex set, and let u € R™. The
metric projection of u onto {2 is given by

P = i - .
o(u) = argmin u — 2|

In particular, the metric projection onto {2y can be obtained by

else.

(o) ={
If W = I, then the proximal operator for J in can be expressed as

prox;(2) = Py (Tu(2))- (15)
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Equation is a known result from [30] and can be derived with the help of
proximal operator theory.
We now derive the proximal operator for J in when W #£ I. Let

Qw ={y;y = W35, >0} (16)
and let iy be the indicator function for the set f2y,. Then

prox,(z) = argmin { v — 2[|3 + plv]ls +io(W"v)}
= argmin {[lv — 2[|3 + vl +iw ()}
= Poy (Tu(2)).

It remains to discuss the evaluation of the operator Py, (z). We have

. 2
Pay (2) = arg min o — 2|,
= arg min [(WWT)(x —2) + (I - WWT)(z - 2)|
TENw

(@) . 2
= arg min {[|(WW5)(@ = 2)|l3 + (7 = WWT)(z = 2)[,}

2
= arg min {|(WW7) (@ —2)[} + [WF ~ WWWE — (T - W)z}
= arg min {||(WW)(@ - 2)|5} + (7 = WW")z|3
_ . T . 2
=arg min [|(W5)(z - 2)|;

= W arg min [|& — W23

= W Pqo,(WT2),

where (a) follows from the fact that the columns of the matrix W are or-
thonormal. Hence WWT and I — WW7 are orthogonal projectors onto com-
plementary subspaces of R”.

We are now in a position to formulate the Projected Nonnegative Lin-
earized Bregman (PNBL) algorithm, which is presented as Algorithm [3| The
stopping criterion for the algorithm is the same as for the other algorithms.

Tt is shown in [34] that linearized Bregman iteration is equivalent to gradi-
ent descent applied to the dual problem. This result ensures the convergence
of our method to the solution of

1
argmin < pllulls + =|lulle +iw (u) : u € argmin | Ku — ||b]lze1l2 p,  (17)
)

where K = Bd+1,dVK;TWT.
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Algorithm 3 PNLB

1: Input: Surjective matrix A € R™*" with m < n. Noise-corrupted data

2 vector b € R™. Bound ¢ for the norm of the noise in b. Parameters 7 > 1,
3 0<d< 1/p(Bg_~_17dBd+17d)7 and p > 0. Analysis operator W € R"*"™ and
4: soft-thresholding operator 7},.

5: for k=1,2,...

6 Compute the factorization

7 if miny || Bri1,5y — ||bll2e1ll2 < Te

8
9

d=k

: exit
10: end if
11: end for
12: for k=1,2,... until convergence
13: R = ok — W (Va(BT, | 4(Bat1,a(VI (WTuk)) — [[bl|2e1)))
14: ubt1/2 = 5T, (vF+1
15: uk+1 — WPQO (WTuk+1/2)

16: end for
17: Output: Approximate solution uk+1

4 Further acceleration of the iterations

As mentioned above, the PLB algorithm is computationally cheaper than the
LB algorithm. The rate of convergence of the iterates generated with the latter
algorithm is O(1/k), where k denotes the number of iterations. Huang et al.
[25] proposed an accelerated version of the LB algorithm with a rate of conver-
gence of O(1/k?). This section describes a PLB algorithm that incorporates
the acceleration approach of Huang et al. [25]. We refer to this method as the
Accelerated PLB (APLB) algorithm. Its performance is illustrated in Section
Bl

The convergence results in [25] can be easily extended to the APLB al-
gorithm. We therefore do not present a proof of its convergence properties.
Further, the acceleration approach due to Huang et al. [25] also can be ap-
plied in the PNLB algorithm. This gives the Accelerated PNLB (APNLB)
algorithm. The latter algorithm is obtained by replacing uf*! = 6T, (2**1) by
ubtl = §Pg,, (T, (2**1)) in the APLB algorithm.

5 Numerical experiments

This section presents a few numerical examples that illustrate the performance
of the methods discussed in the previous sections. We consider the restoration
of images that have been contaminated by blur and noise. Continuous space-
invariant image deblurring can be formulated as a Fredholm integral of the
first kind, i.e., as an integral equation of the form

g(z,y) = /Q K(s—x,t —y)f(s,t)dsdt, (z,y) € 12, (18)
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Algorithm 4 Accelerated PLB

1: Input: Surjective matrix A € R™*" with m < n. Noise-corrupted data

2 vector b € R™. Bound ¢ for the norm of the noise in b. Parameters 7 > 1,
3 0<d< 1/p(Bg_~_17dBd+17d)7 and p > 0. Analysis operator W € R"*"™ and
4 soft-thresholding operator 7},.

5: for k=1,2,...

6 Compute the factorization

7:if miny | Byy — [bllsea]| < e

8 k

9

: exit
10: end if
11: end for
12: g =1
13: for k =1,2,... until convergence
14: R = 2P — W(Va(BE q(Bat1,a(V (WTuP)) —|b]l2e1)))
15: 0, = ki”
16: ar =14+ 0x(651, — 1)
17: 2P = Rt (1 — ag)oF
18: ubtlt = 5T, (2F+1)

19: end for
20: Output: Approximate solution uF+?

where g represents a blurred, but noise-free, image, f is the unknown image
that we would like to recover, and K is a smooth kernel with compact support.
The integral operator in is compact. Therefore, the solution of is an
ill-posed problem. Discretizing gives a problem of the form , with a
matrix A that is the sum of a block Toeplitz with Toeplitz block matrix and
a correction of small norm due to the boundary conditions that are imposed;
see, e.g., [24] for more details on image deblurring.

We use the same tight frames as in [7[I3/[26], i.e., the system of linear
B-splines. This system is formed by a low-pass filter W, € R™*" and two
high-pass filters Wy, Wy € R™*™ whose corresponding masks are

1 2 1
w(O) = 1(1727 1)a w(l) = %(L(L _1>7 w(2) = 1(_1527_1)'

The analysis operator W in one space-dimension is derived from these masks
and by imposing reflexive boundary conditions to ensure that W7 W = I. The
so-determined filter matrices are

31 0...0 -11 0...0

12 1 -1 0 1

Wy = L o W, = V2 .
0*4 ) 1*4 )
1 21 -1 01
0... 0 13 0 ... 0 -11
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and
1 =10 ... 0
-1 2 -1
1
Wa =+ T
-1 2 -1
0 ... 0 —-11
The corresponding analysis operator W in two space-dimensions is given by
[Wo @ Wy |
Wo @ Wy
Wo ® Wo
W= Wi Wqy| >
| W2 @ W]

where ® denotes the Kronecker product. This matrix is not explicitly formed.
We note that the evaluation of matrix-vector products with W and W7 is
inexpensive, because the matrix W is very sparse.

In our numerical tests, we fix § = O.9/p(BdT_H7(1Bd+1’d)7 where P(Bg+17d3d+1,d>
can be computed inexpensively since the matrix By 1 4 of our projected prob-
lem is of fairly small size. We run the algorithms for different values of the
parameter u, and choose the p-value that yields the smallest relative restora-
tion error (RRE),

RRE(U) _ ||u - utrue||2
||utrueH2
This makes it easy to compare the performance of the algorithms of the present
paper with other methods discussed in the literature. However, it is possible
to determine the parameter p adaptively during the computations; see [26]. A
discussion on the roles of the parameters p and ¢ can be found in [7].

We terminate the iterations with Algorithms[2|and [3| when two consecutive
iterates are sufficiently close, i.e., when

||u(k+1) _ U(k)Hz
[[u®]2

The error e in the data vector b is modeled by white Gaussian noise. We
refer to the ratio

<1074

el
||Autrue||2

as the noise level. We set the parameter 7 in the discrepancy principle (b)) to

1.01.

Algorithms [2| and [3] and their accelerated variants, are compared to the
methods IRfista, IRirn, IRhybrid_fgmres, IRnnfcgls, and IRhtv using MAT-
LAB codes provided in [18]. IRfista is a first order optimization method that
solves a minimization problem of the form

min{|| Au — b5 + pllu — w1}, (19)



14 Alessandro Buccini et al.

where C' denotes a constrained set defined, e.g., by box or energy constraints,
and u(9) is the initial approximate solution vector. For simplicity, it is set
to be the zero vector, i.e., u(®) = 0; see [2]. IRirn implements an iteratively
reweighted norm approach with penalized restarted iterations for computing a
1-norm penalized solution; see [31]. IRhybrid_fgmres applies a flexible version
of the solution subspace used in IRhybrid_gmres, and incorporates an iteration
dependent preconditioner that aims to minimize the £;-norm of the computed
solution; see [I§] for more details. IRnnfcgls is a flexible conjugate gradient
least squares method for solving nonnegatively constrained least squares prob-
lems; the method is proposed in [20]. IRhtv is a penalized restarted iteration
method that incorporates a heuristic total variation penalization term de-
scribed in [I9].

To ensure a fair comparison, we provide all the considered methods with
the same information, including the noise level and the optimal value of the
regularization parameter u.

Since IRnnfcgls semiconverges, one may need to tune the number of the
iterations and force the iterations to stop before the iterates converge to an
unregularized least squares solution that might be a poor reconstruction of the
desired solution. We stop the iterations as soon as the discrepancy principle
is satisfied. All computations are carried out in MATLAB R2018a with about
15 significant decimal digits running on a desktop computer with core CPU
Intel(R) Core(TM)i7-4470 @3.40GHz with 8.00GB of RAM.

Comparison of the LB and PLB algorithms We first illustrate that projec-
tion into a Krylov subspace can be beneficial both in terms of computational
efficiency and quality of the computed restoration especially of large-scale
problems. Consider the exact telescope image in Fig. a). It is made up of
986 x 986 pixels. We blur this image with a Gaussian PSF (shown in Fig. [I[b)).
We then add 1% white Gaussian noise and obtain the blur and noise contam-
inated telescope image in Fig. (c) The iterates computed by the standard
LB method, without projection to a Krylov subspace, show semiconvergence.
We therefore terminate the iterations with this method with the discrepancy
principle, i.e., we terminate the iterations as soon as

| Au® — b||2 < Te.

Figure a) shows the reconstruction with of telescope image in Figure [Ifc)
with LB algorithm, while the reconstruction by PLB is shown in Figure )
Table [1] reports results obtained with the LB and PLB methods for different
noise levels. The table shows that projection into the Krylov subspace signif-
icantly accelerates the method and improves the quality of the reconstructed
image.

Comparison of the PLB and PNLB methods We would like to illustrate the
effect of projecting onto the nonnegative cone. With this aim we apply the PLB
and PNLB methods to restore the contaminated satellite image of Fig. c). It
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Table 1 Comparison of the LB and PLB algorithms in terms of RRE, number of iterations,
and CPU time for different noise levels.

LB
RRE Number of iterations CPU Time (seconds)
Telescope 1% | 0.0899 145 197
Telescope 5% | 0.1316 27 25
PLB
RRE Number of iterations ~CPU Time (seconds)
Telescope 1% | 0.0867 189 42
Telescope 5% | 0.1205 30 7.8

(b) (c)

Fig. 1 Comparison of the LB and PLB algorithms: (a) True image (986 x 986 pixels), (b)
PSF (13 x 13 pixels), (c) Blurred and noise contaminated image with o = 0.01||b]|.

Fig. 2 Comparison of the reconstructions obtained by LB and PLB algorithms.

is obtained by applying motion blur described by a motion PSF (see Fig.[3|b))
to the “exact” image of Fig. a) and then adding 5% white Gaussian noise.

Table [2| displays results for the PLB and PNLB methods. We can observe
that the use of nonnegativity constraints improves the quality of the recon-
struction. The Krylov subspaces used for both methods are the same. We
note that the number of iterations needed for the PNLB method is slightly
larger than for the PLB method. This is usually the case for methods with
nonnegativity constraints.

Fig. 4] shows blow-ups of the reconstructions obtained with the two meth-
ods. Visual inspection of the images shows the PNLB method to be able to
provide a uniform reconstruction of the black sky behind the satellite. More-
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)

(a) (b) (c)

Fig. 3 Comparison of the LB and PLB algorithms: (a) True image (246 X 246 pixels), (b)
PSF (11 x 11 pixels), (c) Blurred and noisy image with ¢ = 0.05||b]|.

Table 2 Comparison of PLB and PNLB in terms of RRE, number of iterations, and CPU
time. We also report the dimension of the considered Krylov subspace and we show the
fraction of time required to its computation.

PLB
Noise level | Dim. of the Krylov subsp. RRE Number of iter.  Total CPU time Krylov CPU time
1% 16 0.1337 300 60.56 1.25
5% 6 0.2126 87 17.56 0.359
15% 3 0.2703 23 4.656 0.187
PNLB
Noise level | Dim. of the Krylov subsp. ~RRE Number of iter.  Total CPU time Krylov CPU time
1% 16 0.1276 300 58.75 1.4
5% 6 0.2033 98 19.32 0.468
15% 3 0.2618 29 5.921 0.125

Fig. 4 Comparison of the PLB and PNLB algorithms: Blow-ups of the reconstructions
determined by (a) PLB, (b) PNLB.

over, the PLB method generates ringing effects around the edges of the satellite
that are not present in the reconstruction computed by the PNLB method.

Since the PLNB method is more accurate than the PLB method, we focus
on the former method in the following.
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(b)

Fig. 5 Barbara test problem: (a) True image (246 X 246 pixels), (b) the PSF (11 x 11
pixels), (c) blurred and noisy image (e = 0.01}|b]|).

(a) (b)
Fig. 6 Barbara test problem restorations computed by: (a) PNLB, (b) IRfista, (c) IRirn.

Table 3 Barbara test problem: RRE for each noise level and each tested method. In bold
face we report the best result.

Noise level
0.001 0.002 0.005 0.01 0.05 0.1 0.15
PNLB 0.0832 0.0849 0.0887 0.0912 0.1126 0.1221 0.1302
IRfista 0.1623 0.1712 0.1917 0.0999 0.1144 0.1231 0.1334
IRhybrid_fgmres | 0.1376 0.1366 0.1369 0.1379 0.1607 0.1932 0.2182
IRirn 0.1369 0.1359 0.1362 0.1372 0.1602 0.1932 0.2177
IRhtv 0.1336 0.1346 0.1348 0.1353 0.1447 0.1531 0.1592
IRnnfcgls 0.1336 0.1337 0.1336 0.1337 0.1341 0.1354 0.1376

Barbara We consider the Barbara image in Fig. a) and blur it with the
motion PSF shown in Fig. b). We add 1% white Gaussian noise to the blurred
image. This gives the blurred and noise-contaminated image in Fig. c).

Table [3] displays results obtained with the PNLB and other methods de-
scribed in [I8] for several noise levels from 0.1% to 15%. The PNLB algorithm
can be seen to outperform the other methods in terms of quality of the recon-
struction. This is confirmed by visual inspection of the reconstructions shown
in Fig. [6] with 1% noise added. We can observe that the PNLB method is able
to accurately reconstruct the exact image.

Cameraman We turn to the cameraman image shown in Fig. El(a). The exact
image is blurred by a PSF that models out-of-focus blur; the PSF is shown in



18 Alessandro Buccini et al.

(b) (c)

Fig. 7 Cameraman test problem: (a) True image (246 X 246 pixels), (b) PSF (11 x 11
pixels), (c) blurred and noisy image (e = 0.002]/d]|).

Table 4 Cameraman test problem: RRE for each noise level and for each method.

Noise level

Method 0.001 0.002 0.005 0.01 0.05 0.1 0.15
PNLB 0.1014 0.1014 0.1015 0.1098 0.1522 0.1587 0.1608
IRfista 0.1091 0.1129 0.1015 0.1155 0.1511 0.1654 0.1673
IRhybrid_fgmres | 0.1512 0.1511 0.1516 0.1528 0.1753 0.2085 0.3651
IRirn 0.1505 0.1506 0.1509 0.1527 0.1648 0.1820 0.2031
IRhtv 0.1481 0.1482 0.1486 0.1490 0.1591 0.1665 0.1724
IRnnfcgls 0.1704 0.1704 0.1704 0.1704 0.1705 0.1715 0.1739

Fig. 8 Cameraman test problem restoration by: (a) PNLB, (b) IRfista, (c) IRirn.

Fig.[7[(b). The blurred and noise-contaminated image with 2% white Gaussian
noise is shown in Fig. [f|c).

In Table [] we report the RRE of the reconstructions obtained with the
PNLB and other methods. The PNLB method consistently outperforms the
other methods, in particular for higher noise levels. This is confirmed by visual
inspection of the reconstructions shown in Fig. [§] For anisotropic blurs, the
choice of the Krylov subspace as in IRhybrid_fgmres may not suitable. A more
relevant choice of the Krylov subspace for these kind of blurs is described in

[16).

Tomography In this example we consider a synthetic tomography problem,
where the data are the Radon transform of the attenuation coefficients of
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some scanned object; for details on computerized tomography see, e.g., [9].
We consider parallel beam tomography, where K parallel X-ray beams are
sent through an object at different angles ¢ with £ = 1,2,..., K. The mea-
sured data bjk, that are known as the sinogram, is the line integral of the
attenuation coefficient of the object along the j-th beam at angle ¢,. We gen-
erate the synthetic data using the Matlab program package IR Tools [I8]. More
specifically, we use the command PRtomo(n, options), set the dimension n of
the image to 256 x 256, and consider 90 angles equispaced between 0 and 179
degrees, and 362 beams. This gives an underdetermined system of equations
with a matrix A € R32580%65536

We comment on the choice of the dimension of the Krylov subspace used in
the algorithms described in this paper. The algorithms illustrate the computa-
tional benefits of determining an approximate solution of the problem by
solving in a Krylov subspace of fairly small dimension d. In all computed
examples above, we used the discrepancy principle to determine the value d,
which we here will refer to as dqp,. It is illustrated in [28] that in the context of
Tikhonov regularization with the regularization parameter determined by the
discrepancy principle, and the low-dimenional Krylov subspace is determined
by a few steps by the Arnoldi process (instead of by Golub—Kahan bidiagonal-
ization), the quality of the computed solution may be increased somewhat by
carrying out a few more Arnoldi steps than the smallest number necessary to
satisfy the discrepancy principle. Similarly, it may be possible to improve the
quality of the computed solution determined by the algorithms of the present
paper somewhat by taking a few more than d = dq4, bidiagonalization steps.
However, it is difficult to provide simple guidelines for how much larger the
number of steps, d, should be than dq,. Moreover, the improvement in quality
of the computed solution by letting d > dg;, is modest. The following example
provides an illustration. Figure @(a) shows the exact attenuation coefficients
and Figure @(b) displays the associated noise-free sinogram. We add 1% and
5% white Gaussian noise in the numerical examples reported in Table 5| The
table shows small improvements in the quality of the reconstruction by increas-
ing the dimension of the solution subspace. The number of iterations shown
in parenthesis close to the error level shows (dap), the number of iterations
needed to satisfy the discrepancy principle. Figure [10] depicts the reconstruc-
tions of the solution obtained determined by the PNLB method with d = dqp,
when adding 1% noise to the sinogram and compares this reconstruction with
the one determined the PNLB method with d = dqp + 5. Since the gain by
choosing d > dg;, is not very large, and it is poorly understood how much
larger d should be chosen than dg,, we propose to choose d = dqp.

Table 5 Tomo test problem: RRE for two noise level for d = dgp, and d = dgp, + 5.

Noise level

Method 1% (dap =13) 5% (dap = 8)
PNLB (d = dqp) 0.1712 0.2552
PNLB (d = dgqp +5) | 0.1691 0.2324
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Table 6 Comparison of PNLB and Accelerated PNLB in terms of RRE and CPU time for
several test problems.

Example Method RRE Iterations CPU time (seconds)
PLB 0.0918 141 105
Barbara Accelerated PLB 0.0916 55 47
PNLB 0.0912 88 70.04
Accelerated PNLB  0.091 48 41.82
PLB 0.1277 282 192
Cameraman Accelerated PLB 0.1236 91 73
PNLB 0.1098 116 91.54
Accelerated PNLB  0.1082 56 49.25
PLB 0.1337 300 60.56
Satellite Accelerated PLB 13.27 83 16.5
PNLB 0.1276 300 58.75
Accelerated PNLB  0.1234 97 21

(a)

Fig. 9 Tomography test problem: (a) True image (256 x 256 pixels), (b) noise-free sinogram
(362 x 90 pixels).

Comparison of PLB (PNLB) and Accelerated PLB (Accelerated PNLB) The
accelerated PLB method is described by Algorithm [l We also apply the PNLB
and APNLB methods; the latter is described in Section |4} These four meth-
ods are compared in Table [] for the Barbara, Cameraman, and Satellite test
problems with 1% noise. For the Satellite test problem, the PSF is the same as
shown in Figure |3} We can observe that the acceleration strategy reduces the
computing time significantly. The RRE is reduced as well, but not by much.

6 Conclusions

This paper proposes that the linearized Bregman method be projected prob-
lem into a Krylov subspace of fairly low dimension. This is shown to reduce the
computing time significantly, and to increase the quality of the computed solu-
tion somewhat. Unconstrained iterations as well as iterations constrained to a
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(a) (b)

Fig. 10 Tomography test problem restoration by: (a) PNLB(d = dgp), (b) PNLB(d =
dap + 5) with 1% noise.

convex set are considered. The imposition of convex constraints may increase
the quality of the computed solutions, and in our experience such constraints
do not increase the computational burden significantly. The constrained pro-
jected linearized Bregman iterative method of this paper is compared to several
methods from IR Tools [I8] for the restoration of 2D images and found to be
competitive.
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