
An ℓ
p-ℓq minimization method with cross-validation for

the restoration of impulse noise contaminated images

Alessandro Buccinia, Lothar Reichelb

aDepartment of Mathematics and Computer Science, University of Cagliari, Cagliari,

09124, Italy.
bDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA.

Abstract

Discrete ill-posed problems arise in many areas of science and engineering. Their
solutions, if they exist, are very sensitive to perturbations in the data. Regu-
larization aims to reduce this sensitivity. Many regularization methods replace
the original problem by a minimization problem with a fidelity term and a reg-
ularization term. Recently, the use of a p-norm to measure the fidelity term and
a q-norm to measure the regularization term has received considerable atten-
tion. The relative importance of these terms is determined by a regularization
parameter. When the perturbation in the available data is made up of impulse
noise and a sparse solution is desired, it often is beneficial to let 0 < p, q < 1.
Then the p- and q-norms are not norms. The choice of a suitable regularization
parameter is crucial for the quality of the computed solution. It therefore is
important to develop methods for determining this parameter automatically,
without user-interaction. However, the latter has so far not received much at-
tention when the data is contaminated by impulse noise. This paper discusses
two approaches based on cross validation for determining the regularization pa-
rameter in this situation. Computed examples that illustrate the performance of
these approaches when applied to the restoration of impulse noise contaminated
images are presented.

Keywords: ℓp-ℓq minimization, ill-posed problem, iterative method
2010 MSC: 65F10, 65R32, 90C26

Dedicated to Fiorella Sgallari on the occasion of her 65th birthday.

Email addresses: alessandro.buccini@unica.it (Alessandro Buccini),
reichel@math.kent.edu (Lothar Reichel)

Preprint submitted to Elsevier March 5, 2020

1. Introduction

We consider the computation of an approximate solution of problems of the
form

Ax+ δ = bδ, (1)

where A ∈ R
m×n is a large matrix, whose singular values decrease to zero

gradually with no significant gap, the vector bδ ∈ R
m represents measured

error-contaminated data, and δ ∈ R
m denotes the unknown error. We will

sometimes refer to δ as noise. The quotient of the largest and smallest singular
values of A is known as the condition number of A. Due to the decrease of the
singular values to zero, this condition number is large. This makes it difficult
to compute a meaningful approximate solution of (1); see below.

Problems of the kind (1) are commonly referred to as discrete ill-posed prob-
lems. They typically arise from the discretization of ill-posed problems, such
as Fredholm integral equations of the first kind with a smooth kernel; see, e.g.,
[12, 16, 17] for discussions on ill-posed and discrete ill-posed problems.

Let b = [bi] ∈ R
m denote the unknown error-free vector associated with

bδ = [bδi]. Thus, b
δ = b+δ. In the present paper, we will assume that the error

δ in bδ is made up of impulse noise, possibly together with Gaussiam noise.
Impulse noise affects only a certain percentage of the entries of b and leaves the
other entries unchanged. Specifically,

bδi =

{
di with probability σ,
bi with probability 1− σ,

(2)

where the di are identically and uniformly distributed random numbers in an
interval [dmin, dmax], which is the dynamic range of bi. If di ∈ {dmin, dmax},
i.e., in case all di attain their maximum or minimum achievable values, impulse
noise is commonly referred to as salt-and-pepper noise. Impulse noise simulates
the effect of broken sensors on the measuring device. The application of pri-
mary interest to us is the restoration of blurred and noise-contaminated images,
however, the techniques described also can be used for other applications.

Since δ is not known, a näıve approach to determine an approximation of
the solution of (1) is to solve the least-squares problem

min
x∈Rn

‖Ax− bδ‖2. (3)

However, due to the large condition number of the matrix A and the error δ in
bδ, the solution A†bδ of (3), where A† denotes the Moore–Penrose pseudoinverse
of A, generally does not furnish a meaningful approximation of the desired vector

x̂ := A†b. (4)

To achieve an accurate approximation of x̂, the least-squares problem (3) is
replaced by a minimization problem, whose solution is less sensitive to the error
δ in bδ than the solution of (3). This replacement is known as regularization. A
regularization technique that recently has received considerable attention, see,

2

e.g., [4, 5, 8, 13, 19, 20, 25] and references therein, is to replace the least-squares
problem (3) by an ℓp-ℓq minimization problem of the form

x∗ := arg min
x∈Rn

{
1

p

∥∥Ax− bδ
∥∥p
p
+

µ

q
‖Lx‖qq

}
, (5)

where the regularization matrix L ∈ R
ℓ×n is such that

N (A) ∩ N (L) = {0}. (6)

Here N (M) denotes the null space of the matrix M , and

‖z‖s :=




r∑

j=1

|zj |
s




1/s

, z = [z1, z2, . . . , zr]
T ∈ R

r.

We will refer to ‖z‖s as the s-norm of z also for 0 < s < 1, even though the
mapping z → ‖z‖s is not a norm for these s-values. We are interested in solving
(5) for 0 < p, q < 1. Note that if either p < 1 or q < 1, then the functional
(5) generally is non-convex. When p = q = 2, the minimization problem (5)
reduces to Tikhonov regularization [15, 17, 24].

The first term in (5) is known as the fidelity term and the second term
as the regularization term. The matrix L in the latter term often is chosen
to be a discretized differential operator. We are primarily concerned with the
restoration of images that have been contaminated by impulse noise and possibly
also by Gaussian noise. Let the image be made up of m×m pixels. We let the
ntries of the vector x ∈ R

n represent the pixels enumerated column-wise. The
matrix A ∈ R

n×n represents a blurring operator and we will let L be a scaled
discretized Laplacian in two space-dimension, i.e.,

L := L2 ⊗ I + L2 ⊗ I, (7)

where the symmetric tridiagonal matrix

L2 =




1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1




∈ R
m×m

is a scaled discrete Laplacian with Neumann boundary conditions in one space-
dimension, I denotes the identity matrix of order m, and ⊗ stands for the
Kronecker product. Because A is a blurring matrix and L is a discrete dif-
ferential operator, the condition (6) generally is satisfied. The regularization
parameter µ > 0 balances the relative influence of these terms on the solution.

We briefly comment on the choice of q. In many situations it is known that
the desired solution (4) is sparse in some basis. To enhance sparsity, we may

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1: Comparison of different ℓq-norms. The solid black graph represents the ℓ0-norm,
the dotted black graph shows the ℓ1-norm, the dark gray solid graph displays the ℓ0.5-norm,
and the light gray solid graph depicts the ℓ0.1-norm.

consider using a regularization term with the ℓ0-norm, which counts the number
of non-vanishing entries. However, the minimization problem so obtained is very
difficult to solve. Therefore, it is common to approximate the ℓ0-norm by the
ℓ1-norm. The main advantage of using this approximation is that the ℓ1-norm
is convex. This makes the computation of a solution easier. However, ℓq-norms
with 0 < q < 1 are better approximations of the ℓ0-norm. In particular, the
smaller q, the better the approximation; see Figure 1 for an illustration. The
main drawback of using 0 < q < 1 is that the resulting minimization problem
(5) is not convex; see Lanza et al. [26] for a recent discussion on the choice of
q in the context of image restoration.

We turn to the choice of p. The value of p should depend on the type of noise
in the data bδ. For white Gaussian noise, p = 2 is appropriate and a method
for determining µ for this kind of noise, based on the discrepancy principle is
described in [2]. This method requires that a fairly accurate estimate of the
norm of the noise be available and allows 0 < q < 1. However, for impulse
noise, p = 2 usually produces restorations of poor quality. It has been shown,
see, e.g., [19, 25], that choosing 0 < p < 1 in the fidelity term leads to accurate
restorations in the case of salt-and-pepper noise.

A popular approach to solving the minimization problem (5) is to approx-
imate the ℓp- and ℓq-norms by weighted ℓ2-norms. The iterative refinement
of these approximations leads to a solution process known as the iteratively
reweighted norm (IRN) method. This method proceeds by solving a sequence
of weighted least-squares problems until an accurate approximate solution of
(5) has been found. Several implementations are available; see, e.g., [8, 10, 14,
25, 29, 32]. Applications of the IRN method to minimization problems (5) with
p or q smaller than unity are described in [19, 25]. It is shown in [19] that

4

the solutions of the sequence of weighted least-squares problems converge to a
stationary point of the functional (5).

We use the IRN-method FMM-GKS described in [19] for solving (5), and
will refer to it simply as the MM-GKS method. Each iteration with MM-GKS
can be divided into two steps: The first step majorizes the functional to be
minimized in (5) by a quadratic functional that is tangent to the functional at
the current approximation. Then, in the second step, the unique minimizer of
the majorant is computed and used as the new iterate.

None of the works on solution methods for (5) mentioned discuss how a
suitable value of the regularization parameter µ can be determined automati-
cally, i.e., without user interaction. The value of µ affects the quality of the
computed solution, and it is important to develop techniques for determining
a suitable value. It is the purpose of the present paper to describe two algo-
rithms for determining µ. Both algorithms are based on cross-validation (CV);
see, e.g., Stone [31] for a discussion on cross-validation. Here we only note that
CV is a so-called heuristic parameter choice rule and, therefore, may fail for
certain data; see, Engl et al. [12] and Kindermann [21, 22], as well as [28], for
discussions on and illustrations of heuristic methods. In numerous numerical
experiments with applications to image restorations, some of which are reported
in Section 4, we have never observed CV to fail to determine a useful value of
the regularization parameter.

In our first algorithm for determining a suitable value of µ, we apply the
CV technique to the data, i.e., to the vector bδ. CV splits the data into two
complementary sets: the training set and the testing set. The first set is used for
solving the problem with different regularization parameters. Then the second
set is used to validate the regularization parameter. CV selects the parameter µ
that minimizes the difference between the reconstructed data set and the testing
set.

Our second algorithm for determining a suitable value of µ uses a modified
version of the CV approach outlined above. Instead of seeking to reconstruct
the right-hand side, the algorithm applies CV to the computed solutions. To
the best of our knowledge, this modified CV approach, henceforth referred to
as MCV, has not been considered before. We will show that both CV and
MCV determine regularization parameters that yield restorations of good qual-
ity and that, typically, MCV determines regularization parameters that give
restorations of higher quality than CV.

Several other methods have been developed for the restoration of images
that are corrupted by blur and impulse noise. In particular, two-phase strate-
gies have been shown to yield accurate restorations; see, e.g., [3, 6, 7, 30]. These
methods first identify pixels that are contaminated by impulse noise by means of
a median-type filter. Subsequently, these pixels are removed from the computa-
tions and the noise-free problem so obtained is solved by a variational method.
In the current literature on two-phase methods, the functional to be minimized
in the second phase is usually convex and little attention is given to the selection
of the regularization parameter. In fact, only Sciacchitano et al. [30] propose
a two-phase method that does not require a user to specify a regularization

5

parameter. None of the methods mentioned is designed to remove mixed noise,
i.e., noise that is made up of both impulse noise and Gaussian noise. One of
the main advantages of the method of this paper is that, as we will show in
Section 4, it is able to restore images that have been contaminated by mixed
noise in a satisfactory manner. This type of noise is of considerable interest,
and the choice of a suitable value of the regularization parameter is important.

This paper is organized as follows: Section 2 outlines the IRN method de-
scribed in [19] for the solution of (5). Our algorithms for determining the regu-
larization parameter µ are described in Section 3 and a few numerical example
are presented in Section 4. Finally, Section 5 contains concluding remarks.

2. A majorization-minimization method

This section briefly describes the method proposed in [19]. This is an alter-
nating direction method of multipliers (ADMM); see, e.g., Beck [1, Chapter 15]
for a general discussion of this kind of methods: In one “direction” a minimiza-
tion problem is solved by computing an approximate solution of the associated
normal equations (eq. (11) below). This requires significant computations. In
the other “direction” the weights (see eq. (10)) are updated. This is very inex-
pensive. The method is well suited for the solution of problems of the form (5),
because only the solution in one “direction” requires significant computations;
see below or [19, 25]. We remark that there also are other methods available
for the minimization of (5), in particular for the situation when p, q ≥ 1; see,
e.g., [11, 13, 14]. In the present paper, we are primarily concerned with the case
when both p, q < 1 in (5), though the method described also can be applied
when 1 ≤ p < 2 or 1 ≤ q < 2. The following description is very similar to the
one provided in [2, 19]. We present it here for the convenience of the reader.

Assume that 0 < s ≤ 1, because the smoothing to be described is not
required for s > 1. In all computed examples of Section 4, we have 0 < s < 1.
Introduce a smoothed version of the function x → ‖x‖ss as follows. Consider
the function Φs : R → R defined by

Φs(t) = |t|s.

If 0 < s ≤ 1, then Φs is not differentiable at 0. Therefore, we define the
smoothed version of Φs as

Φs,ε(t) =
(√

t2 + ε2
)s

, (8)

where ε > 0 is a small constant. Clearly, Φs,ε(t) is everywhere differentiable. A
smoothed version of ‖x‖ss for x = [x1, . . . , xn]

t ∈ R
n is given by the right-hand

side of

‖x‖ss ≈
n∑

i=1

Φs,ε(xi).

Throughout this paper, the superscript t denotes transposition.

6

Introduce the smoothed version of the functional that is minimized in (5),

Jε(x) :=
1

p

m∑

i=1

Φp,ε((Ax− bδ)i) +
µ

q

ℓ∑

i=1

Φq,ε((Lx)i).

The smoothed minimization problem associated with (5) reads

x∗ := arg min
x∈Rn

Jε(x). (9)

The method described in [19] for computing a stationary point of Jε is a
majorization-minimization method. It determines a sequence of iterates x(k),
k = 1, 2, . . . , that converge to a stationary point of Jε. The method requires
the gradient ∇Jε to exist. This is secured by the smoothing described.

At each step the functional Jε, for k = 1, 2, . . . , is majorized by a quadratic
functional x → Q(x,x(k)) that is tangent to Jε at x(k). The next iterate x(k+1)

is the unique minimizer of x → Q(x,x(k)). We outline this method in the
remainder of this section.

Definition 1. Consider the differentiable function Jε(x) : Rn → R. We say
that the function x → Q(x,y) : Rn → R is a quadratic tangent majorant for
Jε(x) at y if the following conditions hold:

• Q(x,y) is quadratic;

• Q(x,y) ≥ Jε(x) for all x ∈ R
n;

• Q(y,y) = Jε(y) and ∇Q(y,y) = ∇Jε(y).

2.1. Majorization step

We outline the construction of a quadratic tangent majorant at the point
x(k). Two approaches are described in [19], one yields a majorant with fixed
aperture and the other one a majorant with the largest aperture possible. The
second kind of majorant approximates the function Jε better than the first kind,
but its computation is more demanding. In the following, we will only consider
the majorant with fixed aperture, and we will apply this method in our numerical
examples reported in Section 4. We note, however, that we could equally well
have applied the method that determines the largest aperture possible in the
computed examples. A comparison of these methods is reported in [19].

Let

v(k) := Ax(k) − bδ,

u(k) := Lx(k),

and introduce the vectors

ω
(k)
fid := v(k)

(
1−

(
(v(k))2 + ε2

ε2

)p/2−1
)
,

ω
(k)
reg := u(k)

(
1−

(
(u(k))2 + ε2

ε2

)q/2−1
)
,

(10)

7

where all operations are element-wise. It is shown in [19] that the function

x → Q(x,x(k)) =
εp−2

2

(∥∥Ax− bδ
∥∥2
2
− 2

〈
ω

(k)
fid , Ax

〉)

+
µεq−2

2

(
‖Lx‖22 − 2

〈
ω

(k)
reg, Lx

〉)
+ c,

with c a suitable constant independent of x, is a quadratic tangent majorant
for Jε at x(k).

2.2. Minimization step

Given x(k), the next iterate x(k+1) is the minimizer of x → Q(x,x(k)). Since
Q is quadratic, x(k+1) can be computed by determining the zero of the gradient,
i.e., by solving the linear system of equations

(AtA+ ηLtL)x(k+1) = At(bδ + ω
(k)
fid) + ηLt

ω
(k)
reg, η := µ

εq−2

εp−2
. (11)

The matrix on the left-hand side is non-singular for any µ > 0 due to the
requirement (6). Therefore x(k+1) is the unique minimizer of Q(x,x(k)).

An approximate solution of (11) can be computed efficiently by seeking a
solution in a low-dimensional subspace. Let the columns of Vk ∈ R

n×dk , with
1 ≤ dk ≪ n, form an orthonormal basis for the subspace in which we determine
the next approximate solution x(k+1) of (11). We compute x(k+1) by solving
the minimization problem

y(k+1) := arg min
y∈R

dk

∥∥∥∥∥

[
AVk

η1/2LVk

]
y −

[
bδ + ω

(k)
fid

η1/2ω
(k)
reg

]∥∥∥∥∥

2

2

(12)

and letting
x(k+1) := Vky

(k+1). (13)

Introduce the QR factorizations

AVk = QARA with QA ∈ R
m×dk , RA ∈ R

dk×dk ,
LVk = QLRL with QL ∈ R

ℓ×d, RL ∈ R
dk×dk .

(14)

Thus, the matrices QA and QL have orthonormal columns, and the matrices RA

and RL are upper triangular. Inserting the factorizations (14) into (12) yields

y(k+1) := arg min
y∈R

dk

∥∥∥∥∥

[
RA

η1/2RL

]
y −

[
Qt

A(b
δ + ω

(k)
fid)

η1/2Qt
Lω

(k)
reg

]∥∥∥∥∥

2

2

,

and substituting (13) into (11) gives the residual vector

r := At(AVky
(k+1) − bδ − ω

(k)
fid) + ηLt(LVky

(k+1) − ω
(k)
reg). (15)

8

We expand the solution subspace by including the scaled residual vector vnew =
r/‖r‖ in the solution subspace. This vector is orthogonal to the columns of
the matrix Vk, and we define the new matrix Vk+1 = [Vk,vnew] ∈ R

n×dk+1 ,
dk+1 = dk + 1, whose columns form an orthonormal basis for the expanded
solution subspace. The so determined solution subspaces are referred to as gen-
eralized Krylov subspaces. A related application of generalized Krylov subspaces
is described in [24].

In addition to storing the matrix Vk+1, we also store the matrices

AVk+1 = [AVk, Avnew], LVk+1 = [LVk, Lvnew].

The QR factorizations of these matrices are computed by updating the QR
factorizations (14) according to

AVk+1 = [AVk, Avnew] = [QA, q̃A]

[
RA rA
0t τA

]
,

LVk+1 = [LVk, Lvnew] = [QL, q̃L]

[
RL rL
0t τL

]
,

where
rA = Qt

A(Avnew), qA = Avnew −QArA,
τA = ‖qA‖2 , q̃A = qA/τA,
rL = Qt

L(Lvnew), qL = Lvnew −QLrL,
τL = ‖qL‖2 , q̃L = qL/τL;

see Daniel et al. [9] for details.
Algorithm 1 summarizes the computations. To initiate the computations

a user chooses a k0-dimensional solution subspace of Rn. The columns of the
matrix V0 form an orthonormal basis for this subspace. Thus, dk = k0 + k. In
the computations reported in Section 4, we let k0 = 10 and let the columns of
V0 form an orthonormal basis for the Krylov subspace

K10(A
tA,Atbδ) = span{Atbδ, (AtA)Atbδ, . . . , (AtA)9Atbδ}.

This subspace is determined by carrying out 10 steps of the Golub–Kahan bidi-
agonalization algorithm applied to A with initial vector bδ; see, e.g., [23]. Al-
gorithm 1 summarizes the computations.

Algorithm 1 (The MM-GKS method). Let 0 < p, q ≤ 2 and µ > 0. Consider
A ∈ R

m×n and L ∈ R
ℓ×n such that (6) holds. Fix ε > 0 and k0 > 0, and choose

9

the initial vector x0;

Generate the initial subspace basis: V0 ∈ R
n×k0 such that V t

0 V0 = I;
Compute and store AV0 and LV0;
Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

η = µ εq−2

εp−2 ; y
(0) = V t

0x
(0);

for k = 0, 1, . . . do
v(k) = Ax(k) − bδ;

u(k) = LVky
(k);

ω
(k)
fid = v(k)

(
1−

(
(v(k))2+ε2

ε2

)p/2−1
)
;

ω
(k)
reg = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

y(k+1) = (Rt
ARA + ηRt

LRL)
−1(Rt

AQ
t
A(b

δ + ω
(k)
fid) + ηRt

LQ
t
Lω

(k)
reg);

r = At(AVky
(k+1) − bδ − ω

(k)
fid) + ηLt(LVky

(k+1) − ω
(k)
reg);

vnew = r/ ‖r‖2; Vk+1 = [Vk,vnew];
Update the QR factorizations AVk+1 = QARA and LVk+1 = QLRL;

x(k+1) = Vky
(k+1);

end

Let x∗ be the approximate solution computed by Algorithm 1. We will write

x∗ = MM-GKS(A,bδ, p, q, µ, ε,x0, V0),

where we expressly state that the initial approximate solution is x0, and that
the initial subspace basis is V0.

We summarize properties of the approximate solutions determined by the
algorithm. The range of a matrix M is denoted by R(M).

Proposition 2. We have x(0) ∈ R(AT) and x(k) ∈ R(AT) ∪ R(L) for k =
1, 2,

Proof. The statement about x(0) follows from the definition of the vector. The
property of x(k) is a consequence of (15) and the fact that the matrix L, defined
by (7), is symmetric.

In our applications of the minimization problem (5), the matrix-vector prod-
uct Ax models blurring of x. Therefore, Ax represents the discretization of a
function that typically is quite smooth. This also holds for ATx. The vector
x(0) in Algorithm 1 therefore, generally, represents the discretization of a smooth
function and is poorly suited to model a piece-wise smooth image. The vectors
x(k), k = 1, 2, . . . , generated by the algorithm generally have a component in
R(L). Since L is a discrete differential operator, the vector Lx generally repre-
sents the discretization of a function that is less smooth than the function whose
discretization gives x. The component in R(L) of the vectors x(k), k ≥ 1, makes
these vectors useful for approximating piece-wise smooth functions. Thus, hav-
ing a regularization term defined by a discrete differential operator in (5) is
essential for the good performance of Algorithm 1.

10

The main computational effort of Algorithm 1 is the evaluation of matrix-
vector products with the matrices A, L, and their transposes. Since the matrices
AVk and LVk are stored, each iteration requires the evaluation of the matrix-
vector products Avk+1 and Lvk+1, which are needed for updating AVk and LVk,
and of their QR factorizations. The evaluation of a matrix-vector product with
each one of the matrices At and Lt is required when computing the residual
vector (15).

The following result for the approximate solutions x(k) computed by Algo-
rithm 1 is shown in [19].

Theorem 3. Let (6) hold. Then for any initial approximate solution x(0) ∈ R
n,

the sequence {x(k)}k converges to a stationary point of Jε(x). Thus,

(i) limk→∞

∥∥x(k+1) − x(k)
∥∥
2
= 0,

(ii) limk→∞ ∇Jε(x
(k)) = 0.

3. Determining the regularization parameter

This section describes two CV methods for determining the regularization
parameter µ. The first method applies CV to the data vector and the second
one to the computed solution. For notational simplicity, we describe these two
methods when applied to a Tikhonov regularization problem in standard form,

min
x∈Rn

{‖Ax− bδ‖22 + µ‖x‖22}, (16)

where A ∈ R
m×n, bδ ∈ R

m, and µ > 0 is a regularization parameter. We
assume that A is very ill-conditioned, that bδ is contaminated by error, and
that we are interested in the solution (4).

3.1. Cross validation

The CV method partitions the right-hand side bδ into two complementary
subsets: the training set and the testing set. The training set is used for solv-
ing the problem (16) (with the rows of the testing set removed) for different
regularization parameters, and the testing set is used to validate the computed
solution and select a suitable regularization parameter. The computations with
the CV method proceeds as follows. Without loss of generality, we may assume
that the testing set consists of the first d elements of bδ. Let b̃δ ∈ R

m−d and
Ã ∈ R

(m−d)×n denote the restrictions of bδ = [bδj] and A = [Aij], respectively,
in (16) to the training set, i.e.,

b̃δ = [bδd+1, b
δ
d+2, . . . , b

δ
m]t,

Ã =




Ad+1,1 Ad+1,2 . . . Ad+1,n

Ad+2,1 Ad+2,2 . . . Ad+2,n

...
... . . .

...
Am,1 Am,2 . . . Am,n


 .

11

Let {µj}
l
j=1 denote a set of positive regularization parameters. For each j =

1, 2, . . . , l, we solve the Tikhonov regularization problem obtained by replacing
A by Ã, bδ by b̃δ, and µ by µj in (16). Denote the computed solutions by xµj

,
j = 1, 2, . . . , l. We validate these solutions by using the testing set. Thus, for
each xµj

, we compute the residual norms

rj =

√√√√
d∑

i=1

((
Axµj

)
i
− bδi

)2
, j = 1, 2, . . . , l.

The norm rj measure how well the computed solution xµj
is able to predict

the testing data (which were not included when computing xµj
). Let µk be

such that rk ≤ rj for j = 1, 2, . . . , l. We then select µ = µk for the solution of
(16). The heuristics behind this approach for determining µ is that an accurate
approximation xµ of x̂ should be able to predict the testing data accurately.

To reduce variability, we apply CV for several different partitionings and
average the regularization parameter values determined for each partitioning.
In detail, let K be a not too large positive integer and carry out K CV steps.
At step 1 ≤ k ≤ K, we consider a randomly selected set of d components of the
vector bδ as testing data, while the other m−d components are used as training
data. Each step provides a regularization parameter µ(k) for k = 1, 2, . . . ,K.
These parameters may differ. The regularization parameter µ to be used for the
solution of (16) is the average of the parameter values µ(k), i.e.,

µ =
1

K

K∑

k=1

µ(k).

The process, when applied to the solution of (9), is summarized in the following
algorithm.

Algorithm 2 (Cross Validation). Let A ∈ R
m×n, d < m, and let K > 0 be a

positive integer. Consider the solution of (9) and let {µj}
l
j=1 be a set of positive

12

regularization parameters.

for k = 1, 2, . . . ,K do

Construct a set I(k) of d distinct random integers between 1 and n;

Let Ã and b̃δ denote the matrix and vector, respectively, obtained by
removing the rows with indices in I(k) from A and bδ;

for j = 1, 2, . . . , l do

x
(k)
µj = MM-GKS(Ã, b̃δ, p, q, µ, ε,xinit

k,j , V
init
k,j),

i.e., x
(k)
µj denotes the regularized solution of the system (16) with

the matrix A replaced by Ã, bδ replaced by b̃δ, and µ replaced
by µj;

Compute r
(k)
j =

√
∑

i∈I(k)

((
Ax

(k)
µj

)
i
− bδi

)2
;

end

Let j∗ = argmin1≤j≤l{r
(k)
j };

Let µ(k) = µj∗ ;

end

Compute µ = 1
K

∑K
k=1 µ

(k);

3.2. Modified cross-validation

The standard CV technique compares predictions of the right-hand side
determined for different parameters µj . We would like to exploit a similar idea,
but instead compare predictions of computed solutions.

Let I1 and I2 denote two distinct sets of d distinct random integers between
1 and n. Similarly to standard CV, let Ãi and b̃δ

i denote versions of the matrix
and right-hand side of (16), respectively, in which the rows of bδ and A with
index in Ii have been removed, for i = 1, 2.

Let {µj}
l
j=1 be a set of positive regularization parameters. For i = 1, 2, let

x
(i)
µj denote the solution of the Tikhonov regularization problem (16) with A

replaced by Ãi, b
δ replaced by b̃δ

i , and µ replaced by µj , i.e.,

x(i)
µj

= arg min
x∈Rn

{∥∥∥Ãix− b̃δ
i

∥∥∥
2

2
+ µj ‖x‖

2
2

}
, i = 1, 2.

Compute the quantities

∆xj =
∥∥∥x(1)

µj
− x(2)

µj

∥∥∥
2
, j = 1, 2, . . . , l,

and let µk minimize ∆xj over j = 1, 2, . . . , l. Thus, this application of CV
considers the computed approximations of x̂ instead of the residual vectors. We
refer to this method as modified CV (MCV). To reduce variability, we apply
MCV for several index sets I1 and I2. The following algorithm describes MCV.

13

Algorithm 3 (Modified Cross Validation). Let A ∈ R
m×n, d < m, and let

K > 0 be an integer. Consider the solution of (9) and let {µj}
l
j=1 be a set of

positive regularization parameters. Let K ∈ N.

for k = 1, 2, . . . ,K do

Construct two distinct sets I
(k)
1 and I

(k)
2 of d distinct random

integers between 1 and n;

Let, for i = 1, 2, Ãi and b̃δ
i denote the matrix and vector,

respectively, obtained by removing the rows with indices in I
(k)
i

from A and bδ;
for j = 1, 2, . . . , l do

for i = 1, 2 do

x
(k,i)
µj = MM-GKS(Ãi, b̃

δ
i , p, q, µ, ε,x

init
k,j,i, V

init
k,j,i),

i.e., x
(k,i)
µj denotes the regularized solution of the system (16)

with the matrix A replaced by Ãi, b
δ replaced by b̃δ

i , and µ
replaced by µj;

end

Compute ∆x
(k)
j =

∥∥∥x(k,1)
µj − x

(k,2)
µj

∥∥∥
2
;

end

Let j∗ = argmin1≤j≤l

{
∆x

(k)
j

}
;

Let µ(k) = µj∗ ;

end

Compute µ = 1
K

∑K
k=1 µ

(k);

3.3. Implementation details

The execution of Algorithms 2 and 3 requires that computations with Al-
gorithm 1 be carried out multiple times. These executions can be carried out
in parallel, but nevertheless may be fairly expensive. This subsection describes
some implementation details and discusses certain implementation choices.

In our implementation for all k, j, and i in both the CV and MCV methods,
we set the initial approximate solution to Ãt

ib̃
δ
i , i.e., for the CV algorithm we

set
xinit
k,j = Ãtb̃δ, j = 1 . . . , l and k = 1, . . . ,K,

while for the MCV algorithm we set

xinit
k,j,i = Ãt

ib̃
δ
i , j = 1, . . . , l, k = 1, . . . ,K, and i = 1, 2.

Moreover, we set the initial subspace basis as Ãt
ib̃

δ
i /
∥∥∥Ãt

ib̃
δ
i

∥∥∥
2
, i.e., for the CV

algorithm we set

V init
k,j = Ãtb̃δ, j = 1 . . . , l and k = 1, . . . ,K,

14

while for the MCV algorithm we set

V init
k,j,i = Ãt

ib̃
δ
i /
∥∥∥Ãt

ib̃
δ
i

∥∥∥
2
, j = 1, . . . , l, k = 1, . . . ,K, and i = 1, 2.

This choices allow all the runs of the MM-GKS method to be independent and,
therefore, in parallel.

The first aspect which we would like to discuss is the choice of the initial
approximate solution. We remark that we also considered other initial approx-
imate solutions. We implemented the following options:

• For a fixed k, we set the initial approximation for the computation of x
(k)
µj

to x
(k)
µj−1 , i.e., for the CV algorithm

xinit
k,j =

{
Ãtb̃δ j = 1,

x
(k)
µj−1 j > 1,

k = 1 . . . ,K,

and for the MCV algorithm

xinit
k,j,i =

{
Ãt

ib̃
δ
i j = 1,

x
(k,i)
µj−1 j > 1,

k = 1 . . . ,K and i = 1, 2.

• For a fixed j, we set the initial approximate solution for the computation

of x
(k)
µj to x

(k−1)
µj , i.e., for the CV algorithm

xinit
k,j =

{
Ãtb̃δ k = 1,

x
(k−1)
µj k > 1,

j = 1 . . . , l,

and for the MCV algorithm

xinit
k,j,i =

{
Ãt

ib̃
δ
i k = 1,

x
(k−1,i)
µj k > 1,

j = 1 . . . , l and i = 1, 2.

Both these initial approximate solutions lead to poor numerical results. These
choices do not allow enough variability in the computed solutions. The compar-
ison of the computed solutions therefore is not meaningful. In the first case, µ1

is always chosen as regularization parameter, while in the second case we obtain
that µ(1) = µ(2) = . . . = µ(K), i.e., all the sweeps over all the parameters µj

provide the same result.
Another point that is worthwhile to mention is the selection of the solution

subspace. Algorithms 2 and 3 determine different solution subspaces for each
value of j, k, and i. These subspaces are constructed as described in Algorithm 1
and, thus, depend on the restricted operator Ãi and the associated right-hand
side b̃δ

i , as well as on the parameter µj . This construction, coupled with the
update of the QR factorizations in Algorithm 1, can become expensive if many
iterations have to be carried out. To speed up the computations with Algorithms
2 and 3, we considered two possible approaches to the selection of the solution
subspaces. For ease of notation, we will only discuss cross validation, however,
the results obtained with modified cross validation are similar.

15

• For a fixed j, let V (j) denote the subspace constructed by the MM-GKS
method for µ = µj and k = 1. We fix the solution subspace for µ = µj

and k > 1 as V (j), i.e., for each j we construct a solution subspace only
for k = 1, and we “recycle” this subspace for the subsequent ks.

• We construct the subspace Kr(AA
t, Atbδ) with r sufficiently large, and

use it as solution subspace for all j and k.

Both these approaches reduce the computational effort required by the CV
method. However, none of them give satisfactory numerical results. In particu-
lar, the first choice of subspaces do not provide necessary additional information

as k changes. In other words, x
(k)
µj ≈ x

(1)
µj for all k. This is due to the fact that

the constructed subspace V (j) is of fairly small dimension. Thus, even if we
slightly change the operator and right-hand side, as we do when we change k,
the computed solution in such a small space is very close to the one obtained
for k = 1. This implies that µ(1) = µ(2) = . . . = µ(K). We turn to the second
approach, and first discuss the choice of r. Let x∗ denote an approximate solu-
tion computed by Algorithm 1. By construction, we know that x∗ belongs to a
subspace of fairly small dimension, which we denote by k̂. Then k̂ is the sum of
k0, the dimension of the initial subspace, and the number of iterations carried
out. However, looking at the magnitude of the coefficients of x∗ in the basis of
the subspace constructed by the MM-GKS method, we observe that, generally,
only the first k̃ < 50 components are significant; the other components are of
very small magnitude. It is therefore reasonable to assume that, by choosing
r > 2k̃, the space Kr(AA

t, Atbδ) should contain an accurate approximation of
x∗. We therefore set r = 100. Moreover, if r > 100 then the computational
advantage that we obtain by fixing the space a priori would be less significant,
since we still need to compute the QR factorizations of ÃVr for each k, where
Vr a matrix whose columns form an orthonormal basis for Kr(AA

t, Atbδ) de-
termined, e.g., by Golub–Kahan bidiagonalization. Our numerical experiments
show that the MM-GKS method defined in this manner is not able to compute
accurate reconstructions in Kr(AA

t, Atbδ) for reasonable values of r. This is

possibly due to the fact that when we compute x
(k)
µj we are not solving the sys-

tem Ax = bδ, but Ãx = b̃δ and, thus, we are considering a subspace associated
with a different problem.

We conclude from the above observations that, for both the cross validation
and modified cross validation methods, it is of vital importance that all the runs
of the methods are independent of each other.

Finally, we would like to point out that in the computations reported in the
next section, we let K = l = 10 and d =

⌈
n

200

⌉
in both Algorithm 2 and 3. The

µj are equispaced in a logarithmic scale. These parameter choices are is not
critical for the performance of the CV and MCV methods. Other values of K
and l can be used without changing the results significantly.

16

4. Numerical examples

This section presents some numerical examples. All computations are car-
ried out in MATLAB 2016a with about 15 significant decimal digits running
on a laptop computer with a quad core CPU Intel Core i7-6700HQ @ 2.60GHz
processor and 16 GB of RAM. We compare results obtained by computing ap-
proximate solutions with Algorithm 1 with the regularization parameter de-
termined by Algorithm 2 or Algorithm 3, and will refer to these methods as
MM-GKS-CV and MM-GKS-MCV, respectively. These methods are applied
to image restoration problems and compared to restored images computed by
Algorithm 1 with the optimal regularization parameter, i.e., the regularization
parameter which yields a restored image that is closest to the desired solution
x̂. We refer to the latter restoration as the optimal restoration. The matrix A
represents the blurring operator and the vector bδ represents the available blur-
and noise-contaminated image. The entries of bδ are pixel values.

The error δ in bδ models different types of noise. In the first examples, we
consider salt-and-pepper noise of different percentages. Subsequently, we con-
sider a mixture of salt-and-pepper noise and white Gaussian noise, as well as a
mixture of impulse noise and white Gaussian noise. To model salt-and-pepper
noise a certain percentage of randomly chosen entries of b are set to 0 (which
corresponds to black) or to 255 (which is the maximum value attainable and
corresponds to white). Impulse noise is modeled by letting a certain percent-
age of randomly chosen entries of b be randomly chosen uniformly distributed
integers in the interval [0, 255]; cf. (2). We refer to this percentage as the noise
level and denote it by σ. White Gaussian noise is modeled by pseudo-random
numbers with zero mean and specified variance. We refer in this case to the

ratio η =
‖δ‖2

‖b‖2
as the noise level.

Differentials of many natural images are known to be sparse. Therefore, we
would like to compute a solution with this property. We use the second deriva-
tive operator in tensor form as regularization matrix L with the same boundary
conditions as the matrix A; see [18] for more information about boundary con-
ditions.

We let ε = 1 in (8). This value is small compared to the average size of the
elements of the vector bδ. The iterations with the algorithms are terminated as
soon as two consecutive iterates are sufficiently close, i.e., as soon as

∥∥x(k) − x(k+1)
∥∥
2∥∥x(k)

∥∥
2

≤ 10−4.

The quality of the restored images is measured by the Peak Signal to Noise
Ratio (PSNR), which is defined as

PSNR(x) = 20 log10

(
255n

‖x− x̂‖2

)
,

where x̂ denotes the desired solution (4), n is the number of pixels in the image,
and 255 is the largest possible pixel value.

17

(a) (b) (c)

Figure 2: Clock test image: (a) true image (246 × 246 pixels), (b) PSF (29 × 29 pixels), (c)
blurred and noisy image (salt-and-pepper noise: σ = 0.1).

Clock.. In our first example, we consider the image in Figure 2(a) and blur it
with the PSF shown in Figure 2(b), which models out-of-focus blur. To model
salt-and-pepper noise, we set 10% of the pixels to either 0 or 255; see Figure 2(c)
for the blurred and noisy image. This image is represented by the vector bδ.
We set p = 0.8 and q = 0.1. Since this is a generic image, we impose reflexive
boundary conditions; see [27] for a discussion on these boundary conditions.

Figure 3 displays the restored images obtained with the MM-GKS-CV and
MM-GKS-MCV methods, and by selecting the optimal µ, i.e., the one that
maximizes the PSNR, by trial and error. By visual inspection, we can see that
the two proposed approaches for determining the regularization parameter and
computing a restoration provide restorations of high quality that are close to the
one obtained with the optimal µ-value. This is confirmed by the PSNR-values
reported in Table 1. The table shows that MCV (Algorithm 3) yields a more
accurate restoration than CV (Algorithm 2).

Finally, Figure 4 displays the PSNR-value as a function of the regularization
parameter µ. The figure shows the PSNR-values associated with regularization
parameter values determined by the CV and MCV methods, as well as the
PSNR-value that corresponds to the optimal µ-value. We can observe that the
µ-value determined by MCV is closer to the optimal one than the value provided
by CV.

Cameraman.. We use the image in Figure 5(a) and blur it with the non-
symmetric Gaussian PSF shown in Figure 5(b), and add 20% salt-and-pepper
noise; Figure 5(c) shows the blurred and noisy image. Similarly as in the pre-
vious example, we set p = 0.8 and q = 0.1, and impose reflexive boundary
conditions.

Figure 6 shows the restoration obtained when µ is determined by the CV
and MCV methods, or is chosen to minimize the PSNR. Table 1 reports the
PSNR-values of these restorations. We note that the CV algorithm yields a
regularization parameter µ that gives a worse restoration than the regularization
parameter computed by MCV. The latter restoration is close in quality to the
one achieved with the optimal µ.

18

(a) (b) (c)

Figure 3: Clock restorations: (a) Optimal µ, (b) CV, (c) MCV.

10
-4

10
-3

10
-2

10
-1

10
0

-60

-50

-40

-30

-20

-10

0

10

20

30

Figure 4: Clock test image: PSNR-values (vertical axis) for different µ-values (horizontal
axis). The optimal value of µ is identified by a star, the µ computed by the CV algorithm is
identified by a circle, and the µ determined by the MCV algorithm is identified by a square.

(a) (b) (c)

Figure 5: Cameraman test image: (a) true image (234× 234 pixels), (b) PSF (41× 41 pixels),
(c) blurred and noisy image (salt-and-pepper noise: σ = 0.2).

19

(a) (b) (c)

Figure 6: Cameraman restorations: (a) Optimal µ, (b) CV, (c) MCV.

(a) (b) (c)

Figure 7: Boat test image: (a) true image (250 × 250 pixels), (b) PSF (26 × 26 pixels), (c)
blurred and noisy image (salt-and-pepper noise: σ = 0.3).

20

(a) (b) (c)

Figure 8: Boat restorations: (a) Optimal µ, (b) CV, (c) MCV.

(a) (b) (c)

Figure 9: Jet plane test image: (a) true image (247 × 247 pixels), (b) PSF (27 × 27 pixels),
(c) blurred and noisy image (salt-and-pepper noise: σ = 0.1, Gaussian noise: ǫ = 0.01).

Boat.. In this example we consider the boat image in Figure 7(a). We blur it
with the average PSF shown in Figure 7(b) and add 30% salt-and-pepper noise;
the contaminated image is shown in Figure 7(c). We set p = 0.8 and q = 0.5,
and use reflexive boundary conditions.

As in the previous examples, we show restorations obtained for three values
of the regularization parameter furnished by CV, MCV, and by maximizing the
PSNR-value; see Figure 8. The PSNR-values are reported in Table 1. By com-
paring the restorations, we observe that, similarly as in the previous examples,
the MCV method yields a restoration of higher quality than the CV method.
Moreover, in this example the parameter µ determined by MCV is very close
to the optimal value. The MCV restoration can be seen to have much sharper
edges than the CV restoration.

Jet plane.. We consider the image in Figure 9(a). It is blurred with the motion
PSF in Figure 9(b), and we add a mixture of salt-and-pepper and Gaussian
noise. Specifically, we add 10% of salt-and-pepper noise and 1% of white Gaus-
sian noise. Thus, if δG represents the Gaussian noise, then

η =
‖δG‖2
‖b‖2

= 0.01.

21

(a) (b) (c)

Figure 10: Jet plane restorations: (a) Optimal µ, (b) CV, (c) MCV.

(a) (b) (c)

Figure 11: Fiorella test image: (a) true image (264 × 238 pixels), (b) PSF (41 × 37 pixels),
(c) blurred and noisy image (impulse noise: σ = 0.2, Gaussian noise: ǫ = 0.01).

Similarly as in the other examples, we impose reflexive boundary conditions and
set p = 0.8 and q = 0.1.

Figure 10 displays the restorations obtained with the MM-GKS-CV and
MM-GKS-MCV methods, as well as the restoration obtained with the optimal
regularization parameter. Visual inspection of these restorations shows that
ℓp-ℓq minimization is able to determine accurate restorations in the presence of
mixed noise. Moreover, we note that both the CV and MCV algorithms are
able to determine suitable regularization parameters. These observations are
confirmed by the PSNR-values reported in Table 1. The PSNR-values show
that, even though the MCV restoration is affected by slight ringing, it is more
accurate than the CV restoration.

Fiorella.. In this example we blur the image in Figure 11(a) with the non-
symmetric PSF in Figure 11(b), and add a mixture of impulse noise and white
Gaussian noise, such that the impulse noise corrupts 20% of the pixels and
the norm of the Gaussian noise is 1%. Similarly as above, we impose reflexive
boundary conditions and set p = 0.8 and q = 0.1.

Figure 12 depicts the restorations obtained with all the considered methods
and Table 1 displays PSNR-values for the restorations. Visual inspection of

22

(a) (b) (c)

Figure 12: Fiorella restorations: (a) Optimal µ, (b) CV, (c) MCV.

Example Optimal µ CV µ MCV µ
Clock 33.8103 29.5063 33.1401
Cameraman 24.1153 20.7145 23.9731
Boat 26.1539 25.273 26.1539
Jet plane 26.5764 25.4870 25.7399
Fiorella 27.1715 26.8313 25.1991

Table 1: PSNR values obtained with the two proposed algorithms and by choosing the optimal
µ value.

the restorations and comparison of the PSNR-values show that for this example
the CV method is able to determine a better regularization parameter than
the MCV method. However, both the CV and MCV methods provide accurate
restorations in the very difficult scenario of mixed impulse and Gaussian noise.

5. Conclusion and extension

The image restoration methods described in [19, 25] require a user to provide
a suitable value of the regularization parameter. This paper develops two ap-
proaches based on cross-validation for determining such a value. This enhances
the usefulness of the methods in [19, 25].

Computed examples show the two methods for determining the regulariza-
tion parameter, and in particular the modified cross-validation algorithm (Al-
gorithm 3), to provide good approximations of the optimal parameter µ. We
remark that these methods do not require additional knowledge about the im-
age and, thus, are completely automatic. They therefore can be applied to
real-world problems.

Similarly as the two-phase methods described in [3, 6, 7, 30], it may be
attractive to preprocess images that are contaminated by impulse noise by a
median filter. This would result in a fully automatic two-phase method. We are
presently investigating the properties of this kind of method.

23

Acknowledgments

We would like to thank Omar de la Cruz Cabrera for discussions. The work
of the first author is partially supported by a grant from the GNCS group of
INdAM, while the work of the second author is supported in part by NSF grants
DMS-1720259 and DMS-1729509.

References

[1] A. Beck, First-Order Methods in Optimization, SIAM, Philadelphia, 2017.

[2] A. Buccini and L. Reichel, An ℓ2-ℓq regularization method for large discrete
ill-posed problems, J. Sci. Comput., 78 (2019), pp. 1526–1549.

[3] J.-F. Cai, R. H. Chan, and M. Nikolova, Fast two-phase image deblurring
under impulse noise, J. Math. Imaging Vis., 36 (2010), pp. 46–53.

[4] J.-F. Cai, R. H. Chan, L. Shen, and Z. Shen, Simultaneously inpainting in
image and transformed domains, Numer. Math., 112 (2009), pp. 509–533.

[5] J.-F. Cai, R. H. Chan, and Z. Shen, A framelet-based image inpainting
algorithm, Appl. Comput. Harmonic Anal., 24 (2008), pp. 131–149.

[6] R. H. Chan, H. Chung-Wa, and M. Nikolova, Salt-and-pepper noise removal
by median-type noise detectors and detail-preserving regularization, IEEE
Trans. Image Process., 14 (2005), pp. 1479–1485.

[7] R. H. Chan, Y. Dong, and M. Hintermüller, An efficient two-phase L1-TV
method for restoring blurred images with impulse noise, IEEE Trans. Image
Process., 19 (2010), pp. 1731–1739.

[8] R. H. Chan and H. X. Liang, Half-quadratic algorithm for ℓp-ℓq problems
with applications to TV-ℓ1 image restoration and compressive sensing, in
Proceedings of Efficient Algorithms for Global Optimization Methods in
Computer Vision, Lecture Notes in Comput. Sci. # 8293, Springer, Berlin,
2014, pp. 78–103.

[9] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogo-
nalization and stable algorithms for updating the Gram–Schmidt QR fac-
torization, Math. Comp., 30 (1976), pp. 772–795.

[10] M. Donatelli, T. Huckle, M. Mazza, and D. Sesana, Image deblurring
by sparsity constraint on the Fourier coefficients, Numer. Algorithms, 72
(2016), pp. 341–361.

[11] A. El Mouatasim and M. Wakrim, Control subgradient algorithm for image
ℓ1 regularization, Signal, Image and Video Processing (SIVIP), 9 (Supple-
ment 1), (2015), pp. 275–283.

24

[12] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Prob-
lems, Kluwer, Dordrecht, 1996.

[13] C. Estatico, S. Gratton, F. Lenti, and D. Titley-Peloquin, A conjugate
gradient like method for p-norm minimization in functional spaces, Numer.
Math., 137 (2017), pp. 895–922.

[14] S. Gazzola and J. G. Nagy, Generalized Arnoldi–Tikhonov method for
sparse reconstruction, SIAM J. Sci. Comput., 36 (2014), pp. B225–B247.

[15] S. Gazzola, P. Novati, and M. R. Russo, On Krylov projection methods
and Tikhonov regularization, Electron. Trans. Numer. Anal., 44 (2015),
pp. 83–123.

[16] M. Hanke and P. C. Hansen, Regularization methods for large-scale prob-
lems, Surv. Math. Ind., 3 (1993), pp. 253–315.

[17] P. C. Hansen, Rank Deficient and Discrete Ill-Posed Problems, SIAM,
Philadelphia, 1998.

[18] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images: Matrices,
Spectra, and Filtering, SIAM, Philadelphia, 2006.

[19] G. Huang, A. Lanza, S. Morigi, L. Reichel, and F. Sgallari, Majorization-
minimization generalized Krylov subspace methods for ℓp-ℓq optimization
applied to image restoration, BIT Numer. Math., 57 (2017), pp. 351–378.

[20] J. Huang, M. Donatelli, and R. H. Chan, Nonstationary iterated thresh-
olding algorithms for image deblurring, Inverse Probl. Imaging, 7 (2013),
pp. 717–736.

[21] S. Kindermann, Discretization independent convergence rates for noise
level-free parameter choice rules for the regularization of ill-conditioned
problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.

[22] S. Kindermann, Convergence analysis of minimization-based noise level-
free parameter choice rules for linear ill-posed problems, Electron. Trans.
Numer. Anal., 40 (2013), pp. 58–81.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, 4th ed., Baltimore, 2013.

[24] J. Lampe, L. Reichel, and H. Voss, Large-scale Tikhonov regularization via
reduction by orthogonal projection, Linear Algebra Appl., 436 (2012), pp.
2845–2865.

[25] A. Lanza, S. Morigi, L. Reichel, and F. Sgallari, A generalized Krylov
subspace method for ℓp-ℓq minimization, SIAM J. Sci. Comput., 37 (2015),
pp. S30–S50.

25

[26] A. Lanza, S. Morigi, and F. Sgallari, Constrained TVp-ℓ2 model for image
restoration, J. Sci. Comput., 68 (2016), pp. 64–91.

[27] M. K. Ng, R. H. Chan, and W.-C. Tang, A fast algorithm for deblur-
ring models with Neumann boundary conditions, SIAM J. Sci. Comput, 21
(1999), pp. 851–866.

[28] L. Reichel and G. Rodriguez, Old and new parameter choice rules for dis-
crete ill-posed problems, Numer. Algorithms, 63 (2013), pp. 65–87.

[29] P. Rodŕıguez and B. Wohlberg, Efficient minimization method for a gen-
eralized total variation functional, IEEE Trans. Image Process., 18 (2009),
pp. 322–332.

[30] F. Sciacchitano, Y. Dong, and M. S. Andersen, Total Variation based
parameter-free model for impulse noise removal, Numer. Math. Theor.
Meth. Appl., 10 (2017), pp. 186–204.

[31] M. Stone, Cross-validatory choice and assessment of statistical prediction,
J. Royal Stat. Soc., series B, 36 (1977), pp. 111–147.

[32] R. Wolke and H. Schwetlick, Iteratively reweighted least squares: algo-
rithms, convergence analysis, and numerical comparisons, SIAM J. Sci.
Statist. Comput., 9 (1988), pp. 907–921.

26

	Introduction
	A majorization-minimization method
	Majorization step
	Minimization step

	Determining the regularization parameter
	Cross validation
	Modified cross-validation
	Implementation details

	Numerical examples
	Conclusion and extension

