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Department of Mathematics, University of Beograd, Faculty of Mechanical Engineering,
Kraljice Marije 16, 11120 Belgrade 35, Serbia

Abstract

It is desirable that a quadrature rule be internal, i.e., that all nodes of the
rule live in the convex hull of the support of the measure. Then the rule
can be applied to approximate integrals of functions that have a singularity
close to the convex hull of the support of the measure. This paper investi-
gates whether generalized averaged Gauss quadrature formulas for modified
Chebyshev measures of the first kind are internal. These rules are applied
to estimate the error in Gauss quadrature rules associated with modified
Chebyshev measures of the first kind. It is of considerable interest to be
able to assess the error in quadrature rules in order to be able to choose a
rule that gives an approximation of the desired integral of sufficient accu-
racy without having to evaluate the integrand at unnecessarily many nodes.
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Some of the generalized averaged Gauss quadrature formulas considered are
found not to be internal. We will show that some truncated variants of
these rules are internal, and therefore can be applied to estimate the error
in Gauss quadrature rules also when the integrand has singularities on the
real axis close to the interval of integration.
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1. Introduction

1.1. Gauss quadrature rules

Let dλ be a nonnegative measure with infinitely many points of support
on the interval [a, b] on the real axis, and assume that all moments are well
defined.

By {Pk}∞k=0 we denote the set of monic orthogonal polynomials associ-
ated with the measure dλ, where the degree of Pk equals k. Recall that the
polynomials Pk satisfy a three-term recurrence relation of the form

Pk+1(x) = (x− αk)Pk(x)− βkPk−1(x), k = 1, 2, . . . , (1)

where P−1(x) ≡ 0 and P0(x) ≡ 1, and βk > 0 for all k ≥ 1; see, e.g., [8, 22]
for many properties and examples of orthogonal polynomials.

It is well known that among all interpolatory quadrature rules with n
nodes for approximating the integral

I(f) =

∫ b

a
f(x) dλ(x), (2)

the rule with maximum degree of exactness is the n-node Gauss quadrature
rule with respect to the measure dλ,

QGn (f) =
n∑
i=1

w
(n)
i f(x

(n)
i ) (3)

Its degree of exactness is 2n− 1, that is, QGn (p) = I(p) whenever p ∈ P2n−1,
where P2n−1 denotes the set of polynomials of degree at most 2n− 1.

The nodes x
(n)
i , i = 1, 2, . . . , n, of the Gauss rule QGn are the zeros of the

monic orthogonal polynomial Pn with respect to dλ and lie in the convex
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hull of the support of dλ. The weights w
(n)
i , i = 1, 2, . . . , n, are known to

be positive; see [8, 22] for proofs.

In fact, the nodes x
(n)
i are the eigenvalues of the n× n Jacobi matrix

Jn =



α0
√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1

0
√
βn−1 αn−1


, (4)

determined by the first 2n− 1 nontrivial recursion coefficients (1), whereas

the weights w
(n)
i are the square of the first component of suitably normalized

eigenvectors; see [7, 8] for details. Thus, the matrix (4) together with the

moment µ0 =
∫ b
a dλ(x) determine the Gauss rule QGn . This observation

is the basis for the Golub-Welsch algorithm for computing the nodes and
weights of an n-node Gauss rule from the 2n− 1 first recursion coefficients
(1) in O(n2) arithmetic floating point operations (flops); see [9].

1.2. Estimating the error in Gauss rules

It is important to be able to estimate the magnitude of the quadrature
error

εn(f) = |(I −QGn )(f)|, (5)

because this helps to determine a suitable value of n when applying the
rule QGn to approximate the integral (2). An unnecessarily large value of
n requires the computation of needlessly many nodes and weights, as well
as the evaluation of the integrand f at excessively many nodes, while a
too small value of n does not yield desired accuracy. The development
of methods for estimating the error (5) therefore has received considerable
attention over many years.

A popular approach to estimate the error (5) is to use another quadrature
rule, A`, with ` > n nodes and a degree of exactness higher than 2n − 1.
One then can use the difference

|(A` −QGn )(f)|
as an estimate for (5).

Although letting A` be the Gauss rule QGn+1, whose degree of exactness
is 2n+1, appears to be a natural choice, the error estimate |(QGn+1−QGn )(f)|
is known to be unreliable; see [2] for a discussion. This has lead to the de-
velopment of other quadrature formulas for estimating the error (5), among
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them Gauss-Kronrod rules; see [8] for a discussion of this kind of quadrature
rules.

The Gauss-Kronrod quadrature rule associated with the n-node Gauss
rule (3) is a nested formula with 2n+ 1 nodes - n of the nodes are those of
(3), and the remaining nodes are zeros of a Stieltjes polynomial of degree
n + 1. Under suitable conditions, such as when dλ(x) = dx, the zeros of
the Stieltjes polynomial are real and are interlaced by the zeros of the Gauss
rule (3). Thus, the Gauss-Kronrod rule requires only n + 1 new function
values, in addition to those required to compute QGn (f), and it can be shown
to be exact for all polynomials in P3n+1.

However, for many measures, Gauss-Kronrod rules do not have real
nodes. This is the case for Gauss-Laguerre and Gauss-Hermite measures
(see [10]) and for the Jacobi weight functions wα,β(x) = (1−x)α(1 +x)β for
min(α, β) > 0 and max(α, β) > 5/2 if n is large enough (see [16]). Numeri-
cal illustrations can be found in [1]. We refer to [13] for a nice discussion on
Gauss-Kronrod rules.

1.3. The averaged rule QL2n+1 and the generalized averaged rule QS2n+1

Another approach to determine a suitable quadrature rule A` to estimate
the error (5) is to construct a new (n + 1)-node quadrature formula U θn+1

for approximating the functional

Iθ(f) = I(f)− θQGn (f),

for some θ ∈ R, where I(f) is the integral (2), and use the “stratified”
(2n+1)-node quadrature formula (i.e. a linear combination of two formulas)

Q2n+1 = θQGn + U θn+1 (6)

to estimate the error (5); see [11, 14] for discussions of this approach. Then
the computation of Q2n+1(f) requires the evaluation of the integrand f at
only n+1 extra nodes, in addition to the evaluation of f at the Gauss nodes

x
(n)
i .

Laurie [12] introduced the (n + 1)-node anti-Gauss rule QAn+1 as the
Gauss rule approximating Iθ for θ = 1

2 . Thus (I−QAn+1)(p) = −(I−QGn )(p)
whenever p ∈ P2n+1. This yields the averaged rule, also introduced in [12]:

QL2n+1 =
1

2
(QGn +QAn+1).

This rule is exact for all polynomials in P2n+1 and its n+ 1 extra nodes are
zeros of
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Fn+1 = Pn+1 − β̄n+1Pn−1, (7)

for β̄n+1 = βn, with βn a recursion coefficient (1).

For the Laguerre and Hermite weight functions, Ehrich [6] varied θ so
as to increase the degree of exactness. By using results in [15] on positive
quadrature formulas, Spalević [19, 20] proposed a simple numerical method
for constructing such a formula for a general nonnegative measure dλ for
which all required moments exist. This formula, which we will refer to as the
generalized averaged rule QS2n+1, is the optimal formula of type (6), having
the degree of exactness (at least) 2n+2. Its n+1 extra nodes are the zeros of
the polynomial (7) for β̄n+1 = βn+1. Differently from Gauss-Kronrod rules,
the quadrature formulas QL2n+1 and QS2n+1 are guaranteed to exist, and have
real nodes and positive weights. Furthermore, for certain measures dλ the
rules QL2n+1 and QS2n+1 are exact for all polynomials in P3n+1 and, thus,
coincide with the Gauss-Kronrod formulas; see [4, 5] for examples.

The construction described in [19, 20] is as follows. For 0 6 r < n we
introduce the “reverse” symmetric tridiagonal (n−r)× (n−r) matrix

J
∗(r)
n−r =



αn−1
√
βn−1 0√

βn−1 αn−2
√
βn−2

. . .
. . .

. . .√
βr+2 αr+2

√
βr+1

0
√
βr+1 αr


,

and the concatenated symmetric tridiagonal (2n+1−r)× (2n+1−r) matrix

Ĵ
(n−r)
2n+1−r =

 Jn
√
βnen 0

√
βne

T
n αn

√
β̄n+1e

T
1

0
√
β̄n+1e1 J

∗(r)
n−r

 , (8)

where ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the j-th axis vector of suitable
dimension and the superscript T stands for transposition. Then the matrix
(8) together with the moment µ0 =

∫ b
a dλ determine the quadrature rules

QS2n+1 and QL2n+1 when β̄n+1 = βn+1 and β̄n+1 = βn, respectively.

We also refer to [12] for a more efficient method for constructing the rules
QL2n+1, as well as to [17], where a similarly efficient method for constructing
the rules QS2n+1 recently was proposed.

However, the quadrature rules QL2n+1 and QS2n+1 are not guaranteed to
be internal, i.e., they may have nodes outside the convex hull H of the sup-
port of the measure dλ. This means that they may yield poor accuracy,
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or may not be applicable, when the integrand has a singularity close to H.
A possible solution to this issue is the truncated generalized averaged Gauss

rules Q
(n−r)
2n+1−r determined by the matrix Ĵ

(n−r)
2n+1−r when β̄n+1 = βn+1, ob-

tained by “truncating” the Jacobi matrix of QS2n+1. Just like the generalized
averaged rule QS2n+1, they are exact for all polynomials in P2n+2, have real

nodes and positive weights. Note that the nodes of Q
(n−i)
2n+1−i interlace those

of Q
(n+1−i)
2n+2−i for i = 1, 2, . . . , r.

In the present paper, we are concerned with the case r = n−1. Then (8)

together with the moment µ0 define the quadrature rule Q
(1)
n+2 with n + 2

nodes, introduced in [18]. Due to the interlacing property, the truncated

rule Q
(1)
n+2 may be internal when QS2n+1 is not. This is illustrated in Section

3.

As noted in [3, 12, 19], only the two outermost nodes of the rules QS2n+1,

QL2n+1, and Q
(1)
n+2 may be exterior. For certain measures, the internality of

these rules is investigated in [3, 4, 5]. In this paper we discuss the internality
of these quadrature rules for modifications of Chebyshev measures of the first
kind. Section 2 considers Chebyshev measures of the first kind with a linear
divisor and Section 3 is concerned with Chebyshev measures of the first
kind with a linear divisor and a linear factor. A few computed examples are
presented in Section 4 and concluding remarks are provided in Section 5.

2. Modifications by a linear divisor

Henceforth, we let

dλ(x) =
dx√

1− x2
for − 1 < x < 1 (9)

denote the Chebyshev measure of the first kind. The monic orthogonal
polynomials associated with this measure are the polynomials T0(x) = 1
and 1

2n−1Tn(x), n = 1, 2, . . . , where the Tn are Chebyshev polynomials of
the first kind, characterized by

Tn(cos ξ) = cosnξ.

Note that Tn(±1) = (±1)n. The recursion coefficients (1) for the polynomi-
als 1

2n−1Tn are

αk = 0 (k > 0) and β1 =
1

2
, βk =

1

4
(k > 2);

see, e.g., [8].
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This section considers quadrature rules with respect to measures ob-
tained by modifying the measure (9) by a linear divisor. Thus, for a constant
c ∈ R\{0}, define the modified Chebyshev measure

dλ̃(x) =
dx

(x− δ)
√

1− x2
for − 1 < x < 1, (10)

where δ = −1
2(c + c−1). Due to symmetry, we may assume that c > 0

(switching the signs of c and x yields the same measure). We introduce

ć = min{c, c−1}, so that δ = −1

2
(ć+ ć−1).

Everything in this section will be expressible solely in terms of ć.

The moment

µ0 =

∫ 1

−1
dλ̃(x) =

2πć

1− ć2
is not defined for c = 1, so we must assume that c 6= 1. Then δ < −1.

2.1. Monic orthogonal polynomials

Let dλ and dλ̃ be measures that satisfy

dλ̃ =
dλ

x− δ
.

Given the monic orthogonal polynomials Pk and recurrence coefficients αk,
βk (1) for the measure dλ, Gautschi [8, eqs. (2.4.24-25)] gives an algorithm
for computing the orthogonal polynomials P̃k and recurrence coefficients α̃k,
β̃k (1) for the measure dλ̃. The algorithm involves the values

rk =
ρk+1

ρk
, where ρk = −

∫ 1

−1

Pk(x)

x− δ
dλ(x) for k > 0, ρ−1 = 1,

and expresses the polynomials P̃k as

P̃k(x) = Pk(x)− rk−1Pk−1(x), k > 1.

For the particular measures (9) and (10), we obtain the relations

rk = δ − 1

4rk−1
(k > 2),

α̃k = rk − rk−1 (k > 1),

β̃k =
rk−1
4rk−2

(k > 3),

with the initial values r0 = −ć, r1 = −1
2 ć,

α̃0 = −ć, and β̃1 =
1

2
(1− ć2), β̃2 =

1

4
.

An easy induction gives us rk = −1
2 ć for all k > 1.
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Theorem 1. The recurrence coefficients for the monic orthogonal polyno-
mials associated with the measure dλ̃ (10) are

α̃0 = −ć, α̃1 = 1
2 ć, α̃k = 0 for k > 2,

β̃1 = 1
2(1− ć2), β̃k = 1

4 for k > 2.

The (monic) orthogonal polynomials P̃k with respect to dλ̃ are

P̃k(x) =
1

2k−1
(Tk(x) + ć Tk−1(x)) for k > 2, (11)

with P̃0(x) = 1 and P̃1(x) = x+ ć.

2.2. Internality of generalized averaged Gauss rules and truncated variants

Since the coefficients α̃k = 0 and β̃k = 1
4 are constant for k > 2, we

obtain as a direct consequence of [21, Theorem 3.1] that:

Theorem 2. The averaged Gauss formula QL2n+1 and the generalized ave-

raged Gauss formula QS2n+1 associated with the measure dλ̃ given by (10)
both coincide with the Gauss-Kronrod formulas for n > 3. Consequently, the
polynomials Fn+1 in (7) are the Stieltjes polynomials.

For n = 1 the formulas QL2n+1 and QS2n+1 do not coincide, whereas for
n = 2 they coincide, but differ from the Gauss-Kronrod rule.

For n > 2, the quadrature rule Q2n+1 = QL2n+1 = QS2n+1 has n Gauss
nodes (3) and n+ 1 nodes that are the zeros of the polynomial

Fn+1(x) = P̃n+1(x)− 1

4
P̃n−1(x)

=
1

2n
(Tn+1(x)− Tn−1(x) + ć (Tn(x)− Tn−2(x))) ;

cf. (7). Since Fn+1(±1) = 0, the outermost zeros of Fn+1 are at ±1. This
yields the following result.

Theorem 3. For n > 2, the averaged quadrature rule Q2n+1 associated with
the measure dλ̃ given by (10) is internal. The truncated variants of Q2n+1

then have all nodes in the open interval (−1, 1) and are thus internal as well.

For n = 1, the smallest node of QL3 for all c, as well as the smallest node
of QS3 for 1

2 < c < 2, is smaller than −1. On the other hand, the formula
QS3 is internal when c 6 1

2 or c > 2.
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3. Modifications by a linear divisor and a linear factor

We consider the measure

dλ̂(x) = (x− γ) dλ̃(x) =
(x−γ) dx

(x−δ)
√

1−x2
for − 1 < x < 1, (12)

where γ = −(12c+ c−1) and δ = −1
2(c+ c−1). Again, switching the signs of

c and x if needed, we may assume that c > 0.

3.1. Monic orthogonal polynomials

Let dλ̃ and dλ̂ be any measures satisfying

dλ̂(x) = (x− γ) dλ̃(x).

Denote by P̃k, α̃k, β̃k, resp. P̂k, α̂k, β̂k, the monic orthogonal polynomials
and the recurrence coefficients for the measure dλ̃, resp. dλ̂.

The polynomials P̂k are related to the polynomials P̃k (k > 0) by the
following equality from [8, Theorem 1.55]:

P̂k(x) =
P̃k+1(x)− rkP̃k(x)

x− γ
, where rk =

P̃k+1(γ)

P̃k(γ)
, (13)

under the assumption that P̃k(γ) 6= 0 for all k.

Gautschi [8, eqs. (2.4.12-13)] gives an algorithm for computing the recur-
sion coefficients for the measure dλ̃, given the recursion coefficients for dλ̂.
With rk as in (13), we obtain

r0 = γ − α̃0, β̂0 = −r0β̃0,

as well as
rk = γ − α̃k − β̃k/rk−1 (k > 0),

α̂k = α̃k+1 + rk+1 − rk,

β̂k = β̃krk/rk−1 (k > 0).

For the particular measures (10) and (12), the initial quantities rk are given
by

r0 =
c2−2

2c
, r1 = − 2

c(2−c2)
, r2 = −c

4+2c2+8

8c
if 0 < c < 1,

r0 = − c
2
, r1 = −c

4+c2+2

2c3
, r2 = −c

6+2c4+4c2+4

2c(c4+c2+2)
if c > 1,

with
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rk = γ − 1

4rk−1
(k > 2). (14)

The initial recursion coefficients are then
α̂0 = − c

2−c2
,

α̂1 =
c(c4+4)

8(2−c2)
,

β̂1 =
2(1−c2)
(2−c2)2

,

β̂2 =
(2−c2)(c4+2c2+8)

64
,

if 0 < c < 1,


α̂0 = − 1

c3
,

α̂1 =
c4+4

2c3(c4+c2+2)
,

β̂1 =
c6+c2−2

2c6
,

β̂2 =
c2(c6+2c4+4c2+4)

4(c4+c2+2)2
,

if c > 1,

with
α̂k = rk+1 − rk (k > 1), β̂k =

rk
4rk−1

(k > 2). (15)

In order to describe all sequences (rk) that satisfy the recurrence relation
(14), we introduce

z =
c2 + 2 +

√
c4 + 4

2c
, (16)

so that z−1 = c2+2−
√
c4+4

2c . Note that z >
√

2 + 1, with equality for c =
√

2.

Theorem 4. Every sequence (rk)
∞
k=1 that satisfies (14) with r1 6= −1

2z
−1 is

of the form

rk = −1

2
· z

k−1 −Az1−k

zk−2 −Az2−k
, (17)

where A is a real constant. If r1 = −1
2z
−1, then rk = −1

2z
−1 for all k. This

corresponds to A =∞.

Proof. We will show (17) by induction over k. Letting

A =
1 + 2z−1r1
1 + 2zr1

(18)

shows that (17) holds for k = 1. Let k > 2, assume that (17) holds for k−1,
and use (14) with γ = −1

2(z + z−1). We then obtain

rk = −1

2
(z + z−1) +

1

2
· z

k−3 −Az3−k

zk−2 −Az2−k
= −1

2
· z

k−1 −Az1−k

zk−2 −Az2−k
.

The initial value r1 = −1
2z
−1, obtained by letting A → ∞, clearly gives

rk = −1
2z
−1 for all k.
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In our case, (18) yields

A =

{
1
4z
−4(c2 +

√
c4 + 4

)2
if c < 1,

1
4z
−2(√c4 + 4− c2

)2
if c > 1.

(19)

In either case,
0 < A < z−2 < 1. (20)

From (15) and (17) we obtain the following result.

Theorem 5. The recursion coefficients for the monic orthogonal polynomi-
als associated with the measure (12) are given by

α̂k = − A(z − z−1)2

2(zk −Az−k)(zk−1 −Az1−k)
,

β̂k =
1

4
+

A(z − z−1)2

4(zk−1 −Az1−k)2
,

where z and A are defined by (16) and (19).

3.2. The averaged Gauss formula QL2n+1

The two outermost nodes of the quadrature formula QL2n+1 are the small-
est zero xπ1 and the largest zero xπn+1 of the polynomial

πn+1(x) = P̂n+1(x)− β̂nP̂n−1(x). (21)

The formula QL2n+1 is internal if and only if −1 6 xπ1 and xπn+1 6 1. These
conditions are equivalent to xn+1πn+1(x) > 0 for x = ±1; see, e.g., [12] for
an analogous discussion. It follows that QL2n+1 is internal if and only if

P̂n+1(x)

P̂n−1(x)
> β̂n for x = ±1. (22)

Theorem 6. The quadrature rule QL2n+1 associated with measure dλ̂ given
by (12) has one external node, namely the smallest node.

Proof. Let n > 2. By (11), (13) and (15), condition (22) reduces to

1
2n+1 (Tn+2(x) + ć Tn+1(x))− rn+1

2n (Tn+1(x) + ć Tn(x))
1

2n−1 (Tn(x) + ć Tn−1(x))− rn−1

2n−2 (Tn−1(x) + ć Tn−2(x))
>

rn
4rn−1

.

For x = 1 and x = −1, this inequality becomes

1− 2rn+1

1− 2rn−1
>

rn
rn−1

(23a) and
1 + 2rn+1

1 + 2rn−1
>

rn
rn−1

, (23b)
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respectively. Substituting (17) into (23a) and simplifying, we obtain

zn−1 −Az−n

zn−3 −Az2−n
>

(zn−1 −Az1−n)2

(zn−2 −Az2−n)2
,

which reduces to the trivial inequality A > −z2n−3; recall that z > 0 and
A > 0; cf. (20). On the other hand, (23b) reduces to A > z2n−3, which is
false by (19) whenever n > 2.

The above statement remains valid for n = 1, as can be shown by some
straightforward computations.

Example 1. Table 1 shows the outermost nodes of the averaged Gauss
quadrature rule QL2n+1 for the measure dλ̂ (12). The computations for this
and the following tables are carried out in Mathematica with high precision
arithmetic. The quadrature nodes are computed with the QR algorithm
applied to the symmetric tridiagonal matrix associated with the quadrature
rule. As expected, the smallest node xπ1 is outside the interval [−1, 1], while
the largest node xπn+1 is inside.

c n xπ1 xπn+1

5 −1− 1.0481(−13) 1− 8.7604(−14)
10 −1− 5.0201(−27) 1− 4.1536(−27)

0.1 15 −1− 3.1937(−40) 1− 2.6335(−40)
20 −1− 2.2835(−53) 1− 1.8797(−53)
30 −1− 1.3823(−79) 1− 1.1360(−79)

5 −1− 5.5711(−13) 1− 3.7461(−13)
10 −1− 2.5196(−23) 1− 1.6938(−23)

10 15 −1− 1.5192(−33) 1− 1.0212(−33)
20 −1− 1.0305(−43) 1− 6.9268(−44)
30 −1− 5.6191(−64) 1− 3.7770(−64)

Table 1: The smallest zero xπ1 and the largest zero xπn+1 of the polynomial (21)

3.3. The generalized averaged Gauss formula QS2n+1

As in the previous subsection, the two outermost nodes of the quadra-
ture rule QS2n+1 are the smallest zero xF1 and the largest zero xFn+1 of the
polynomial

Fn+1(x) = P̂n+1(x)− β̂n+1P̂n−1(x). (24)

These zeros lie in the interval [−1, 1] if and only if xn+1Fn+1(x) > 0 for
x = ±1; see also [19].
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Theorem 7. The two outermost nodes of the quadrature formula QS2n+1 for

the measure dλ̂ given by (12) are both external.

Proof. In this case, the internality of the nodes xF1 and xFn+1 is equivalent
to

1− 2rn+1

1− 2rn−1
>
rn+1

rn
(25a) and

1 + 2rn+1

1 + 2rn−1
>
rn+1

rn
, (25b)

respectively. The inequality (25a) for n > 2 reduces to

zn−1 −Az−n

zn−3 −Az2−n
>
zn−1 −Az1−n

zn−3 −Az3−n
· (zn −Az−n)(zn−2 −Az2−n)

(zn−1 −Az1−n)2
,

which, when expanded, simplifies to the clearly false inequality A 6 −z2n−3.
Similarly, (25b) reduces to A > z2n−3, which is false as well.

For n = 1, it can be shown that the largest node is internal, whereas the
smallest node is external for c approximately between 0.706581 and 1.

Example 2. Table 2 shows the outermost nodes of the generalized averaged
Gauss quadrature rule QS2n+1 for the measure dλ̂ (12), computed for several
values of n and c. As expected, both outermost nodes xF1 are xFn+1 lie outside
the interval [−1, 1].

c n xF1 xFn+1

5 −1− 2.0018(−12) 1 + 1.8485(−12)
10 −1− 9.5884(−26) 1 + 8.7641(−26)

0.1 15 −1− 6.1000(−39) 1 + 5.5567(−39)
20 −1− 4.3616(−52) 1 + 3.9664(−52)
30 −1− 2.6402(−78) 1 + 2.3969(−78)

5 −1− 5.1254(−12) 1 + 4.1956(−12)
10 −1− 2.3180(−22) 1 + 1.8971(−22)

10 15 −1− 1.3976(−32) 1 + 1.1438(−32)
20 −1− 9.4803(−43) 1 + 7.7580(−43)
30 −1− 5.1695(−63) 1 + 4.2302(−63)

Table 2: The smallest zero xF1 and the largest zero xFn+1 of the polynomial (24).

3.4. The truncated generalized averaged Gauss formula Q
(1)
n+2

The quadrature rule Q
(1)
n+2 is internal if the smallest zero xt1 and the

largest zero xtn+2 of the polynomial

13



tn+2(x) = (x− α̂n−1)P̂n+1(x)− β̂n+1P̂n(x), (26)

belong to the interval [−1, 1]; see [3] for a related discussion.

Theorem 8. For n > 3, the truncated rule Q
(1)
n+2 associated with the measure

dλ̂ given by (12) is internal.

Proof. The conditions xt1 > −1 and xtn+2 6 1 reduce to

−(1 + α̂n−1)P̂n+1(−1)

β̂n+1P̂n(−1)
= 2(1+rn−rn−1) ·

rn
rn+1

· 1+2rn+1

1+2rn
> 1 (27a)

and (1− α̂n−1)P̂n+1(1)

β̂n+1P̂n(1)
= 2(1−rn+rn−1) ·

rn
rn+1

· 1−2rn+1

1−2rn
> 1, (27b)

respectively. We first verify (27a). Since

1 + rn − rn−1 = 1 +
Az2n−7(z2 − 1)2

2(z2n−4 −A)(z2n−6 −A)
> 1,

it suffices to show that
rn
rn+1

· 1 + 2rn+1

1 + 2rn
>

1

2
,

i.e., that

1− rn
rn+1

· 1 + 2rn+1

1 + 2rn
=
Az2n−3(z2 − 1)(z + 1)

(z2n −A)(z2n−3 +A)
6

1

2
.

The bounds (20), together with 2A < 1 and z > 1, imply that

(z2n −A)(z2n−3 +A) > (z2n − 1)z2n−3

= z2n−3(z2 − 1)(z2n−2+ · · ·+z2+1)

> 2Az2n−3(z2 − 1)(z + 1).

This shows that xt1 is internal.

Turning to (27b), we have

rn
rn+1

·1− 2rn+1

1− 2rn
=

(z2n−2 −A)(z2n−1 −A)

(z2n −A)(z2n−3 −A)
= 1+

Az2n−3(z + 1)(z − 1)2

(z2n −A)(z2n−3 −A)
>1.

It remains to show that 1− rn + rn−1 > 1
2 , i.e., that

rn − rn−1 =
Az2n−7(z2 − 1)2

2(z2n−4 −A)(z2n−6 −A)
6

1

2
.

Using (20) again, we obtain

(z2n−4 −A)(z2n−6 −A) > z−4(z2n−2 − 1)(z2n−4 − 1)

> z−4 · z2n−4(z2 − 1) · z2n−6(z2 − 1)

= z2n−5 · z−2z2n−7(z2 − 1)2 > Az2n−7(z2 − 1)2.

Therefore, xtn+2 is internal as well.
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For n = 2, the rule Q
(1)
n+2 is not necessarily internal: its largest node

xtn+2 = xt4 is external for c approximately between 0.94 and 1.06.

Example 3. Table 3 shows the outermost nodes of the truncated gen-

eralized averaged Gauss quadrature rule Q
(1)
n+2 for the measure dλ̂ (12),

computed for several values of n and c. As expected, both outermost nodes
xt1 and xtn+2 lie inside the interval [−1, 1].

c n xt1 xtn+2

5 −9.79038030279709(−1) 9.73871633423194(−1)
10 −9.92337134094587(−1) 9.91236852047087(−1)

0.5 15 −9.96058828954681(−1) 9.95661314900172(−1)
20 −9.97604558839063(−1) 9.97418577192209(−1)
30 −9.98845880825367(−1) 9.98784587481856(−1)

5 −9.77280686318141(−1) 9.74518141939028(−1)
10 −9.91951057460943(−1) 9.91363145322045(−1)

2 15 −9.95917096768783(−1) 9.95705465436250(−1)
20 −9.97537626155382(−1) 9.97438877010355(−1)
30 −9.98823592963473(−1) 9.98791158453879(−1)

Table 3: The smallest zero xt1 and the largest zero xtn+2 of the polynomial (26).

4. Numerical performances of the quadrature rules

The following examples illustrate the application of the quadrature rules

QL2n+1, Q
S
2n+1, andQ

(1)
n+2 for estimating the quadrature error (5) in the Gauss

quadrature rule QGn . We will compute the integral

I(f) =

∫ 1

−1
f(x) dλ̂(x), (28)

for two integrands, where the measure dλ̂ is given by (12), and tabulate the
error estimates EAG = |QL2n+1(f)−QGn (f)|,

EGA = |QS2n+1(f)−QGn (f)|,

ETGA = |Q(1)
n+2(f)−QGn (f)|

for several values of n and c > 0. “Error” denotes the actual value of error,
estimated using the Gauss quadrature rule with 3n nodes.
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Example 4. Table 4 lists the error estimates when the integrand f in (28)
is the entire function f(t) = e3t sin 10t.

We have I(f) ≈ 1.1220 when c = 0.1 and I(f) ≈ 5.9137(−1) when c = 10.
All three error estimates are very accurate.

c n EAG EGA ETGA Error

5 5.7858 5.7858 5.7394 5.7855
10 3.5777(−4) 3.5777(−4) 3.5792(−4) 3.5777(−4)

0.1 15 7.0202(−11) 7.0202(−11) 7.0205(−11) 7.0202(−11)
20 4.2854(−19) 4.2854(−19) 4.2854(−19) 4.2854(−19)
30 1.1955(−38) 1.1955(−38) 1.1955(−38) 1.1955(−38)

5 2.9498 2.9498 2.9202 2.9497
10 1.8355(−4) 1.8355(−4) 1.8361(−4) 1.8355(−4)

10 15 3.5798(−11) 3.5798(−11) 3.5799(−11) 3.5798(−11)
20 2.1753(−19) 2.1753(−19) 2.1753(−19) 2.1753(−19)
30 6.0363(−39) 6.0363(−39) 6.0363(−39) 6.0363(−39)

Table 4: The error estimates (4) and the actual Error (5).

Example 5. Table 5 shows results for the integral (28) with the integrand

f(t) = 999.1log10(1+ε+t), where ε = 10−100.

This integrand has a discontinuity at t = −1− ε, very close to the support
of the measure. We have I(f) ≈ 11.9094 when c = 0.5 and I(f) ≈ 8.8666
when c = 2.

c n ETGA Error

5 6.8789(−8) 7.6155(−8)
10 4.5475(−10) 6.3826(−10)

0.5 15 2.2961(−11) 3.9905(−11)
20 2.6705(−12) 5.5638(−12)
30 1.2312(−13) 3.4303(−13)

5 3.5371(−9) 3.8968(−8)
10 2.1419(−10) 2.9828(−10)

2 15 1.0378(−11) 1.7892(−11)
20 1.1779(−12) 2.4358(−12)
30 5.2821(−14) 1.4625(−13)

Table 5: The error estimate ETGA and the actual Error (5).
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Since the rules QL2n+1 and QS2n+1 themselves have a node smaller than
−1 − ε, they are practically useless in this case. On the other hand, the

truncated rule Q
(1)
n+2, which is internal, provides error estimates with the

correct order of magnitude.

We remark that the closeness of the singularity to −1 makes it difficult
to determine very accurate error estimates.

5. Conclusion

In this paper, we discuss quadrature rules for two kinds of modifications
of the Chebyshev measure of the first kind. We study the internality of
averaged Gauss rules, generalized averaged Gauss rules, as well as truncated
generalized averaged Gauss rules.

Computed examples illustrate the theory, and show the quality of the
computed error estimates. The error estimates are found to be very accurate
when the integrand does not have a singularity close to the support of the
measure. When the integrand has a singularity very close to the support of
the measure, the accuracy of the error estimates is reduced.
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[21] M. M. Spalević, On generalized averaged Gaussian formulas, II, Math.
Comp., 86 (2017) 1877-1885.
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