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Abstract. The need to solve discrete ill-posed problems arises in many areas of

science and engineering. Solutions of these problems, if they exist, are very sensitive

to perturbations in the available data. Regularization replaces the original problem

by a nearby regularized problem, whose solution is less sensitive to the error in the

data. The regularized problem contains a fidelity term and a regularization term.

Recently, the use of a p-norm to measure the fidelity term and a q-norm to measure

the regularization term has received considerable attention. The balance between these

terms is determined by a regularization parameter. In many applications, such as in

image restoration, the desired solution is known to live in a convex set, such as the

nonnegative orthant. It is natural to require the computed solution of the regularized

problem to satisfy the same constraint(s). This paper shows that this procedure induces

a regularization method and describes a modulus-based iterative method for computing

a constrained approximate solution of a smoothed version of the regularized problem.

Convergence of the iterative method is shown, and numerical examples that illustrate

the performance of the proposed method are presented.

Submitted to: Inverse Problems
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1. Introduction

Many applications in science and engineering require the solution of minimization

problems of the form

min
x∈Rn

‖Ax− b‖pp, (1)

where A ∈ R
m×n is a large matrix, whose singular values “cluster” at the origin. Matrices

of this kind arise, for instance, from the discretization of Fredholm integral equations of

the first kind. The minimization problem (1) is a so-called discrete ill-posed problem;

see, e.g., [1, 2, 3] for discussions on this kind of problems. The vector b ∈ Rm represents

measured data that are contaminated by an (unknown) error e ∈ Rm that may stem

from measurement or discretization inaccuracies. Our solution methods allow m ≥ n as

well as m < n.

When p = 2, the minimization problem (1) is a linear least-squares problem. We

also are interested in computing approximate solutions of (1) when 0 < p < 2. The

choice of p should be informed by the type of error e in b; see below.

Letting p = 2 is appropriate when the error e in b can be modeled by white Gaussian

noise. However, when the error is non-Gaussian, e.g., when b is contaminated by impulse

noise, the use of the Euclidean norm is not effective. When p ≥ 1, the expression

‖x‖p =
(

n∑

j=1

|xj |p
)1/p

, x = [x1, x2, . . . , xn]
T ∈ R

n

is a norm. The mapping x 7→ ‖x‖p is not a norm for 0 < p < 1, since it does not satisfy

the triangle inequality. Nevertheless, minimization of (1) for these values of p also is of

interest; see, e.g., [4, 5, 6]. For simplicity, we will refer to the mapping x 7→ ‖x‖p as a

norm for all p > 0.

Let btrue ∈ Rm denote the unknown error-free vector associated with b, i.e.,

b = btrue + e.

We would like to compute the solution of minimal norm, xtrue, of the minimization

problem (1) with b replaced by btrue. We assume that btrue is in the range of A, denoted

by R(A). Since the singular values of A “cluster” at the origin, the matrix A in (1) is

numerically rank deficient. The minimization problem (1) therefore might not have a

solution or the solution might not be an accurate approximation of xtrue due to severe

propagation of the error e in b into the computed solution. To remedy these difficulties,

at least in part, we replace the minimization problem (1) by a penalized minimization

problem of the form

xµ := argmin
x

Jµ(x), (2)

where

Jµ(x) := Φfid(x) + µΦreg(x),

Φfid(x) :=
1

p
‖Ax− b‖pp =

1

p

m∑

i=1

φp((Ax− b)i),
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Φreg(x) :=
1

q
‖Lx‖qq =

1

q

s∑

j=1

φq((Lx)j),

and 0 < p, q ≤ 2. This replacement is known as regularization. The function

φγ : R → R+ ∪ {+∞} is given by

φγ(t) = |t|γ, γ ∈ R, (3)

and the matrix L ∈ R
s×n is referred to as the regularization matrix. Common choices

of L include the identity, a finite difference matrix, or a framelet operator; see, e.g.,

[6, 7, 8]. The regularization parameter µ > 0 balances the influence of the fidelity term

Φfid and the regularization term Φreg in (2). Let N (M) denote the null space of the

matrix M . It is desirable that L be chosen so that

N (A) ∩ N (L) = {0}, (4)

because then the minimization problem (2) has a unique solution for any µ > 0 when

p, q > 1.

Minimization problems of the form (2) arise in a wide variety of research areas, such

as in numerical linear algebra [9, 10], image restoration [5, 6, 8], compressed sensing

[11, 12, 13], pattern recognition [14], and matrix completion [15].

It is in general beneficial to impose the same constraints on the computed solution

that the desired solution, xtrue, is known to satisfy. For example, in image restoration

problems, the entries of xtrue represent pixel values of the image. Pixels are nonnegative

and, therefore, one generally obtains a more accurate approximation of xtrue when

solving the constraint minimization problem

x+
µ := argmin

x≥0
Jµ(x) (5)

than when solving the unconstrained problem (2). In the present paper we first show

that (5) induces a regularization method whenever the regularization parameter µ is

chosen appropriately with respect to the noise. Then, we describe a solution method

for a smoothed version of (5) that is based on the modulus iterative method [16]. As

numerically shown in [17] the difference between the results obtained considering the

smoothed and the original functional is negligible in terms of quality of the computed

reconstructions.

To the best of our knowledge, this is the first time that the regularization properties

of ℓp-ℓq minimization have been investigated. Moreover, the constrained version (5)

of the model (2) has not been proposed before, and the majorization-minimization

algorithm has never been combined with the modulus method. Particular cases of this

regularization technique have been analyzed in [18, 19, 20].

The organization of this paper is as follows. Section 2 proves that the described

minimization scheme is a regularization method. Section 3 outlines the majorization-

minimization generalized Krylov subspace (MM-GKS) method proposed in [5] for the

solution of a smoothed version of the unconstrained minimization problem (2). Section 4

reviews modulus-based methods for constrained optimization problems. Modulus-based
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methods for the solution of a smoothed version of (5) are described in Section 5, which

discusses two approaches: The first approach uses nested generalized Krylov subspaces

and applies the modulus-based method in these subspaces. The second approach is well

suited for minimization problems (5) in which A is a block-circulant-circulant-block

(BCCB) matrix. Then the fast Fourier transform (FFT) can replace the generalized

Krylov subspace method. This replacement reduces the computational cost. Section 6

shows the convergence of the proposed methods. Illustrative numerical examples are

presented in Section 7, and Section 8 contains concluding remarks.

2. Regularization property

In this section we discuss the regularization properties of (5). In particular, we would

like to show that, when the norm of the noise e goes to 0, the minimizers of (5) converge

to a desirable solution of the noise-free problem. This kind of result is standard in

the theory of inverse problems; see, e.g., [1]. The proofs presented here are similar to,

and the results can be derived from, the ones in [21]. We present the proofs for the

convenience of the reader. Before showing the regularization properties, we need two

auxiliary results.

Lemma 1. Let {xj}j∈N be a sequence of elements of Rn and let q > 0. If the ‖xj‖qq are

uniformly bounded, i.e., if there exists a constant c > 0 independent of j such that

‖xj‖qq ≤ c ∀j ∈ N,

then ‖xj‖22 is uniformly bounded.

Proof. By definition of the q-norm we have

c ≥ ‖xj‖qq =
n∑

i=1

|(xj)i|q,

where (xj)i denotes the ith component of xj . Thus,

c ≥ |(xj)i|q ∀1 ≤ i ≤ n, j ∈ N,

which yields

c1/q ≥ |(xj)i| ∀1 ≤ i ≤ n, j ∈ N.

We can now bound the 2-norm by

‖xj‖22 =
n∑

i=1

(xj)
2
i ≤

n∑

i=1

c2/q = nc2/q.

Let

Ω0 = {x ∈ R
n : xi ≥ 0, i = 1, 2, . . . , n}
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denote the nonnegative orthant, and define the indicator function i0 for Ω0,

i0(x) =

{
0 if x ∈ Ω0,

∞ else.
(6)

We can rewrite the minimization problem (5) as

min
x∈Rn

Ĵµ(x), Ĵµ(x) = Jµ(x) + i0(x). (7)

Let us first show that Ĵµ admits a minimizer.

Lemma 2. Let condition (4) hold, then the functional Ĵµ defined in (7) admits a global

minimizer.

Proof. It is immediate that the functional Ĵµ is lower semi-continuous, proper, and

coercive. Thus, there exists an x ∈ Rn such that Ĵµ(x) < ∞.

Let

ϕ = inf
x∈Rn

Ĵµ(x).

There exists a constant M and a sequence {xj}j such that Ĵµ(xj) → ϕ as j → ∞ and

Ĵµ(xj) ≤ M for all j. In particular, ‖Ax− b‖pp ≤ Mp and ‖Lx‖qq ≤ M q
µ
. With a similar

argument as in Lemma 1, we have that there are two constants c1 and c2 such that

‖Axj − b‖22 ≤ c1 and ‖Lxj‖22 ≤ c2 ∀j.

Thanks to (4), it is easy to see that there is a constant c such that

‖xj‖22 ≤ c ∀j,

i.e., the sequence {xj}j is uniformly bounded. Hence, it admits a convergent subsequence

{xjk}jk . Let x̄ be the limit of the subsequence {xjk}jk . We have that

ϕ ≤ Ĵµ(x̄) ≤ lim inf
jk→∞

Ĵµ(xjk) = lim
jk→∞

Ĵµ(xjk) = ϕ,

i.e., x̄ is a minimizer of Ĵµ.

We are in position to show our main result.

Theorem 3. Consider the minimization problem (7) with 0 < p, q ≤ 2. Let S denote

the set of nonnegative solutions of the noise-free problem associated with (1), i.e.,

S = {x ∈ R
n : Ax = btrue and x ∈ Ω0}.

Assume that S is non-empty. Let {bj}j∈N be a sequence of vectors in Rm such that

‖bj − btrue‖p ≤ δj → 0 as j → ∞, and let {µj}j∈N be a sequence of positive real numbers

such that

µj → 0 and
δpj
µj

→ 0 as j → ∞.
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For all j, let xj denote a global minimizer of

Ĵj(x) =
1

p
‖Ax− bj‖pp +

µj

q
‖Lx‖qq + i0(x).

There exists a convergent subsequence of {xj}j∈N, denoted by {xm}m∈N, such that

xm → x∗ as m → ∞,

where

x∗ ∈ argmin
x∈S

‖Lx‖qq.

Proof. First, let us observe that the sequence {xj}j∈N is well defined thanks to Lemma 2.

Since xj is a global minimizer of Ĵj, we have that

Ĵj(xj) ≤ Ĵj(x) ∀x ∈ R
n.

In particular, let x† ∈ argminx∈S ‖Lx‖qq. Then
Ĵj(xj) ≤ Ĵj(x

†). (8)

Observe that obviously xj ∈ Ω0 and that x† ∈ Ω0 by definition. Thus i0(xj) = i0(x
†) = 0.

This, combined with (8) and the definition of δj , implies

1

p
‖Axj−bj‖pp+

µj

q
‖Lxj‖qq ≤

1

p
‖Ax†−bj‖pp+

µj

q
‖Lx†‖qq ≤

δpj
p
+
µj

q
‖Lx†‖qq. (9)

The inequality above shows that the sequences {‖Axj − bj‖pp}j∈N and {‖Lxj‖qq}j∈N
are uniformly bounded. Thanks to Lemma 1, we also have that the sequences

{‖Axj− bj‖22}j∈N and {‖Lxj‖22}j∈N are uniformly bounded and, since N (A)∩N (L) = 0,

the sequence {xj}j∈N admits a convergent subsequence, which we also denote by

{xm}m∈N. Let x
∗ denote the limit of {xm}m∈N. We first show that Ax∗ = btrue. Consider

0 ≤ 1

p
‖Ax∗ − btrue‖pp ≤ lim inf

m→∞

1

p
‖Axm − bm‖pp

≤ lim inf
m→∞

{
1

p
‖Axm − bm‖pp +

µm

q
‖Lxm‖qq

}

≤ lim inf
m→∞

{
δpj
p

+
µm

q
‖Lx†‖qq

}
= 0,

which implies that Ax∗ = btrue.

We now show that

x∗ ∈ argmin
x∈S

‖Lx‖qq.

We need to show that x∗ ∈ Ω0, i.e., that i0(x
∗) = 0, and that ‖Lx∗‖qq = ‖Lx†‖qq. Consider

1

q
‖Lx∗‖qq + i0(x

∗) ≤ lim inf
m→∞

{
1

q
‖Lxm‖qq + i0(xm)

}

≤ lim inf
m→∞

{
1

pµj
‖Axm − bm‖pp +

1

q
‖Lxm‖qq + i0(xm)

}

≤ lim inf
m→∞

{
δpj
pµj

+
1

q
‖Lx†‖qq

}
=

1

q
‖Lx†‖qq,
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where the last inequality follows from (9) divided by µj > 0. Multiplying the left-hand

and right-hand sides of the above inequality by q > 0, we obtain

‖Lx∗‖qq + i0(x
∗) ≤ ‖Lx†‖qq,

which implies i0(x
∗) = 0 and ‖Lx∗‖qq = ‖Lx†‖qq. This concludes the proof.

3. A majorization-minimization solution method

We review one of the majorization-minimization (MM) methods for the solution of (2)

described in [5]. In each step of this method one first determines a functional Q that

is a quadratic tangent majorant for Jµ(x), and then computes the minimum of this

functional.

Definition 4 ([5]). The functional x 7→ Q(x, v) : Rn → R is said to be a quadratic

tangent majorant for x 7→ Jµ(x) at x = v ∈ Rn if

(i) x 7→ Q(x, v) is quadratic,

(ii) Q(v, v) = Jµ(v),

(iii) ▽xQ(v, v) = ▽xJµ(v),

(iv) Q(x, v) ≥ Jµ(x) ∀x ∈ Rn,

where ▽xf denotes the gradient of f = f(x) with respect to x ∈ R
n.

The functional Jµ(x) admits a quadratic majorant for 1 < p, q ≤ 2, but not for

0 < p ≤ 1 or 0 < q ≤ 1, since x 7→ Jµ(x) is not differentiable for the latter values of p

and q, and all x. For this reason, one smooths the function (3) to make it differentiable

for γ ∈ (0, 1]. A popular smoothed version of (3) is given by

φγ,ǫ(t) =
(
t2 + ǫ2

)γ/2
with

{
ǫ > 0 for 0 < γ ≤ 1,

ǫ = 0 for γ > 1,

for some small ǫ > 0. The minimization problem (2) is replaced by the smoothed

problem

min
x∈Rn

Jµ,ǫ(x), Jµ,ǫ(x) :=
1

p

m∑

i=1

φp,ǫ((Ax− b)i) +
µ

q

s∑

j=1

φq,ǫ((Lx)j). (10)

Huang et al. [5] describe two approaches to construct a quadratic tangent majorant

for (10) at an available approximate solution x = x(k). The majorants considered in

[5] are referred to as adaptive or fixed quadratic majorants. The latter are cheaper

to compute, but may give slower convergence. We develop the analysis only for

fixed quadratic majorants, but all theoretical results also hold for adaptive quadratic

majorants.

Let x(k) be an available approximate solution of (10), and introduce the vectors

v(k) = Ax(k) − b, u(k) = Lx(k).
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Define

w
(k)
fid = v(k)

(
1−

(
(v(k))2 + ǫ2

ǫ2

)p/2−1
)
,

w(k)
reg = u(k)

(
1−

(
(u(k))2 + ǫ2

ǫ2

)q/2−1
)
,

where all operations in the expressions on the right-hand sides, including squaring, are

element-wise. It is shown in [5] that the functional

Q(x, x(k)) =
ǫp−2

2

(
‖Ax− b‖22 − 2〈w(k)

fid , Ax〉
)

+
µǫq−2

2

(
‖Lx‖22 − 2〈w(k)

reg, Lx〉
)
+ c,

(11)

where c is a suitable constant that is independent of x, is a quadratic tangent majorant

for Jµ,ǫ(x) at x(k). We determine the next approximation, x(k+1), as the minimizer of

Jµ,ǫ(x) by minimizing the functional x 7→ Q(x, x(k)). It follows from (11) that

x(k+1) = argmin
x∈Rn

[
‖Ax− b‖22 − 2〈w(k)

fid , Ax〉+ η
(
‖Lx‖22 − 2〈w(k)

reg, Lx〉
)]

, (12)

where η = µ ǫq−2

ǫp−2 . Details of the derivation of this expression are provided in [5].

Since the functional x 7→ Q(x, x(k)) is quadratic, the minimizer x(k+1) can be

computed by determining the zero of the gradient of the expression in the right-hand

side of (12), i.e., by solving the linear system of equations

(ATA+ ηLTL)x = AT (b+ w
(k)
fid ) + ηLTw(k)

reg, (13)

where the superscript T denotes transposition. The matrix on the left-hand side of

(13) is nonsingular for µ > 0 when (4) holds. This condition typically is satisfied for

image restoration problems, since in this application the matrix A represents a blurring

operator, which is a low-pass filter, while the regularization matrix L usually is the

identity matrix or a difference operator, which is a high-pass filter. For future reference,

we formulate equation (13) as the equivalent least-squares problem

min
x∈Rn

∥∥∥∥∥

[
A

η1/2L

]
x−

[
b+ w

(k)
fid

η1/2w
(k)
reg

]∥∥∥∥∥

2

2

. (14)

An algorithm for the MM method of this section is described in [5, Section 5]. This

algorithm determines an approximate solution in a low-dimensional solution subspace.

The dimension of this subspace is increased by one in each iteration. We will in Section 5

present an extension of this algorithm to the constrained minimization problems (5).

4. Modulus-based iterative methods

In [22, 23] a constrained least-squares problem is reduced to a linear complementarity

problem, which can be solved by a modulus-based iterative method. We will apply such

a method to the solution of a nonnegatively constrained least-squares problem associated
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with (12). For the convenience of the reader, we describe the following results that are

discussed by Bai [16] and Cottle et al. [24].

Theorem 5. Let M be a symmetric positive definite matrix. Then the nonnegatively

constrained quadratic programming problem,

min
z≥0

(
1

2
zTMz + cT z

)
,

which we denote by NNQP(M, c), is equivalent to the linear complementarity problem,

z ≥ 0, Mz + c ≥ 0, zT (Mz + c) = 0,

which is denoted by LCP(M, c).

Corollary 6. Let M ∈ Rn×n be symmetric and positive definite and let c ∈ Rn. Then

the problems NNQP(M, c) and LCP(M, c) have the same unique solution.

Corollary 7. The nonnegative least squares (NNLS) problem

min
z≥0

‖Gz − g‖2

is equivalent to LCP(GTG,−GTg), z ≥ 0, r = GTGz − GTg ≥ 0, and zT r = 0. It has

a unique solution when the matrix G is of full column rank.

Theorem 8. Let D ∈ R
n×n be a positive definite diagonal matrix, and define for any

vector y = [y1, y2, . . . , yn]
T ∈ Rn the vector |y| = [|y1|, |y2|, . . . , |yn|]T ∈ Rn.

(i) If (z, r) is a solution of LCP(GTG,−GTg), then y = (z −D−1r)/2 satisfies

(D +GTG)y = (D −GTG)|y|+GTg. (15)

(ii) If y satisfies (15), then z = |y| + y and r = D(|y| − y) is a solution of

LCP(GTG,−GTg).

Proof. The theorem follows from results in [16].

Algorithm 1 (Modulus-based iterative method). Let D ∈ Rn×n be a positive

definite diagonal matrix and let y(0) be an initial approximate solution of (15).

for k = 0, 1, . . . do

y(k+1) = (D +GTG)−1((D −GTG)|y(k)|+GTg);

Exit when ‖y(k+1) − y(k)‖2 is small enough;

end

z = y(k+1) + |y(k+1)|;
We are interested in the situation when D = αI with α > 0 in Algorithm 1.

Convergence can be shown when the matrix GTG is nonsingular; see, e.g., [22, 23].

The matrix (D+GTG)−1 is not explicitly formed when executing the algorithm; this is

commented on further below. The iterations with the algorithm are repeated until two

consecutive iterates are close enough or the maximal number of iterations is achieved.

We will apply this algorithm in the following section.
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5. Constrained ℓp-ℓq minimization methods

We describe the application of the modulus-based iterative method of the previous

section to the ℓp-ℓq minimization problem with nonnegativity constraint (5). The

method can be modified to handle other inequality constraints.

Consider the minimization problem,

min
x≥0

1

p
‖Ax− b‖pp +

µ

q
‖Lx‖qq. (16)

To impose the nonnegativity constraint on the solution, we replace the functional (10)

by

min
x∈Rn

Ĵµ,ǫ(x), Ĵµ,ǫ(x) = Jµ,ǫ(x) + i0(x), (17)

where the indicator function i0 is defined in (6). Since the functional Ĵµ,ǫ is not

differentiable on the boundary of Ω0, instead of constructing a quadratic tangent

majorant, we define and construct a constrained quadratic tangent majorant. We will

require that the majorant is quadratic in Ω0, and that it takes on the value ∞ in Rn\Ω0.

Definition 9. The functional x 7→ Q̂(x, v) : Rn → R is said to be a constrained

quadratic tangent majorant for x 7→ Ĵµ,ǫ(x) = Jµ,ǫ(x) + i0(x) at x = v ∈ Rn if Q̂(x, v)

can be expressed as

Q̂(x, v) = Q(x, v) + i0(x),

where Q(x, v) is a quadratic tangent majorant of Jµ,ǫ(x) in the sense of Definition 4.

For an available approximate solution x(k) of (5) with µ > 0 and ǫ > 0, the

expression

Q̂(x, x(k)) = Q(x, x(k)) + i0(x), (18)

with Q defined in (11), is a constrained quadratic tangent majorant of the functional

x 7→ Ĵµ,ǫ(x) at x = x(k).

Proposition 10. Let 0 < p, q ≤ 2 and assume that condition (4) holds. Then, for any

x(k) ∈ Rn, the functional Q̂ defined by (18) is a constrained quadratic tangent majorant

for Ĵµ,ǫ(x).

Proof. This result follows trivially from the definitions of Q̂ and Q.

5.1. Minimization method for general matrices

When the matrix A is large, the computations required by Algorithm 1 may be

prohibitive. We will show how the computational cost can be reduced by determining

an approximate solution in a generalized Krylov subspace (GKS). We remark that GKS

methods have previously been applied in [5] to solve the unconstrained minimization

problem (2).
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The GKS method first determines an initial reduction of A to a small bidiagonal

matrix by applying 1 ≤ ℓ ≪ min{m,n} steps of Golub–Kahan bidiagonalization to A

with initial vector b. This gives a decomposition

AV0 = U0B0, (19)

where the matrix V0 ∈ Rn×ℓ has orthonormal columns that span the Krylov subspace

Kℓ(A
TA,AT b) = span{AT b, (ATA)AT b, . . . , (ATA)ℓ−1AT b}, the matrix U0 ∈ Rm×(ℓ+1)

has orthonormal columns, the first one of which is b/‖b‖2, and the matrix B0 ∈ R(ℓ+1)×ℓ

is lower bidiagonal. It is inexpensive to compute the QR factorization AV0 = QARA,

where QA ∈ Rm×ℓ has orthonormal columns and RA ∈ Rℓ×ℓ is upper triangular. We

also compute the QR factorization LV0 = QLRL, where QL ∈ R
s×ℓ has orthonormal

columns and RL ∈ Rℓ×ℓ is upper triangular (recall that L ∈ Rs×n). Here we assume

that 1 ≤ ℓ ≤ s is small enough so that the decomposition (19) exists. This is the generic

situation.

To begin with, we determine an initial approximate solution in R(V0) of the least-

squares problem (14). Thus, we solve the problem

min
y∈Rℓ

∥∥∥∥∥

[
AV0

η1/2LV0

]
y −

[
(b+ w

(k)
fid )

η1/2w
(k)
reg

]∥∥∥∥∥

2

2

,

which simplifies to

min
y∈Rℓ

∥∥∥∥∥

[
RA

η1/2RL

]
y −

[
QT

A(b+ w
(k)
fid )

η1/2QT
Lw

(k)
reg

]∥∥∥∥∥

2

2

. (20)

This gives the approximate solution

x(0) = V0y
(0)

of (14), where y(0) ∈ Rℓ denotes the solution of (20).

To determine an approximate solution of the constrained minimization problem in

R(V0), we replace (20) by

x(0) = argmin
x≥0

∥∥∥∥∥

[
RA

η1/2RL

]
V T
0 x−

[
QT

A(b+ w
(k)
fid )

η1/2QT
Lw

(k)
reg

]∥∥∥∥∥

2

2

. (21)

This problem is solved by the modulus-based iterative method described by Algorithm 1.

We apply this algorithm with the matrices and vector

G =

[
RA

η1/2RL

]
V T
0 , D = αI, g =

[
QT

A(b+ w
(k)
fid )

η1/2QT
Lw

(k)
reg

]
,

and initial approximate solution z(0) = max{x(0), 0}, where the operation “max” is

component-wise. The parameter α > 0 is user-defined. Its choice is discussed in [23].

The iterations with Algorithm 1 can be expressed as

z
(0)
j+1 = V0(αI +RT

ARA + ηRT
LRL)

−1

·
(
(αI −RT

ARA − ηRT
LRL)V

T
0 |z(0)j |+GTg

) (22)
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for j = 0, 1, 2, . . . . We remark that the matrix (αI + RT
ARA + ηRT

LRL)
−1 is

not explicitly formed; instead, we compute the Cholesky factorization of the matrix

αI +RT
ARA + ηRT

LRL.

Theorem 11. Assume that the matrix RT
ARA+ηRT

LRL is of full rank. Then the sequence

{z(0)j }j generated by iteration (22) converges to the solution of (21).

Proof. Convergence for the situation when V0 = I is shown in, e.g., [22, 23]. It is based

on the observation that the largest eigenvalue of the matrix

M = (αI +RT
ARA + ηRT

LRL)
−1 · (αI − RT

ARA − ηRT
LRL)

is strictly smaller than one. Let the columns of Ṽ0 ∈ Rn×(n−ℓ) be such that the matrix

W = [V0, Ṽ0] ∈ Rn×n is orthogonal, and define

M̃ = W

[
M 0

0 0

]
W T .

Then the iterations (22) can be expressed as

z
(0)
j+1 = M̃ |z(0)j |+ V0G

Tg, j = 0, 1, 2, . . . . (23)

The largest eigenvalue of M̃ is strictly smaller than one. Therefore, the convergence

proof in [22, 23] carries over to the iterations (23) and, hence, to the iterations (22).

Let the iterations (22) terminate with the iterate z
(0)
j+1. An approximate solution of

(21) then is furnished by

x
(0)
+ = z

(0)
j+1 + |z(0)j+1|. (24)

Substituting (24) into (13) gives the residual vector

r(0) = AT (Ax
(0)
+ − (b+ w

(0)
fid )) + ηLT (Lx

(0)
+ − w(0)

reg).

We expand the solution subspace by including the scaled residual vector vnew =

r(0)/‖r(0)‖2 in the solution subspace. Note that, at least in exact arithmetic, the vector

vnew is orthogonal to the columns of V0. We define the matrix V1 = [V0, vnew] ∈ Rn×(ℓ+1),

whose columns form an orthonormal basis for the expanded solution subspace. If vnew
is not numerically orthogonal to the columns of V0, then we reorthogonalize.

We store the matrices

AV1 = [AV0, Avnew], LV1 = [LV0, Lvnew]

and compute their QR factorizations by updating the QR factorizations of AV0 and LV0

according to

AV1 = [AV0, Avnew] = [QA, q̃A]

[
RA rA
0T τA

]
, (25)

LV1 = [LV0, Lvnew] = [QL, q̃L]

[
RL rL
0T τL

]
, (26)
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where

rA = QT
A(Avnew), qA = Avnew −QArA, τA = ‖qA‖2, q̃A = qA/τA,

rL = QT
L(Lvnew), qL = Lvnew −QLrL, τL = ‖qL‖2, q̃L = qL/τL;

see [25] for details on updating the QR factorization of a matrix. We now apply the

modulus-based iterations (22) with RA and RL replaced by the upper triangular matrices

in the QR factorizations (25) and (26), respectively, and use the initial iterate x
(0)
+ . The

modulus-based iterations give a new approximate solution x
(1)
+ of (16), a new associated

residual vector

r(1) = AT (Ax
(1)
+ − (b+ w

(1)
fid )) + ηLT (Lx

(1)
+ − w(1)

reg),

and a new solution subspace defined by the range of the matrix

V2 = [V1, r
(1)/‖r(1)‖2].

The computations proceed in this manner until an approximate solution of (16) with

desired accuracy has been determined. Details of the computations are described by

Algorithm 2.
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Algorithm 2 (NN-(ℓp-ℓq)GKS). Let A ∈ Rm×n and L ∈ Rs×n be such that (4) holds.

Let 0 < p ≤ 2, and 0 < q ≤ 2. Fix ǫ > 0, ℓ > 0, and µ > 0. Let b ∈ Rm denote the

noise-corrupted data vector and let x
(0)
+ ∈ Ω0 be an initial guess for the solution of (1).

η = µ ǫq−2

ǫp−2 ;

Generate the initial subspace basis: V0 ∈ Rn×ℓ such that V T
0 V0 = I;

Compute AV0 and LV0;

Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

for k = 0, 1, 2, . . . do

v(k) = Ax
(k)
+ − b;

u(k) = Lx
(k)
+ ;

w
(k)
fid = v(k)

(
1−

(
(v(k))2+ǫ2

ǫ2

)p/2−1
)
;

w
(k)
reg = u(k)

(
1−

(
(u(k))2+ǫ2

ǫ2

)q/2−1
)
;

G =

[
RA

η1/2RL

]
V T
0 ;

Let λmin and λmax denote the smallest and largest eigenvalue of GTG;

α =
√
λminλmax;

g =

[
QT

A(b+ w
(k)
fid )

η1/2QT
Lw

(k)
reg

]
;

x(k) = (RT
ARA + ηRT

LRL)
−1(RT

AQ
T
A(b+ w

(k)
fid ) + ηRT

LQ
T
Lw

(k)
reg);

z
(k)
0 = max{x(k), 0};
for j = 0, 1, . . . do

z
(k)
j+1 = V0(αI +RT

ARA + ηRT
LRL)

−1
(
(αI − RT

ARA − ηRT
LRL)V

T
0 |z(k)j |+GTg

)
;

Exit loop when ‖z(k)j+1 − z
(k)
j ‖2 is small enough;

end

x
(k)
+ = z

(k)
j+1 + |z(k)j+1|;

Compute the residual r(k) = AT (Ax
(k)
+ − (b+ w

(k)
fid )) + ηLT (LV x

(k)
+ − w

(k)
reg);

Reorthogonalize, if needed, r(k) = r(k) − VkV
T
k r(k);

Enlarge the solution subspace with vnew = r(k)

‖r(k)‖2
;

Vk+1 = [Vk, vnew];

Update the QR factorizations AVk+1 = QARA and LVk+1 = QLRL;

end

We observe that Algorithm 2 requires the computation of the smallest and largest

eigenvalues of GTG. Thanks to the projection into the generalized Krylov subspace, the

matrix GTG is of fairly small dimension. Therefore, these eigenvalues can be estimated

very cheaply. This can be done by computing the largest and the smallest singular

values of G, for instance, by using the method described in [26]. Iterations in the j-loop
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are terminated when two consecutive iterates are close enough. The stopping criterion

is described in Section 7; see (32).

5.2. Minimization method for BCCB matrices

When deblurring images with large black areas close to the edges of the image, the

blurring matrix A ∈ R
n×n often can be chosen to be a BCCB (block circulant with

circulant blocks) matrix without affecting the quality of the restoration in a negative

way. Many astronomical images allow the use of a BCCB blurring matrix; see, e.g., [27]

for a discussion. The advantage of using a BCCB blurring matrix A is that it can be

diagonalized by the unitary two-dimensional Fourier matrix F ∈ Cn×n. Thus,

A = F ∗ΣF, (27)

where the matrix Σ is diagonal, possibly with complex diagonal entries. The superscript
∗ denotes transposition and complex conjugation. The factorization (27) can be

computed in O(n log2(n)) arithmetic floating point operations (flops) and allows at each

step of the algorithm to transform the ℓ2-ℓ2 minimization problem (14), whose solution

provides an approximation of the solution of the original ℓp-ℓq minimization problem,

to a diagonal system. This makes the application of the modulus-based iterations

(Algorithm 1) inexpensive when D = αI for special regularization matrices L. In

the computed examples reported in Section 7, we let L = W be an analysis operator

defined by the transformation to a framelet domain; see Section 7 for details. Here it

suffices to note that W TW = I. The matrix GTG in the modulus-based method then

can be expressed as

GTG = ATA+ ηLTL = ATA+ ηW TW = F ∗(Σ∗Σ+ ηI)F.

The evaluation of matrix-vector products with the matrix in the right-hand side requires

only O(n log2(n)) flops when using the FFT. Details of the computations are described

by Algorithm 3. We remark that the matrix F is not explicitly formed; only matrix-

vector products with F and F ∗ are evaluated.

Algorithm 3 (NN-(ℓp-ℓq)FFT). Let A ∈ Rn×n be a BCCB matrix and W ∈ Rs×n be an

analysis operator such that W TW = I. Let 0 < p ≤ 2, and 0 < q ≤ 2. Fix ǫ > 0 and

µ > 0. Let b ∈ Rn denote the noise-corrupted data vector and let x
(0)
+ ∈ Ω0 be an initial

guess for the solution of (1). Let F denote the Fourier matrix such that A = F ∗ΣF .
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η = µ ǫq−2

ǫp−2 ;

Let λmin and λmax denote the smallest and largest eigenvalue of ATA;

α =
√

(λmin + η)(λmax + η);

for k = 0, 1, 2, . . . do

v(k) = Ax
(k)
+ − b;

u(k) = Wx
(k)
+ ;

w
(k)
fid = v(k)

(
1−

(
(v(k))2+ǫ2

ǫ2

)p/2−1
)
;

w
(k)
reg = u(k)

(
1−

(
(u(k))2+ǫ2

ǫ2

)q/2−1
)
;

x(k) = F ∗(Σ∗Σ+ ηI)−1(Σ∗F (b+ w
(k)
fid ) + ηFW Tw

(k)
reg);

z
(k)
0 = max{x(k), 0};
for j = 0, 1, . . . do

z
(k)
j+1 = F ∗(αI + Σ∗Σ + ηI)−1

(
((α− η)I − Σ∗Σ)F |z(k)j |+ Σ∗F (b+ w

(k)
fid ) + ηFW Tw

(k)
reg

)
;

Exit loop when ‖z(k)j+1 − z
(k)
j ‖2 is small enough;

end

x
(k+1)
+ = z

(k)
j+1 + |z(k)j+1|;

end

The stopping criterion for the j-loop is described by (32).

6. Convergence

This section shows convergence of the iterates generated by the modulus-based

constrained ℓp-ℓq minimization method. We focus on the method described in

Subsection 5.1 and comment at the end of this section on the convergence of the method

discussed in Subsection 5.2. The proofs below extend results in [5] on the convergence of

the unconstrained ℓp-ℓq minimization method to allow constraints. Several of the proofs

are analogous to those in [5]. For the convenience of the reader, we provide enough

details to make the present paper self-contained.

Assume that the condition of Theorem 11 holds. Then the nonnegative approximate

solutions x
(0)
+ , x

(1)
+ , x

(2)
+ , . . . of (17) defined in Subsection 5.1 exist. We note that x

(0)
+ is

obtained by an element of a subspace of Rn of dimension ℓ, and, more generally, x
(j)
+ lives

in some subspace of Rn for j = 1, 2, 3, . . . . For j ≥ n − ℓ, the approximate solutions

x
(j)
+ live in R

n. Thus, for large values of j all iterates are in the same space. This

simplifies the convergence analysis. Of course, the rate of convergence of the iterates

x
(j)
+ for small j to the desired solution xtrue is affected by the subspaces, in which the x

(j)
+

for j small live. In the following we will assume that enough steps of the algorithm have

been performed so that this does not constitute an issue. We may require n− ℓ steps of

the algorithm to be performed for the following results to hold. However, in practical
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application, this is never the case and convergence is reached within a reasonable number

of iterations.

Proposition 12. Let 0 < p, q ≤ 2 and assume that condition (4) holds. Let {x(k)
+ }∞k=1

denote the sequence of approximate solutions generated by Algorithm 2. For any initial

approximate solution x
(0)
+ ∈ Ω0 and all k ≥ 1 we have,

Q̂(x
(k+1)
+ , x

(k)
+ ) ≤ Q̂(x

(k)
+ , x

(k)
+ ).

Proof. An analogous result for the unconstrained minimization problem (10) with Q̂
replaced by the majorant Q, defined by (11), is shown in [6, Lemma 5.2]. The proof of

this result carries over to the functional Q̂.

Note that the result above holds for the constrained minimizers x
(k)
+ . The exact

computations of these points may require that the inner iterations in Algorithms 2 and 3

be carried out an arbitrarily large number of times. However, in practice only a fairly

small number of iterations are needed to ensure convergence to accurate approximations

of the constrained minimizers.

Theorem 13. Let condition (4) hold. Then, for any initial approximate solution

x
(0)
+ ∈ Ω0, the sequence {Ĵµ,ǫ(x

(k)
+ )}∞k=0 is monotonically nonincreasing and convergent,

where Ĵµ,ǫ is defined by (17).

Proof. The sequence {Ĵµ,ǫ(x
(k)
+ )}∞k=0 is bounded from below by zero and is monotonically

nonincreasing,

Ĵµ,ǫ(x
(k+1)
+ ) ≤ Q̂(x

(k+1)
+ , x

(k)
+ ) ≤ Q̂(x

(k)
+ , x

(k)
+ ) = Ĵµ,ǫ(x

(k)
+ ).

The first inequality and the equality follow from the fact that Q̂(x, x
(k)
+ ) is a constrained

quadratic tangent majorant of Ĵµ,ǫ(x
(k)
+ ), i.e., they are a consequence of Proposition 10.

The second inequality follows from Proposition 12. Since the sequence Ĵµ,ǫ(x
(k)
+ ), k =

0, 1, 2, . . . , is monotonically nonincreasing and bounded from below, it is convergent.

In the remainder of this section, we investigate the behavior of the sequence of

iterates {x(k)
+ }k≥0.

Proposition 14. Let the initial approximate solution x
(0)
+ ∈ Rn of (17) belong to Ω0, and

let subsequent approximate solutions x
(k)
+ , k = 1, 2, 3, . . . , be determined as described in

Section 5. Then the unconstrained majorization error functional

x 7→ ε(x, x
(k)
+ ) := Q(x, x

(k)
+ )−Jµ,ǫ(x)

has the following properties

(i) ε(x, x
(k)
+ ) ∈ C1(Rn),

(ii) ε(x, x
(k)
+ ) ≥ 0 ∀x ∈ Rn,

(iii) ε(x
(k)
+ , x

(k)
+ ) = 0,

(iv) 0 = ∇xε(x
(k)
+ , x

(k)
+ ),

(v) ∇xε(x
(k+1)
+ , x

(k)
+ ) = −∇xĴµ,ǫ(x

(k+1)
+ ).
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Proof. The proof of this result is identical to the one of [5, Proposition 3].

Definition 15. A convex (not necessarily differentiable) function f(x) is said to be

δ-strongly convex if there is a constant δ > 0, such that the function f(x) − δ
2
‖x‖22 is

convex. The constant δ is referred to as the modulus of strong convexity of f .

Lemma 16. Let f : Rn → R be a strongly convex function with modulus of strong

convexity δ > 0. Let x∗ ∈ R be a minimizer of f(x). Then

δ

2
‖x− x∗‖22 ≤ f(x)− f(x∗) ∀x ∈ R

n. (28)

Proof. A proof can be found in, e.g., [28].

Theorem 17. Let condition (4) hold and let {x(k)
+ } denote the sequence of the iterates

generated by either Algorithm 2 or Algorithm 3. Then the following statements hold

(i) lim
k→∞

‖x(k+1)
+ − x

(k)
+ ‖2 = 0.

(ii) There exists a convergent subsequence {x(jk)
+ } that converges to a point x∗ ∈ Ω0,

(iii) Let I = {i : (x∗)i > 0}. Then (∇Jµ,ǫ)i = 0 for i ∈ I.

Proof. Consider the quadratic majorant function x 7→ Q(x, x
(k)
+ ) at step k of the iterative

method. Since, thanks to (4), x 7→ Q(x, x
(k)
+ ) is δ-strongly convex, we can apply

Lemma 16. In particular, inequality (28) with the function Q(·, x(k)
+ ) in place of f(·)

and x
(k+1)
+ in place of x∗ yields

δ

2
‖x− x

(k+1)
+ ‖22 ≤ Q(x, x

(k)
+ )−Q(x

(k+1)
+ , x

(k)
+ ) ∀x ∈ R

n. (29)

The above inequality holds for all k ≥ 0. Substituting x by the iterate x
(k)
+ in (29), and

observing that x
(k+1)
+ , x

(k)
+ ∈ Ω0, we obtain

δ

2
‖x(k)

+ − x
(k+1)
+ ‖22 ≤ Q(x

(k)
+ , x

(k)
+ )−Q(x

(k+1)
+ , x

(k)
+ )

= Jµ,ǫ(x
(k)
+ , x

(k)
+ ) + ε(x

(k)
+ , x

(k)
+ )−Jµ,ǫ(x

(k+1)
+ )− ε(x

(k+1)
+ , x

(k)
+ )

≤ Jµ,ǫ(x
(k)
+ )− Jµ,ǫ(x

(k+1)
+ )

= Ĵµ,ǫ(x
(k)
+ )− Ĵµ,ǫ(x

(k+1)
+ ) ∀k,

where the inequality follows from Proposition 14. Summing the above inequalities over

k gives
∞∑

k=0

‖x(k+1)
+ − x

(k)
+ ‖22 ≤

2

δ

∞∑

k=0

(
Ĵµ,ǫ(x

(k)
+ )− Ĵµ,ǫ(x

(k+1)
+ )

)

=
2

δ

(
(Ĵµ,ǫ(x

(0)
+ )−

✘
✘
✘
✘
✘✘Ĵµ,ǫ(x

(1))) +
✘
✘
✘
✘
✘Ĵµ,ǫ(x

(1)) + . . .
)

(30)

=
2

δ

(
Ĵµ,ǫ(x

(0)
+ )− Ĵ ∗

µ,ǫ

)
,

where Ĵ ∗
µ,ǫ denotes the limit point of the sequence {Ĵµ,ǫ(x

(k)
+ )}k≥0. According to

Theorem 13, the Ĵµ,ǫ(x
(k)
+ ) are nonnegative and a decreasing function of k. It follows
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that the limit point exists and Ĵµ,ǫ(x
(0)
+ ) − Ĵ ∗

µ,ǫ is nonnegative. We conclude that the

series on the left-hand side of inequality (30) is convergent. Hence, statement (i) holds.

We turn to statement (ii). With a similar argument as the one in the proof of

Lemma 2, we obtain that the sequence {x(k)
+ }k is uniformly bounded and, thus, admits a

convergent subsequence {x(jk)
+ }jk . Let x∗ be the limit point of {x(jk)

+ }jk . Since x
(jk)
+ ∈ Ω0

for all jk and Ω0 is closed we have that x∗ ∈ Ω0.

We now show statement (iii). Let i ∈ I. Then there exists J such that (x
(jk)
+ )i > 0

for all jk > J . Then, for all jk > J , it holds that ∂Q
∂xi

(x
(jk+1)
+ , x

(jk)
+ ) = 0, where

∂Q
∂xi

(x
(jk+1)
+ , x

(jk)
+ ) denotes the partial derivative of Q with respect to the ith component

of x. Then, the definition of ε yields ∂ε
∂xi

(x
(jk+1)
+ , x

(jk)
+ ) = −∂Jµ,ǫ

∂xi
(x

(jk)
+ ). We obtain that

∣∣∣∣
∂Jµ,ǫ

∂xi
(x

(jk)
+ )

∣∣∣∣ =
∣∣∣∣
∂ε

∂xi
(x

(jk+1)
+ , x

(k)
+ )

∣∣∣∣

=

∣∣∣∣
∂ε

∂xi
(x

(jk+1)
+ , x

(jk)
+ )− ∂ε

∂xi
(x

(jk)
+ , x

(jk)
+ )

∣∣∣∣

≤ ‖∇ε(x
(jk+1)
+ , x

(jk)
+ )−∇ε(x

(jk+1)
+ , x

(jk+1)
+ )‖

≤ L‖x(jk+1)
+ − x

(jk)
+ ‖,

where the last inequality follows from the Lipschitz continuity of the gradient of the

functions Q and Jµ,ǫ. Thanks to point (i) we have that ‖x(jk+1)
+ −x

(jk)
+ ‖ → 0 as jk → ∞.

Thus
∣∣∣∂Jµ,ǫ

∂xi
(x

(jk)
+ )

∣∣∣→ 0 as jk → ∞, i.e., ∂Jµ,ǫ

∂xi
(x∗) = 0.

7. Numerical examples

This section presents a few computed examples that illustrate the performance of the

numerical methods described in the previous sections. We consider some imaging

problems. Therefore, we use a two-level framelet analysis operator as regularization

operator L, since it is well-known that images have sparse representation in the framelet

domain. We recall that framelets are extensions of wavelets. Following [29, 7], we define

them as follows:

Definition 18. Let W ∈ Rr×n with 1 ≤ n ≤ r. The set of the rows of W is a framelet

system for Rn if ∀x ∈ Rn it holds

‖x‖22 =
r∑

j=1

(wT
j x)

2, (31)

where wj ∈ Rn denotes the jth row of the matrix W (written as a column vector), i.e.,

W = [w1, w2, . . . , wr]
T . The matrix W is referred to as an analysis operator and W T as

a synthesis operator.

Equation (31) is equivalent to the perfect reconstruction formula

x = W Ty, y = Wx.
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Thus, the matrix W defines a tight frame if and only if W TW = I. We remark that

in general WW T 6= I, unless r = n and the framelets are orthonormal. Observe that

N (W ) = {0}. Therefore, (4) is trivially satisfied.

We use the same tight frames as in [17, 29, 7, 30, 31]; they are determined by

linear B-splines. Specifically, for problems in one space-dimension, they are formed by

a low-pass filter W0 ∈ R
n×n and two high-pass filters W1 ∈ R

n×n and W2 ∈ R
n×n. The

corresponding masks are given by

u(0) =
1

4
[1, 2, 1], u(1) =

√
2

4
[1, 0,−1], u(2) =

1

4
[−1, 2,−1].

The analysis operator W is determined by these masks and by imposing reflexive

boundary conditions, which ensure that W TW = I. Define the matrices

W0 =
1

4




3 1 0 . . . 0

1 2 1
. . .

. . .
. . .

1 2 1

0 . . . 0 1 3




, W1 =

√
2

4




−1 1 0 . . . 0

−1 0 1
. . .

. . .
. . .

−1 0 1

0 . . . 0 −1 1




,

and

W2 =
1

4




1 −1 0 . . . 0

−1 2 −1
. . .

. . .
. . .

−1 2 −1

0 . . . 0 −1 1




.

Then the operator W is defined as

W =




W0

W1

W2


 .

We are concerned with image restoration problems in two space-dimensions.

Therefore, we construct the two-dimensional framelet analysis operator by means of

the tensor products

Wij = Wi ⊗Wj, i, j = 0, 1, 2.

The matrix W00 is a low-pass filter; all the other matrices Wij contain at least one

high-pass filter. The analysis operator is given by

W =




W00

W01

...

W22


 .
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We consider two types of noise, white Gaussian noise and impulse noise. The first

is obtained when the entries of the vector e in the data vector b are realizations of a

Gaussian random variable with 0 mean. In this case we refer to the ratio

σ =
‖e‖2

‖Axtrue‖2
as the noise level. Impulse noise is obtained when the entries of the vector b are

constructed as follows

bi =

{
(btrue)i with probability 1− σ,

ui with probability σ,

where 0 ≤ σ < 1 and ui is a number chosen randomly in the dynamical range of btrue.

In this case we will refer to σ as the noise level.

The outer iterations of the algorithms considered are terminated as soon as the

relative change of the computed approximate solution x
(k)
+ drops below a user-specified

threshold, i.e., we terminate the iterations as soon as

‖x(k+1)
+ − x

(k)
+ ‖2

‖x(k)
+ ‖2

< tolouter,

or if the number of (outer) iterations reaches 200. The inner iterations in the modulus

method are stopped as soon as the relative change of the computed approximate solution

x
(k)
+ drops below a user-specified threshold

‖z(k)j+1 − z
(k)
j ‖2

‖z(k)j ‖2
< tolinner, (32)

or if the number of inner iterations reaches 100. In our experiments we set tolouter =

tolinner = 10−4.

In all the experiments, we set the dimension of the initial space to ℓ = 1 and choose

the initial approximate solution x
(0)
+ = max{AT b, 0}. Consequently, V0 = AT b/‖AT b‖2.

To assess the quality of the reconstructed solution, we compute the Relative

Reconstruction Error (RRE) defined by

RRE(x) =
‖x− xtrue‖2
‖xtrue‖2

. (33)

The parameter q is set to 0.1 in all the experiments, while p will depend on the noise.

The regularization parameter µ is tuned by hand to minimize the RRE. A discussion

on how to determine a good value for µ is outside the scope of this paper; see [17, 32]

for discussions. The former reference uses the discrepancy principle and the latter cross

validation to determine µ.

To measure the quality of the computed approximate solutions, we in addition to

(33) use the Structural SIMilarity index (SSIM). The definition of the SSIM is involved

and we refer to [33] for details. Here we just recall that the SSIM measures how well

the overall structure of the image is recovered; the higher the index, the better the

reconstruction. The highest value achievable is 1.
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All computations were carried out in MATLAB R2018b with about 15 significant

decimal digits running on a laptop computer with core CPU Intel(R) Core(TM)i7-8750H

@2.20GHz with 16GB of RAM.

Hubble In our first example we consider a synthetic astronomical image deblurring

problem. We construct this example by blurring the image of the Hubble telescope in

Figure 1(a) with the non-symmetric PSF in Figure 1(b), and cut the boundary of the

image to simulate boundary effects in real data. We then add 2% of white Gaussian

noise and three different levels of impulse noise, namely 20%, 30%, and 40%. Figure 1(c)

displays the blurred and noisy image with 20% impulse noise. Thanks to the nature of

the image, we may impose periodic boundary conditions. This makes A ∈ R2302×2302 a

BCCB matrix, which allows us to use Algorithm 3 for the reconstruction; see, e.g., [27]

for details on image deblurring. Since we added impulse noise, we set p < 1. Specifically,

we let p = 0.8.

We report the errors and SSIMs obtained with Algorithm 3 and the unconstrained

method, implemented with the FFT as well, in Table 1. We observe that the RRE

obtained with the constrained method is always smaller than the RRE obtained with

the unconstrained version. Moreover, the difference becomes larger as the noise

increases. This is confirmed by both the SSIM (except for the second noise level)

and by visual inspection of the reconstructions in Figure 2. We observe that the

presence of the nonnegativity constraint allows a more uniform reconstruction of the

black background of the image. Moreover, the presence of the constraint allows us to

select a smaller regularization parameter, thus, obtaining more detailed reconstructions.

This is confirmed by visual inspection of the blow-ups of the reconstructions in Figure 3.

Finally, in Table 2, we report the CPU times in seconds for both the constrained

and unconstrained methods. We can observe that, as expected, the computational cost

of the constrained method is higher than of the unconstrained one. However, the total

cost is not very high and it is possible to obtain the reconstructions in a reasonable

amount of time.

Tomography In our second example, we consider a synthetic tomography problem. In

tomography, the data are the Radon transform of the attenuation coefficients of some

scanned object; see, e.g., [34] for details on computerized tomography. We consider

parallel beam tomography, where J parallel X-ray beams are shined through an object

at different angles θk with k = 1, 2, . . . , K. The datum bj,k, the so-called sinogram,

is the line integral of the attenuation coefficient of the object scanned along the j-th

beam at angle θk. We generate the synthetic data using the Matlab program package

IR Tools [35]. In particular, we use the command PRtomo. We set the dimension of

the image to 256 × 256, and consider 90 angles equispaced between 0 and 179 degrees,

and 362 beams. This leads to an underdetermined system where A ∈ R32580×65536. We

report in Figure 4(a) the exact attenuation coefficient, and in Figure 4(b) the noise-free

sinogram. We add different levels of white Gaussian noise, namely, 1%, 5%, and 10%.
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(a) (b) (c)

Figure 1. Hubble test problem: (a) True image (230× 230 pixels), (b) PSF (26× 26

pixels), (c) Blurred image with 2% of white Gaussian noise and 20% of impulse noise

(230× 230 pixels).

(a) (b) (c)

(d) (e) (f)

Figure 2. Hubble test problem reconstructions: panels (a), (b), and (c) report the

reconstructions obtained with NN-(ℓp-ℓq)FFT with 20%, 30%, and 40% of impulse

noise, respectively; panels (d), (b), and (f) report the reconstructions obtained with

ℓp-ℓq with 20%, 30%, and 40% of impulse noise, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Hubble test problem reconstructions: panels (a), (b), and (c) report a

blow-up of the reconstructions obtained with NN-(ℓp-ℓq)FFT with 20%, 30%, and

40% of impulse noise, respectively; panels (d), (b), and (f) report a blow-up of

the reconstructions obtained with ℓp-ℓq with 20%, 30%, and 40% of impulse noise,

respectively.

Since the noise is Gaussian, we set p = 2. The matrix of the system is not a BCCB

matrix. Therefore, we use Algorithm 2 for the solution of the constrained problem.

We report the results obtained with both the constrained and unconstrained

approach in Table 1. We can observe that the difference in the computed solutions

determined by the constrained and unconstrained methods is more significant in this

example than in the previous one. This can be motivated by the larger black area

present in the image. Visual inspection of the reconstructions in Figure 5 confirms the

large difference between the reconstructions obtained with the unconstrained and the

constrained approaches. In particular, we can observe that the reconstructions obtained

with the unconstrained method appear affected by unwanted oscillations in the black

areas. On the other hand, the constrained method is able to provide constant black areas

around the phantom and does not reconstruct the noise, thus avoiding the unwanted

oscillations present in the other reconstructions. Table 2 reports the CPU times required

for the computation of the reconstructions. Like in the previous example, the timings for

the constrained method are higher than the ones for the unconstrained one. However,

they are not too high to make the method unfeasible.
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(a) (b)

Figure 4. Tomography test problem: (a) True image (256×256 pixels), (b) noise-free

sinogram (362× 90 pixels).

(a) (b) (c)

(d) (e) (f)

Figure 5. Tomography test problem reconstructions: panels (a), (b), and (c) report

the reconstructions obtained with NN-(ℓp-ℓq)GKS with 1%, 5%, and 10% of white

Gaussian noise, respectively; panels (d), (b), and (f) display reconstructions obtained

with (unconstrained) ℓp-ℓq with 1%, 5%, and 10% of white Gaussian noise, respectively.
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Table 1. Comparison of the RREs and SSIMs obtained with NN-(ℓp-ℓq)GKS or NN-

(ℓp-ℓq)FFT and with (unconstrained) ℓp-ℓq for different noise levels in the considered

examples. For the Hubble example, the noise that corrupts the data is the sum of 2%

of white Gaussian and σ1 = 20%, σ2 = 30%, and σ3 = 40% of impulse noise. For the

Tomography example, the data is corrupted by white Gaussian noise of levels σ1 = 1%,

σ2 = 5%, and σ3 = 10%.

Example Quality measure Method
Noise level

σ1 σ2 σ3

Hubble

RRE
NN-(ℓp-ℓq)FFT 0.13635 0.15083 0.26787

ℓp-ℓq 0.13839 0.15224 0.27194

SSIM
NN-(ℓp-ℓq)FFT 0.84685 0.80982 0.41753

ℓp-ℓq 0.82946 0.82300 0.35583

Tomography

RRE
NN-(ℓp-ℓq)GKS 0.19491 0.26188 0.32157

ℓp-ℓq 0.21161 0.29628 0.39064

SSIM
NN-(ℓp-ℓq)GKS 0.77930 0.57854 0.43203

ℓp-ℓq 0.55756 0.32740 0.20530

Table 2. Comparison of the CPU times in seconds required for NN-(ℓp-ℓq)GKS or NN-

(ℓp-ℓq)FFT and with (unconstrained) ℓp-ℓq for different noise levels in the considered

examples. For the Hubble example, the noise that corrupts the data is the sum of 2%

of white Gaussian and σ1 = 20%, σ2 = 30%, and σ3 = 40% of impulse noise. For the

Tomography example, the data is corrupted by white Gaussian noise of levels σ1 = 1%,

σ2 = 5%, and σ3 = 10%.

Example Method
CPU time

σ1 σ2 σ3

Hubble
NN-(ℓp-ℓq)FFT 29.998 29.710 26.628

ℓp-ℓq 13.850 13.990 14.978

Tomography
NN-(ℓp-ℓq)GKS 69.423 47.724 98.215

ℓp-ℓq 15.692 6.6424 5.5741

Walnut For our final example, we consider a real tomography problem. We use the

data obtained by tomography of a walnut [36]. In particular, we consider the data in the

Data164.mat file. The attenuation coefficients are stored in a 164× 164 image and the

sinogram is obtained by shining 164 fan-beams at 120 angles. This procedure generates

an underdetermined problem where A ∈ R19680×26896. Figure 6(b) shows the sinogram.

In [36] a high-quality reconstruction obtained by a higher-dimensional data set of the

true attenuation coefficients is provided; see Figure 6(a). However, due to different

scaling and size it is very difficult to use this image as ground truth to evaluate the

RRE and SSIM. Thus, we compute the reconstructions obtained with the constrained

and unconstrained method with five different regularization parameters. The advantages

of the constrained method are already evident by visual inspection of the reconstruction

and, therefore, we rely on this for the comparison of the two approaches. We do not

know which kind of noise contaminated the data, however, it is safe to assume that the
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(a) (b)

Figure 6. Walnut test problem: (a) High-quality reconstruction (2296× 2296 pixels),

(b) under-sampled sinogram (164× 120 pixels).

Table 3. Comparison of the CPU times in seconds required for NN-(ℓp-ℓq)GKS and

with (unconstrained) ℓp-ℓq for different values of µ.

Method
Values of µ

10−1 1 10 100 1000

NN-(ℓp-ℓq)GKS 15.067 35.288 20.842 1.324 0.9686

ℓp-ℓq 20.933 6.0861 2.2145 0.9123 0.9109

noise is not too far from Gaussian. We therefore let p = 2. Finally, since the matrix

A is not a BCCB matrix, we use the NN-(ℓp-ℓq)GKS method for the solution of the

constrained problem.

The computed reconstructions are shown in Figure 7. We can observe that, similarly

to the synthetic example, the unconstrained model tends to amplify the noise and

introduces unwanted oscillations in the reconstructed solution. On the other hand,

these oscillations are not present in the reconstructions obtained with the constrained

model. Moreover, we can observe that the reconstructions obtained with the constrained

method are much more stable with respect to the choice of the parameter µ; the method

is able to provide satisfactory reconstructions for a large interval of µ-values. Finally, in

Table 3 we show the CPU times required for the computation of all the reconstructions

in Figure 7. We can observe that the constrained method, while being more expensive

than the unconstrained one, is able to maintain a reasonable computational cost.

8. Conclusions

In this paper we proposed new approaches for solving discrete ill-posed problems with

nonnegativity constraint. We started from the ℓp-ℓq regularization method described in

[5] and combined it with the modulus-based algorithm [16, 23] to impose nonnegativity.

The use of the non-convex models obtained when either p or q are smaller than 1 allowed

us to determine high-quality reconstructions and to consider noise models different from

the Gaussian one. We differentiated the cases in which the system matrix A is general



Modulus-based iterative methods for constrained ℓp-ℓq minimization 28

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Walnut test problem reconstructions: panels (a)-(e) report the

reconstructions obtained by the NN-(ℓp-ℓq)GKS method with different regularization

parameters µ, panels (f)-(j) show reconstructions determined by the (unconstrained)

ℓp-ℓq method with different regularization parameters µ. The reconstructions in panels

(a) and (f) are obtained with µ = 10−1, (b) and (g) with µ = 1, (c) and (h) with µ = 10,

(d) and (i) with µ = 100, and (e) and (j) with µ = 1000.

and when it has a circulant structure. In the first case, we apply a generalized Krylov

subspace method to lower the computational effort by projecting the problem into an

appropriate subspace of fairly small dimension. In the second case, we exploited the

fact that circulant and BCCB matrices can be efficiently diagonalized by the Fourier

transform, thus, obtaining a diagonal problem. We provided a proof of convergence of

approximate solutions computed with the new algorithms described. Several numerical

examples, both on synthetic and real data, illustrated the performances of the proposed

methods in terms of the quality of the reconstructed solutions.
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