
A Novel Modified TRSVD Method for
Large-Scale Linear Discrete Ill-posed Problems

Xianglan Bai

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Guang-Xin Huang

Geomathematics Key Laboratory of Sichuan, Chengdu University of Technology,

Chengdu, 610059, P. R. China

Xiao-Jun Lei

Laboratory of Computational Physics, Institute of Applied Physics and Computational

Mathematics, Graduate School of China Academy of Engineering Physics, Beijing,

100088, P.R.China

Lothar Reichel

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Feng Yin

College of Mathematical and Statistics, Sichuan University of Science and Engineering,
Zigong, 643000, P. R. China

Abstract

The truncated singular value decomposition (TSVD) is a popular method
for solving linear discrete ill-posed problems with a small to moderately
sized matrix A. This method replaces the matrix A by the closest matrix
Ak of low rank k, and then computes the minimal norm solution of the linear
system of equations with a rank-deficient matrix so obtained. The modified
TSVD (MTSVD) method improves the TSVD method, by replacing A by a
matrix that is closer to A than Ak in a unitarily invariant matrix norm and
has the same spectral condition number as Ak. Approximations of the SVD

Email addresses: xbai@kent.edu (Xianglan Bai), huangx@cdut.edu.cn (Guang-Xin
Huang), 3292694852@qq.com (Xiao-Jun Lei), reichel@math.kent.edu (Lothar Reichel),
fyin@suse.edu.cn (Feng Yin)

Preprint submitted to Elsevier September 15, 2020

of a large matrix A can be computed quite efficiently by using a random-
ized SVD (RSVD) method. This paper presents a novel modified truncated
randomized singular value decomposition (MTRSVD) method for comput-
ing approximate solutions to large-scale linear discrete ill-posed problems.
The rank, k, is determined with the aid of the discrepancy principle, but
other techniques for selecting a suitable rank also can be used. Numerical
examples illustrate the effectiveness of the proposed method and compare it
to the truncated RSVD method.

Keywords: linear discrete ill-posed problems; TSVD; modified TSVD;
TRSVD

1. Introduction

This paper is concerned with the computation of approximate solutions
of large minimization problems of the form

min
x∈Rn

‖Ax− b‖2, (1.1)

where A ∈ Rm×n is a large matrix whose singular values gradually decay to
zero without a significant gap. In particular, A is severely ill-conditioned
and may be rank-deficient. Minimization problems (1.1) with a matrix of
this kind often are referred to as discrete ill-posed problems. They arise, for
example, from the discretization of linear ill-posed problems, such as Fred-
holm integral equations of the first kind with a smooth kernel. Throughout
this paper ‖ · ‖2 denotes the Euclidean vector norm or the spectral matrix
norm. We allow m ≥ n as well as m < n.

The vector b ∈ Rm in (1.1) represents measured data that are contami-
nated by an error e ∈ Rm, which may stem from measurement or discretiza-
tion errors. Let b̂ ∈ Rm denote the unknown error-free vector associated
with b, i.e.,

b = b̂+ e. (1.2)

We will assume b̂ to be in the range of A, and that a fairly accurate
bound for the relative error

‖e‖2
‖b̂‖2

≤ ε, (1.3)

in b is known. Then a regularized solution of (1.1) can be determined with
the aid of the discrepancy principle; see below.

2

We are interested in computing an approximation of the solution x̂ of
minimal Euclidean norm of the unknown error-free least-squares problem

min
x∈Rn

‖Ax− b̂‖2.

Let A† ∈ Rn×m denote the Moore-Penrose pseudoinverse of A. Then

x̂ = A†b̂. (1.4)

Because A has many positive singular values close to zero, the matrix A† is
of very large norm, and the solution of the available least-squares problem
(1.1), given by

x̌ = A†b = A†(̂b+ e) = x̂+A†e,

typically is dominated by the propagated error A†e, and then is meaning-
less. This difficulty can be mitigated by replacing the matrix A by a nearby
matrix that does not have tiny positive singular values. This replacement
commonly is referred to as regularization. One of the most popular regular-
ization methods for discrete ill-posed problem (1.1) of small to moderate size
is the truncated singular value decomposition (TSVD); see, e.g., [2, 3, 6].
Introduce the singular value decomposition

A = UΣV >, (1.5)

where U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n are
orthogonal matrices, the superscript > denotes transposition, and the non-
trivial entries (known as the singular values) of the (possibly rectangular)
diagonal matrix

Σ = diag[σ1, σ2, . . . , σmin{m,n}] ∈ Rm×n (1.6)

are ordered according to

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σmin{m,n} = 0.

Here r is the rank of A. Define the matrix

Σk = diag[σ1, σ2, . . . , σk, 0, . . . , 0] ∈ Rm×n

for k ≤ r by setting the singular values σk+1, σk+2, . . . , σmin{m,n} in (1.6) to
zero. Then the matrix

Ak = UΣkV
> (1.7)

3

is a best rank-k approximation of A in any unitarily invariant matrix norm,
such as the spectral and Frobenius norms. We have

‖Ak −A‖2 = σk+1, ‖Ak −A‖F =

√√√√ r∑
i=k+1

σi2, 0 ≤ k ≤ r,

where ‖·‖F denotes the Frobenius norm, and we define A0 = 0 and σn+1 = 0.
The TSVD method replaces the matrix A in (1.1) by Ak. Let xk ∈ Rn

denote the solution of minimal Euclidean norm of

min
x∈Rn

‖Akx− b‖2.

It is given by xk = A†kb. The discrepancy principle prescribes that the
truncation index k ≥ 0 in (1.7) be chosen as the smallest integer such that

‖Akxk − b‖2
‖b̂‖2

≤ τε, (1.8)

where τ > 1 is a user-chosen constant that is independent of the bound ε
in (1.3); see [3, 6]. We will use the discrepancy principle in the computed
examples reported in Section 4. However, other methods for determining k
also can be used when no accurate estimate of ‖e‖ is available, such as the
L-curve criterion and generalized cross validation; see, e.g., [2, 6, 10, 11, 14].

The modified truncated singular value decomposition (MTSVD) method
proposed in [13] replaces the matrix Ak in (1.8) by a matrix that (generally)
is closer to A in a unitarily invariant matrix norm with the same condition
number as Ak. This replacement often results in more accurate approxima-
tions of x̂ when the discrepancy principle is used to determine the truncation
index k; see [13] for computed examples.

The TSVD and MTSVD methods are not suitable for application to the
solution of large-scale discrete ill-posed problems (1.1) due to the high cost
of evaluating the SVD of a large matrix A; see, e.g., [4, p. 493] for counts of
arithmetic floating point operations. However, the computational effort can
be reduced by computing an approximation of the singular value decomposi-
tion by a randomized method and applying the modified truncated singular
value decomposition to the computed approximate SVD. This yields the
modified truncated randomized singular value decomposition (MTRSVD).

In recent years several randomized algorithms have been proposed for
computing approximate factorizations of a large matrix, such as an approx-
imate SVD; see, e.g., Halko et al. [5]. These factorizations have been used

4

to compute approximate solutions to ill-posed problems (1.1) by Tikhonov
regularization; see, e.g., Jia and Yang [12] and Xiang and Zou [15, 16].

It is the purpose of the present paper to discuss the use of a random-
ized singular value decomposition (RSVD) in conjunction with the MTSVD
described in [13]. We refer to this scheme as the MTRSVD method. Our
reason for regularizing by a truncated singular value decomposition instead
of using Tikhonov regularization is that the former method is easier to im-
plement. Moreover, we base our method on the MTSVD instead of on the
standard TSVD, because the former typically yields approximations of the
desired solution (1.4) of higher quality when the required singular vectors
have been computed with high enough accuracy.

The remainder of this paper is organized as follows. Section 2 provides
a brief review of the MTSVD, RSVD, and TRSVD methods. The proposed
MTRSVD method is described in Section 3, where also its computational
complexity and error bounds are presented. Section 4 shows several numeri-
cal examples that illustrate the efficiency of the MTRSVD method. Section
5 contains concluding remarks.

2. The MTSVD, RSVD, and TRSVD methods

2.1. The MTSVD method

We review the modified SVD (MTSVD) method introduced in [13]. First
consider the TSVD method [3, 6]. It replaces the matrix A in (1.1) by the
matrix Ak in (1.8), and determines the least-squares solution of minimal
Euclidean norm. We denote this solution by xk and assume that k ≤ r =
rank(A). The vector xk can be expressed as

xk = A†kb =

r∑
j=1

φ
(k)
j

u>j b

σj
vj ,

where the uj and vj are columns of the matrices U and V in (1.5), respec-

tively, and the filter factors φ
(k)
j are defined by

φ
(k)
j =

{
1, 1 ≤ j ≤ k,
0, k < j ≤ r.

The condition number of Ak, given by

κ2(Ak) =
σ1
σk
, (2.1)

5

grows with k. The larger the condition number (2.1), the more sensitive the
vector xk can be to the error e in b; see, e.g., [3, 4, 6] for discussions.

The MTSVD method in [13] gives a closest matrix Ã
k̃

to A in the spectral
or Frobenius norms with a specified smallest singular value σk. Define the
decomposition

Ã
k̃

= U Σ̃
k̃
V >, (2.2)

where U and V are the orthogonal matrices in the SVD (1.5) of A, and the
entries of Σ̃

k̃
= diag[σ̃1, . . . , σ̃k, 0, . . . , 0] are given by

σ̃j =

{
σj , 1 ≤ j ≤ k,

σk, k < j ≤ k̃,

where k̃ ≥ k is determined by the inequalities σ
k̃
≥ σk/2 and σ

k̃+1
< σk/2.

It is shown in [13] that

‖A− Ã
k̃
‖2 < ‖A−Ak‖2, ‖A− Ã

k̃
‖F < ‖A−Ak‖F

when σk+1 > σk/2. Moreover,

κ2(Ãk̃
) = κ2(Ak).

By replacing the matrix A in (1.1) by Ã
k̃

in (2.2), we can get a more accurate
approximation of the desired solution (1.4),

x̃
k̃

= Ã†
k̃
b =

r∑
j=1

φ̃
(k̃)
j

uj
>b

σj
vj

with filter factors

φ̃
(k̃)
j =


1, 1 ≤ j ≤ k,

σj/σk, k < j ≤ k̃,

0, k̃ < j ≤ r,

where we assume that k̃ ≤ r. The definition of x̃
k̃

can be extended to allow
k ≤ r.

2.2. The RSVD and TRSVD methods

Algorithm 1 describes the randomized SVD (RSVD) method considered
in [5]. The decomposition determined by the algorithm can be used to
compute a low-rank approximation of a matrix A ∈ Rm×n with m ≥ n.

6

The index ` in the algorithm has to be chosen large enough. We let ` =
ktarget + p, where ktarget � min{m,n} is the required rank of the low-rank
approximation of A when seeking to satisfy the discrepancy principle, and p
is an over-sampling parameter. The choices of ktarget and p are illustrated in
Section 4. In our analysis below, we set ktarget = k. Algorithm 1 computes
an approximate SVD of A by computing an orthogonal matrix Q`, whose
range approximates that of Ak, in Step 3, and the SVD of a small matrix
B` in Step 5. We refer to [5] for more details.

Algorithm 1 (RSVD). Given A ∈ Rm×n(m ≥ n), compute an approximate
SVD: A ≈ Ǔ`Σ̌`V̌

>
` with Ǔ` ∈ Rm×`, Σ̌` ∈ R`×`, and V̌` ∈ Rn×`, with

1 ≤ `� n.

1: Generate a Gaussian random matrix Ω` ∈ Rn×`.
2: Form the matrix Y` = AΩ` ∈ Rm×`.
3: Compute the skinny QR factorization Y` = Q`R`, where Q` ∈ Rm×` has

orthonormal columns and R` ∈ R`×` is upper triangular.
4: Form the matrix B` = Q>` A ∈ R`×n.
5: Compute the SVD of the small matrix B`: B` = W̌`Σ̌`V̌

>
` .

6: Form the matrix Ǔ` = Q`W̌` ∈ Rm×`. Then A ≈ Ǔ`Σ̌`V̌
>
` .

Algorithm 2 describes the randomized SVD for a matrix A ∈ Rm×n with
m < n. The algorithm is equivalent to applying Algorithm 1 to A>.

Algorithm 2 (RSVD∗). Given A ∈ Rm×n(m < n), compute an approxi-
mate SVD: A ≈ Ǔ`Σ̌`V̌

>
` with Ǔ` ∈ Rm×`, Σ̌` ∈ R`×`, and V̌ ∈ Rn×`, with

1 ≤ `� m.

1: Generate a Gaussian random matrix Ω` ∈ R`×m.
2: Form the matrix Y` = Ω`A ∈ R`×n.
3: Compute the skinny QR factorization Y >` = Q`R`, where Q` ∈ Rn×`

has orthonormal columns and R` ∈ R`×` is upper triangular.
4: Form the matrix B` = AQ` ∈ Rm×`.
5: Compute the SVD of the small matrix B`: B` = Ǔ`Σ̌`W̌

>
` .

6: Form the matrix V̌` = Q`W̌` ∈ Rn×`. Then A ≈ Ǔ`Σ̌`V̌
>
` .

Algorithm 1 generates the approximation

Ǎ` = Ǔ`Σ̌`V̌
>
` (2.3)

of at most rank ` of A, where

Ǔ` = [ǔ1, ǔ2, . . . , ǔ`] ∈ Rm×`, V̌` = [v̌1, v̌2, . . . , v̌`] ∈ Rn×`,

7

and Σ̌k = diag[σ̌1, σ̌2, . . . , σ̌`] ∈ R`×` with σ̌1 ≥ σ̌2 ≥ . . . ≥ σ̌` ≥ 0. As
mentioned above, ` is generally chosen somewhat larger than the smallest
positive integer k that allows the discrepancy principle to be satisfied; cf.
(1.8). Let Ǔk = [ǔ1, ǔ2, . . . , ǔk] ∈ Rm×k, V̌k = [v̌1, v̌2, . . . , v̌k] ∈ Rn×k, and
Σ̌k = diag[σ̌1, σ̌2, . . . , σ̌k] ∈ Rk×k be submatrices of the matrices in the
decomposition (2.3). Then

Ǎk = ǓkΣ̌kV̌
>
k (2.4)

is a best rank-k approximation of the matrix Ǎ`. The following result gives
an error bound for the TRSVD method.

Theorem 1. ([5]) Let Ǎk be the rank-k TRSVD approximation to A defined
by (2.4). Then the approximation error is

||A− Ǎk||2 ≤ σk+1 + ||A−Q`Q
>
` A||2. (2.5)

3. The MTRSVD method and error bounds

3.1. The MTRSVD method

This subsection describes a novel modified truncated randomized singu-
lar value decomposition (MTRSVD) method for solving large-scale discrete
ill-posed problems (1.1). The following result gives a closest matrix to the
matrix Ǎ` in (2.3) in the spectral and Frobenius norms.

Theorem 2. Let Ǎ` = Ǔ`Σ̌`V̌
>
` be the approximate truncated SVD (2.3)

of A, and let 1 ≤ k ≤ k̂ ≤ `. A closest matrix Â
k̂

to the matrix Ǎ` in the
spectral and Frobenius norms with smallest singular value σ̌k is given by

Â
k̂

= Ǔ
k̂
Σ̂
k̂
V̌ >
k̂
, (3.1)

where the matrix Ǔ
k̂

is made up by the first k̂ columns of the matrix Ǔ` and

the matrix V̌
k̂

is made up of the first k̂ columns of the matrix V̌`. Moreover,

the entries of Σ̂
k̂

= diag[σ̂1, σ̂2, . . . , σ̂k̂] ∈ Rk̂×k̂ are given by

σ̂j =

{
σ̌j , 1 ≤ j ≤ k,

σ̌k, k < j ≤ k̂,

where k̂ is determined by the inequalities σ̌
k̂
≥ σ̌k/2 and σ̌

k̂+1
< σ̌k/2, and

the σ̌j are the singular values of Ǎ`.

8

Proof. The proof is similar to the proof of [13, Theorem 2.3] and therefore
is omitted.

Remark 1. Let ` > k̂ and assume that σ̌k−σ̌k̂ < σ̌k+1 and σ̌
k̂+1

< σ̌k+1.
The latter inequalities impose conditions on the decay of the singular val-
ues σ̌k, σ̌k+1, . . . , σ̌k̂+1

and hold for many linear discrete ill-posed problems.
Then

‖Ǎ` − Âk̂
‖2 < ‖Ǎ` − Ǎk‖2, (3.2)

i.e., Â
k̂

is a more accurate approximation of Ǎ` in (2.3) than Ǎk. The
inequality (3.2) follows from the observations that

‖Ǎ` − Âk̂
‖2 = max{σ̌k − σ̌k̂, σ̌k̂+1

}, ‖Ǎ` − Ǎk‖2 = σ̌k+1.

Moreover,
κ2(Âk̂

) = κ2(Ǎk).

The matrix (3.1) can be used to determine a regularized approximate
solution of (1.1).

Theorem 3. Let Ǎ` = Ǔ`Σ̌`V̌
>
` be the approximate partial SVD in (2.3) of

A and let Â
k̂

be a closest matrix defined by (3.1) with 1 ≤ k ≤ k̂ ≤ `. Then
an approximate regularized solution of (1.1) is given by

x̂
k̂

=
∑̀
j=1

φ̂
(k̂)
j

ǔ>j b

σ̌j
v̌j , (3.3)

with the filter factors

φ̂
(k̂)
j =


1, 1 ≤ j ≤ k,

σ̌j/σ̌k, k < j ≤ k̂,

0, k̂ < j ≤ `.

Proof. Replacing A by Â
k̂

in (1.1) yields

min
x∈Rn

‖Â
k̂
x− b‖2.

The minimal-norm least-squares solution of this minimization problem is
given by (3.3), which is an approximate regularized solution of (1.1).

9

We remark that the approximate solution (3.3) typically is of higher
quality than the approximate solution determined by replacing A by Ãk

and using the TRSVD method, because Â
k̂

often approximates Ã` more

accurately than Ǎk, cf. (3.2), provided that the singular values {σ̌j}kj=1 and

singular vectors {ǔj , v̌j}k̂j=1 of Ǎ approximate the corresponding singular
values and vectors of A with sufficient accuracy.

Algorithm 3 implements an application of Theorem 3. The algorithm
consists of three steps: Step 1 computes a partial approximate SVD of A by
Algorithm 1, and Step 2 gives the rank-k TRSVD approximation of A by
the TRSVD in (2.4). The regularization parameter k is determined by the
discrepancy principle similarly as in [13]. Step 3 uses the MTSVD method in
[13] to compute the approximate solution x̂

k̂
of the large-scale linear discrete

ill-posed problems (1.1). Algorithm 3 does not require m ≥ n.

Algorithm 3 (MTRSVD). Given A ∈ Rm×n, `� min{m,n}. Compute an
approximate regularized solution of (1.1).

1: Compute the approximate partial RSVD Ǎ` = Ǔ Σ̌V̌ > of A by Algorithm
1.

2: Compute the rank-k TRSVD approximation Ǎk of the matrix A by using
the discrepancy principle.

3: Compute the approximate regularized solution x̂
k̂

of (1.1) by (3.3). We

assume that 1 ≤ k ≤ k̂ ≤ `.

3.2. Computational complexity and error bounds

We discuss the computational complexity of the MTRSVD method. For
a given matrix A ∈ Rm×n in (1.1) with m ≥ n� `, the count of arithmetic
floating point operations (flops) for Algorithm 1 is about 4mn`, see [15],
while the computation of the standard SVD of A is about 6mn2 + 20n3

flops; see [4]. Other computations required by Algorithm 3 have negligible
flop counts.

At the end of this section, we analyze the error in approximate solutions
determined by Algorithm 3. We first need the following estimates shown in
[5].

Lemma 1. Suppose that A ∈ Rm×n has the singular values σ1 ≥ σ2 ≥ . . . ≥
σmin{m,n} ≥ 0. Let Ω` ∈ Rn×(k+p) be a Gaussian matrix with ` := k + p ≤
min{m,n} and p ≥ 4. Let the columns of Q` form an orthonormal basis for

10

the range of the matrix AΩ`; see Algorithm 1. Then

‖A−Q`Q
>
` A‖2 ≤ (1 + 6

√
`p log p)σk+1 + 3(`Σj>kσ

2
j)1/2 (3.4)

with probability not less than 1− 3p−p.

Under a mild assumption on p, the error bound (3.4) can be simplified
to

‖A−Q`Q
>
` A‖2 ≤ (1 + 9

√
`min{m,n})σk+1;

see [5] for details.
The following result gives an error bound for the approximation deter-

mined by the MTRSVD method.

Theorem 4. Let Â
k̂

in (3.1) be an approximation of A determined by Al-
gorithm 3. Then, using the notation of Lemma 1, the approximation error
is bounded by

||A− Â
k̂
||2 ≤ σk+1 + σk + (1 + 6

√
`p log p)σk+1 + 3(`Σj>kσ

2
j)1/2. (3.5)

Proof. We have

||A− Â
k̂
||2 ≤ ||A− Ǎk ||2 + || Ǎk− Âk̂

||2, || Ǎk− Âk̂
||2 = σk

by Theorem 1 and (3.4).

Similarly as above, we can simplify the bound of Theorem 4 under mild
condition on p to

‖A− Â
k̂
‖2 ≤ (2 + 9

√
`min{m,n})σk+1 + σk. (3.6)

The following theorem gives a sharper bound than (3.6).

Theorem 5. Let Â
k̂
∈ Rm×n in (3.1) with m ≥ n be an approximation of

A determined by Algorithm 3. Then, using the notation of Lemma 1,

||A− Â
k̂
||2 ≤ σ̃k+1 + σk + (1 + 6

√
`p log p)σk+1 + 3(`Σj>kσ

2
j)1/2, (3.7)

where σ̃k+1 is the (k + 1)st singular value of Q>` A and satisfies

σm−q+1 ≤ σ̃k+1 ≤ σk+1

with the definition σn+1 = . . . = σm = 0.

The bound of Theorem 5 with obvious modifications also holds for m <
n.

11

3.3. The randomized power method

The MTRSVD method as implemented by Algorithm 3 performs well
when applied to many discrete ill-posed problems that arise from the dis-
cretization or linear ill-posed problems in one space-dimension. This is il-
lustrated in Section 4. However, for some discrete ill-posed problems the
MTRSVD method is not able to determine an approximation of the desired
solution x̂ with satisfactory accuracy. This is true, for instance, for several
discrete ill-posed problems that stem from the discretization of ill-posed
problems in two space-dimensions.

Poor performance of the MTRSVD method, when the MTSVD method
performs well, stems from the fact that the former method does not de-
termine a suitable solution subspace. This difficulty with the MTRSVD
method typically arises when the singular values of the matrix A in (1.1)
decay to zero fairly slowly with increasing index. Slow convergence of the
singular values to zero with increasing index is fairly common for linear
discrete ill-posed problems in two or more space-dimensions.

It is well known that approximations of the singular vectors determined
by the RSVD method are less accurate when the singular values decay to
zero slowly with increasing index number than when they decay to zero
quickly. This behavior is suggested by Lemma 1.

The randomized power method described by Halko et al. [5] provides a
remedy. This method determines the singular vectors of M = (AA>)qA for
a small integer q ≥ 1. We observe that the matrix M has the same singular
vectors as A, while its singular values σj(M) = σj(A)2q+1, j = 1, 2, . . . ,
decay faster to zero than the singular values σj(A) of A when the latter are
small. Therefore, the RSVD method applied to M is able to determine the
singular vectors associated with the largest singular values more accurately
than when the RSVD method is applied to A. This observation suggests
that we modify Step 1 in Algorithm 3 by applying the RSVD method to the
matrix M instead of to A.

It is undesirable to explicitly form the possibly very large matrix M .
Algorithm 4 determines approximations of a partial SVD of A by applying
a randomized power method to M without explicitly forming M . In the
computed examples of Section 4, we set q = 1. Algorithm 4 assumes that
m ≥ n. It is straightforward to modify the algorithm to be applicable when
m < n.

When the singular vectors are not approximated accurately enough, the
MTRSVD method may determine worse approximations of the desired so-
lution x̂ of (1.1) than the TRSVD method. This depends on that the error

12

Algorithm 4 (RSVD(q)). Given A ∈ Rm×n, m ≥ n, and `� n. Compute
an approximation Ǎ` = Ǔ`Σ̌`V̌

> of a partial SVD of A, with Ǔ` ∈ Rm×`,
Σ̌` ∈ R`×`, and V̌` ∈ Rn×` by q steps of the power method applied to AA>.

1: Generate a Gaussian random matrix Ω` ∈ Rn×`.
2: Form the matrix Y0 = AΩ` ∈ Rm×`.
3: Compute the matrixQ

(0)
` ∈ Rm×` with orthonormal columns by compact

QR factorization Y0 = Q
(0)
` R

(0)
` .

4: for j = 1, 2, . . . , q do

5: Form the matrix Ỹj = A>Q
(j−1)
` , and compute the compact QR fac-

torization Ỹj = Q̃
(j)
` R̃

(j)
` with Q̃

(j)
` ∈ Rn×` and R̃

(j)
` ∈ R`×`.

6: Form the matrix Yj = AQ̃
(j)
` , and compute the compact QR factor-

ization Yj = Q
(j)
` R

(j)
` with Q

(j)
` ∈ Rm×` and R

(j)
` ∈ R`×`.

7: end for
8: Let Q` = Q

(q)
` .

9: Form the matrix B` = (Q`)
>A ∈ R`×n.

10: Compute the SVD of the small matrix B`: B` = W̌`Σ̌`V̆
>
` .

11: Form the matrix Ǔ` = Q
(q)
` W̌` ∈ Rm×`. Then Ǎ` = Ǔ`Σ̌`V̌

>
` is the

desired approximate partial SVD of A.

in the singular vectors often increases with their index, and the MTRSVD
typically includes more (approximate) singular vectors in the computed so-
lution than the TRSVD method. Thus, the MTRSVD method may include
more poorly approximated singular vectors in the computed solution than
the TRSVD method. Some computed examples in Section 4 with discrete
ill-posed problems that arise from the discretization of ill-posed problems in
two space-dimensions illustrate this. The good performance of the MTRSVD
method reported in [13] is achieved, because the singular values and vectors
are computed accurately in the examples reported there.

The shortcoming of the MTRSVD method mentioned above can be reme-
died by applying the power method (Algorithm 4) to determine improved
approximations of the singular vectors required to represent a regularized
approximate solution of (1.1). Algorithm 5 describes such a method, which
we refer to as MTRSVD(q).

4. Numerical experiments

We first consider three linear discrete ill-posed problems that arise from
the discretization of linear ill-posed problems in one space-dimension. These

13

Algorithm 5 (MTRSVD(q)). Given A ∈ Rm×n. Let ` = k+p� min{m,n}
and let q > 0 be a small integer. Compute an approximate regularized
solution xk of (1.1).

1: When m ≥ n, compute an approximate partial SVD Ǎ` = Ǔ`Σ̌`V̌
> of A

by q steps of power method applied to AA> as described by Algorithm
4; an analogous algorithm can be applied when m < n.

2: Compute the rank-k (with k ≤ `) TRSVD approximation Ǎk of Ǎ, where
k is determined by the discrepancy principle.

3: Compute the approximate regularized solution x̂
k̂

of (1.1) by (3.3) with

the matrix Ã` in Theorem 3 replaced by Ǎ`.

problems stem from Hansen’s Regularization Tools [7]. The performance of
the MTRSVD and TRSVD methods are reported in Subsection 4.1. Linear
discrete ill-posed problems that stem from the discretization of linear ill-
posed problems in two space-dimensions are discussed in Subsection 4.2.
One of the problems is from IR Tools [8]. The problems in this subsection
illustrate that it may be necessary to apply the power method (Algorithm
4) to obtain useful approximations of the desired solution x̂ of (1.1). In all
our examples m ≥ n; however, similar results are achieved when m < n.

4.1. Ill-posed problems in one space-dimension

All calculations reported in this subsection were carried out in MATLAB
R2016b on a laptop computer with 2.2 GHz Intel Core i5-5200U CPU and
4 GB RAM.

We consider the test problems deriv2, gravity, and heat from [7]. They
are linear discrete ill-posed problems, whose singular values converge to zero
with increasing index slowly, quickly, and moderately fast, respectively. All
examples arise from the discretization of Fredholm integral equations of the
first kind of the form∫ b

a
κ(s, t)x(t)dt = g(s), c ≤ s ≤ d, (4.1)

with a smooth kernel κ. MATLAB functions in [7] are used to generate
the matrices A and the exact solutions x̂. We then determine b̂ = Ax̂, and
the error contaminated right-hand data vector b in (1.1) by (1.2), where e
models white Gaussian noise with different noise levels ε = {0.1, 0.01, 0.001};
cf. (1.3).

14

Let xk denote a computed approximation of the desired solution x̂. The
relative error is defined as

Err =
||xk − x̂||2
||x̂||2

. (4.2)

(a) (b)

(c)

Figure 1: Example 4.1: Approximation errors ek = ||(I −QkQ
>
k)A||2 for random matrix

Qk ∈ Rm×k with orthonormal columns (green jagged graph) and the (k + 1)st singular
value of A ∈ R200×200 (red smooth graph), which is a lower bound for ek, as functions of
k. The graphs show the logarithm in base 10 of these quantities for the test problems (a)
deriv2, (b) gravity, and (c) heat.

15

The parameter ` in our algorithms is important for the good performance
of the randomized SVD method. We would like to choose ` in Algorithm 1
so that

‖(I −Q`Q
>
`)A‖2

‖b̂‖2
≤ ε, (4.3)

where the matrix Q` ∈ Rm×` has random orthogonal columns, like in Algo-
rithm 1, and ε is an available bound for the error e in b; cf. (1.3). Then, if
σk+1 is small, ‖A − Ǎ`‖2 is close to ε‖b̂‖2; cf. (2.5). Our numerical experi-
ence suggests that for many problems ` has to be somewhat larger than the
smallest k-value, such that the discrepancy principle (1.8) holds.

Theorem 6. Let the matrix A ∈ Rm×n have the singular values σ1 ≥ σ2 ≥
. . . ≥ σmin{m,n} ≥ 0, and let 1 ≤ ` ≤ min{m,n}. Then σ`+1 is a lower bound

for the expression in the left-hand side of (4.3), i.e., e` := ‖(I−Q`Q
>
`)A‖2 ≥

σ`+1. This bound is achieved for Q` = [u1, u2, . . . , u`], where the vectors uj
are left singular vectors of A; cf. (1.5).

Proof. First let Q` = U` = [u1, u2, . . . , u`] ∈ Rm×`, where the vectors uj are
left singular vectors of A; cf. (1.5). Using the SVD (1.5) of A, we obtain

‖A−U`U
>
` A‖2 = ‖UΣV >−U`U

>
` UΣV >‖2 = ‖Σ−U>U`U

>
` UΣV >‖2 = σ`+1.

Let B = U>U`U
>
` UΣV > ∈ Rm×n. Then B is of rank at most ` and has the

singular value decomposition B = Ũ Σ̃Ṽ > with

Σ̃ = diag[σ̃1, σ̃2, . . . , σ̃min{m,n}], σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃min{m,n} ≥ 0

and σ̃j = 0 for j ≥ `. It follows from [9, Theorem 3.4.5] and the Fan
dominance theorem contained in [9, Corollary 3.5.9] that

‖A−B‖2 ≥ ‖Σ− Σ̃‖2 = max{max
1≤j≤`

|σj − σ̃j |, σ`+1}.

This shows the theorem.

Figure 1 displays σk+1, the (k + 1)st largest singular value of A (red
smooth graphs), and the quantity ek of Theorem 6 (green jagged graphs) as
functions of k for three linear discrete ill-posed problems. The latter graphs
are jagged, because the matrix Qk has random orthonormal columns. The
figure illustrates that in order for the inequality (4.3) to hold, the parameter
` has to be larger than the smallest k such that σk+1 ≤ ε.

16

Let ktarget be the smallest k-value so that the discrepancy principle (1.8)
is satisfied. We seek to choose ` in Algorithm 1 that is somewhat larger than
ktarget, i.e., we let ` = ktarget + p for some moderate positive integer p.

The value ktarget depends both on the problem being solved and on the
size of ε, and is rarely known in advance. In practice, ` is often determined
in an adaptive way, i.e., we seek to determine a computed solution that
satisfies the discrepancy principle and check whether (4.3) holds. The pa-
rameter ` usually is not determined very carefully, because using an `-value
that is somewhat larger than necessary does not reduce the accuracy in the
computed solution and the additional cost of such a choice of ` often is neg-
ligible. Therefore, adaptive methods for selecting ` often start with a fairly
large initial value of `, and then increase `, if necessary, with not very small
“steps”.

The determination of a suitable ` is not the main focus of this paper.
We therefore, for simplicity, in our experiments choose fairly large values of
`. In this subsection, we set ` = 120 when ε = 0.001, and let ` = 70 when
ε = 0.1 or ε = 0.01.

We report the CPU time required in seconds (CPU) and the relative
error in the computed approximate solution (4.2) (Err) for each method
and several noise levels. To gain insight into the average behavior of the
solution methods, we report for every example the average of the relative
errors in the computed approximate solutions xk over 100 runs for each noise
level, with exception for experiments with n = 20000. The latter results are
from a single trial.

Example 4.1. Consider the Fredholm integral equations of the first
kind (4.1) with

κ(s, t) =

{
s(t− 1), s < t,
t(s− 1), s ≥ t, x(t) = t, g(s) =

s3 − s
6

,

and a = c = 0, b = d = 1. We use the MATLAB code deriv2 from [7]
to generate the matrix A ∈ Rn×n for n ∈ {1000, 2500, 20000}. The code
also generates the desired solution x̂ ∈ Rn. We let e ∈ Rn model white
Gaussian noise, scaled such that ‖e‖ = ε, and determine the “available”
error-contaminated data vector b using (1.2).

Table 1 presents CPU times and relative errors for the MTRSVD method
and compares this method to the TSVD, MTSVD, and TRSVD methods
for matrices A ∈ Rn×n for n ∈ {1000, 2500, 20000} and noise levels ε ∈
{0.1, 0.01, 0.001}. The table shows the CPU time for MTRSVD to be lower
than for the TSVD and MTSVD methods, and the relative errors achieved

17

Table 1: Example 4.1: Comparison of CPU times (in seconds) and relative errors for the
MTRSVD, TSVD, MTSVD, and TRSVD methods for matrices A ∈ Rn×n of different
sizes n and for three noise levels ε.

ε = 0.1 ε = 0.01 ε = 0.001
Method Time Err Time Err Time Err

n = 1000
TSVD 0.727 0.3451 0.734 0.2347 0.723 0.1608

MTSVD 0.729 0.3364 0.735 0.2203 0.724 0.1480
TRSVD 0.031 0.3461 0.033 0.2342 0.044 0.1512

MTRSVD 0.033 0.3364 0.035 0.2191 0.046 0.1457

n = 2500
TSVD 12.463 0.3392 12.141 0.2165 11.835 0.1503

MTSVD 12.464 0.3174 12.143 0.1999 11.837 0.1331
TRSVD 0.111 0.3188 0.104 0.2084 0.142 0.1480

MTRSVD 0.113 0.2878 0.106 0.1862 0.145 0.1426

n = 20000
TSVD - - - - - -

MTSVD - - - - - -
TRSVD 2.788 0.2823 2.291 0.1821 4.022 0.1208

MTRSVD 2.981 0.2523 2.373 0.1719 4.100 0.1117

with the MTRSVD method to be smaller than those for the TRSVD method.
When n is large, say n = 20000, the TSVD and MTSVD cannot be evaluated
on the laptop computer used for the experiments in this subsection, while
the MTRSVD method performs well. The table entries for the TSVD and
MTSVD methods for n = 20000 therefore are marked by −.

Figure 2 displays the exact and computed approximate solutions deter-
mined by the MTSVD and MTRSVD methods for n = 2500 and noise level
ε = 0.001. The approximate solution determined by the MTRSVD method
shown in Figure 2(b) is closer to the exact solution than the approximate
solution computed by MTSVD and depicted in Figure 2(a). Table 1 and
Figure 2 illustrate the benefit of using the MTRSVD method. �

Example 4.2. This test example uses the MATLAB code gravity in
[7] to determine the matrix A ∈ Rn×n and the desired solution x̂ ∈ Rn.
The error vector and error-contaminated data vector b ∈ Rn are generated
similarly as in Example 4.1. Table 2 displays the CPU time (in seconds) and
the relative errors in the approximate solutions computed by the MTRSVD,
TSVD, MTSVD, and TRSVD methods for problems of different sizes and for
three noise levels. Table 2 shows the MTRSVD method to require less CPU

18

(a) (b)

Figure 2: Example 4.1: Exact solution and approximate solutions computed by (a)
MTSVD and (b) MTRSVD for n = 2500 and noise level ε = 0.001.

time than the TSVD and MTSVD methods, and determines an approximate
solution with a smaller relative error than TRSVD for most noise levels and
problem sizes. Again, when n is large, such as n = 20000, the TSVD and
MTSVD methods cannot be used.

(a) (b)

Figure 3: Example 4.2: Exact solution x̂ and approximate solutions computed by (a)
MTSVD and (b) MTRSVD for n = 2500 and noise level ε = 0.001.

Figure 3 displays the exact and computed approximate solutions deter-
mined by the MTSVD and MTRSVD methods for n = 2500 and noise level

19

Table 2: Example 4.2: Comparison of CPU times and relative errors using MTRSVD,
TSVD, MTSVD, and TRSVD for different matrix sizes n and noise levels ε.

ε = 0.1 ε = 0.01 ε = 0.001
Method Time Err Time Err Time Err

n = 1000
TSVD 0.655 0.0753 0.612 0.0322 0.617 0.0144

MTSVD 0.657 0.0676 0.614 0.0276 0.618 0.0122
TRSVD 0.032 0.0752 0.031 0.0318 0.031 0.0146

MTRSVD 0.034 0.0678 0.033 0.0275 0.032 0.0123

n = 2500
TSVD 10.807 0.0410 10.713 0.0289 10.779 0.0136

MTSVD 11.808 0.0338 10.714 0.0208 10.780 0.0121
TRSVD 0.097 0.0612 0.103 0.0195 0.110 0.0143

MTRSVD 0.099 0.0536 0.105 0.0176 0.112 0.0110

n = 20000
TSVD - - - - - -

MTSVD - - - - - -
TRSVD 2.361 0.0613 2.354 0.0217 2.221 0.0095

MTRSVD 2.447 0.0554 2.439 0.0201 2.314 0.0074

ε = 0.001. The approximate solution determined by MTRSVD shown in
Figure 3(b) is seen to be closer to the exact solution x̂ than the approximate
solution computed by MTSVD depicted in Figure 3(a). Table 2 and Figure
3 illustrate the benefit of using the MTRSVD method. �

Example 4.3. This example arises from the discretization of a first kind
Volterra integral equation on the interval [0, 1] with a convolution kernel.
The MATLAB code heat in [7] is used to generate the matrix A ∈ Rn×n and
the desired solution x̂. The noise vector e ∈ Rn and the error-contaminated
data vector b ∈ Rn are generated analogously as in the previous examples.
Table 3 compares the CPU times and relative errors for the MTRSVD,
TSVD, MTSVD, and TRSVD methods for problems of different sizes n and
with different noise levels. Figure 4 displays x̂ and approximate solutions
computed by the MTSVD and MTRSVD methods for n = 2500 and noise
level ε = 0.001. The MTRSVD method is seen to be competitive both with
regard to accuracy and CPU time. �

We conclude this subsection with a comment on the bounds furnished by
Theorems 4 and 5 for the above examples. For all examples, the right-hand
sides (3.5) and (3.7) are close. However, these bounds are far from sharp.
They are about a factor 10 to 100 larger than the left-hand side of (3.5).

20

Table 3: Example 4.3: Comparison of CPU times and relative errors using MTRSVD,
TSVD, MTSVD, and TRSVD for different sizes and noise levels.

ε = 0.1 ε = 0.01 ε = 0.001
Method Time Err Time Err Time Err

n = 1000
TSVD 0.663 0.2504 0.652 0.1048 0.688 0.0296

MTSVD 0.664 0.2132 0.653 0.0746 0.689 0.0223
TRSVD 0.030 0.2479 0.032 0.0999 0.031 0.0276

MTRSVD 0.032 0.2107 0.035 0.0628 0.034 0.0228

n = 2500
TSVD 10.800 0.1845 10.872 0.0703 10.808 0.0265

MTSVD 10.802 0.1461 10.873 0.0575 10.810 0.0193
TRSVD 0.098 0.1894 0.106 0.0570 0.130 0.0264

MTRSVD 0.100 0.1536 0.109 0.0444 0.133 0.0218

n = 20000
TSVD - - - - - -

MTSVD - - - - - -
TRSVD 2.905 0.1385 2.377 0.0416 2.686 0.0167

MTRSVD 2.981 0.1120 2.458 0.0279 2.766 0.0138

(a) (b)

Figure 4: Example 4.3: Exact solution x̂ and approximate solutions computed by (a)
MTSVD and (b) MTRSVD for n = 2500 and noise level ε = 0.001.

21

4.2. Ill-posed problems in two space-dimensions

All examples in this subsection are solved using MATLAB R2019b on
a laptop computer with 1.4 GHz Dual-Core Intel Core i5 and 4 GB RAM.
The first example is an image deblurring problem from IR Tools [8] and the
second example is a discretization of a Fredholm integral equation of the first
kind in two space-dimensions. The discretized problem is determined with
the aid of the code baart from [7]. The examples illustrate the performance
of Algorithm 5 for q = 0 and q = 1.

For the examples of this subsection, the choice of the subspace dimension
` requires some attention. We will use different `-values for different methods
when necessary. A method may require ` to be quite large to be able to
satisfy the discrepancy principle, and we do not want to use the same large
value of ` for the other methods if this is not needed, because this would
make the latter methods unnecessarily slow. Similarly as in the previous
subsection, we determine the required `-values only roughly; if a certain `-
value is found not to be large enough to be able to satisfy the discrepancy
principle, then we generously increase ` in steps of several hundred or even a
thousand until we are able to satisfy the discrepancy principle. The specific
`-value used for each example and method is stated in the tables. We also
tabulate the truncation index for TSVD and TRSVD, denoted by k, as well
as the truncation index for MTSVD and MTRSVD, denoted by k̂. These
truncation indices may depend on the subspace dimension `; a larger value
of ` may decrease the relative error (4.2) as well as the truncation indices k
and k̂.

MTRSVD(1) in the table denotes Algorithm 5 with q = 1; the method
MTRSVD(0) stands for the basic MTRSVD method without power itera-
tion. All the results are averages based on 30 experiments unless otherwise
specified. �

Example 4.4. This example uses the IR Tools package [8]. We blur
an image of the Hubble space telescope included in the package (of different
sizes, 70×70 and 100×100 pixels) with medium speckle blur or severe motion
blur. The image sizes correspond to n = 4900 and n = 10000, respectively.
Zero boundary conditions are imposed. These boundary conditions are ap-
propriate due to the black background of the image. The blurring matrix A
generated by IR Tools is a psfMatrix object for the blur considered. These
objects have many favorable features and can be convenient to apply. How-
ever, in this example, we convert the object determined by IR Tools to a
matrix A. This allows us to compute the SVD of the blurring matrix with
the MATLAB function svd. The evaluation of the SVD of a psfMatrix

22

Table 4: Example 4.4: Comparison of CPU times, relative errors, and truncation index
values of the TSVD, MTSVD, TRSVD(1), and MTRSVD(1) methods applied to the
restoration of speckle blur and noise contaminated images. When n = 4900, we let
` = 3000 and ` = 4000 for ε = 0.01 and ε = 0.001, respectively; when n = 10000, we let
` = 6000 and ` = 7000 for the noise levels ε = 0.01 and ε = 0.001, respectively.

ε = 0.01 ε = 0.001

Method Time Err k or k̂ Time Err k or k̂

n = 4900

TSVD 124.4375 0.7688 2 88.9597 0.7698 2
MTSVD 124.4521 0.7688 2 88.9643 0.7698 2
TRSVD(1) 76.1313 0.2264 1763 108.1081 0.1586 3289
MTRSVD(1) 76.494 0.2124 2484 108.1686 0.1483 3521

n = 10000

TSVD 917.3022 0.7733 2 834.3533 0.7686 2
MTSVD 917.4021 0.7733 2 834.3971 0.7686 2
TRSVD(1) 494.9429 0.2187 3050 713.3095 0.1411 5890
MTRSVD(1) 495.5029 0.1962 4848 713.6283 0.1288 6695

object is not possible. We do not exploit any structure of A in these com-
putations. The timings therefore are representative for general matrices.
Moreover, matrix-block-vector products can be evaluated quite efficiently
on many computers (by the use of level 3 BLAS), while psfMatrix objects
only allow multiplication by one vector at a time.

The exact blurred Hubble space telescope image is contaminated by
white Gaussian noise with noise levels ε ∈ {0.01, 0.001}.

Table 4 demonstrates the performance of the methods TRSVD(1) and
MTRSVD(1) with one step of power iteration when applied to problems of
various sizes and noise levels, and compares these methods to the standard
TSVD and MTSVD methods. Figure 5 provides visual illustrations. We
note that the values of the parameter ` used for the computations for Table
4 and Figure 5 are quite large. This is necessary to achieve fairly accurate
restorations. Smaller values of ` yield restorations of worse quality.

Table 5 compares the basic MTRSVD method without power iteration,
denoted by MTRSVD(0), to the basic MTRSVD method complemented by
j steps of power iterations. The latter schemes are denoted by MTRSVD(j).
We found that at most a few steps of power iteration is necessary, and typi-
cally we only apply at most one step. This table also illustrates that power
iterations are necessary when the singular values decay slowly with increas-
ing index. The left-hand side of Table 5 shows results for a fairly small

23

(a) (b)

(c) (d)

Figure 5: Example 4.4: (a) True image (70 × 70 pixels, i.e., n = 4900), (b) blur- and
noise-contaminated image (noise level ε = 0.01), (c) speckle blur point spread function
displayed on a square root scale, and (d) restored image determined by MTRSVD(1).

24

Table 5: Example 4.4: Comparison of CPU times, relative errors, and truncation index
values for TRSVD and MTRSVD with different numbers of power iterations, q. Left
columns are results for speckle blur and right columns are for motion severe blur. In all
experiments n = 2500 and ε = 0.1.

Speckle blur n = 2500 Motion blur n = 2500

Method Time Err k or k̂ Time Err k or k̂

q = 0, ` = 1500

TRSVD(0) 6.3056 0.3145 487 4.5657 0.3803 527.8667
MTRSVD(0) 6.3258 0.3299 1021 4.5788 0.5745 1078

q = 1, ` = 1000

TRSVD(1) 4.1258 0.3183 410.6333 3.0376 0.3539 290.4667
MTRSVD(1) 4.1432 0.3169 921.8333 3.046 0.3431 580.0333

q = 2, ` = 1000

TRSVD(2) 5.7218 0.3184 409.0333 4.0023 0.3538 290.4
MTRSVD(2) 5.7407 0.3162 940.2667 4.0107 0.3440 591.1333

q = 3, ` = 1000

TRSVD(3) 7.3551 0.3184 408.9667 5.2317 0.3538 290.4333
MTRSVD(3) 7.3745 0.3164 949.8667 5.2403 0.3442 593.6

speckle blur matrix. The MTRSVD(0) method does not give as accurate
restorations as TRSVD(0), because the former method uses more error-
contaminated singular vectors than the latter. The right-hand side of the
table shows results for motion blur. The singular values for this blur decay
to zero slower with increasing index than for speckle blur. Therefore, more
singular vectors are required to determine a restoration that satisfies the
discrepancy principle. The MTRSVD(0) method is seen to perform much
worse than TRSVD(0), since the former method uses more error contami-
nated singular vectors to construct the restoration.

Table 6 supplements Table 5 and illustrates that when matrix size in-
creases, it becomes even more important to apply power iterations. Results
in this table show averages of 10 experiments.

The MTRSVD method seeks to determine a partial SVD of matrix A.
Figure 6 displays the exact singular values and the approximate singular
values computed by MTRSVD(1) for a speckle medium blurring matrix of
size n = 2500 and noise level ε = 0.01. Figure 6(a) shows the first 30
singular values and Figure 6(b) depicts the first 300. We can see that the
approximate singular values are fairly accurate approximations. �

Example 4.5. This example is constructed using the baart test prob-
lem from [7], which stems from the discretization of a Fredholm integral

25

Table 6: Example 4.4: Comparison of CPU times, relative errors, and truncation index
values for the TRSVD(0), MTRSVD(0), TRSVD(1) and MTRSVD(1) methods applied
to the restoration of images that have been contaminated by severe motion blur and noise.

Motion blur n = 4900 Motion blur n = 10000

Method Time Err k or k̂ Time Err k or k̂
q = 0, ` = 2500 q = 0, ` = 4000

TRSVD(0) 36.2741 0.3761 838.2 178.9941 0.4148 1560.5
MTRSVD(0) 36.3312 0.5664 1614.7 179.4288 0.6714 2865.6

q = 1, ` = 1500 q = 1, ` = 3000
TRSVD(1) 22.1102 0.3416 438.5 167.3661 0.3338 738
MTRSVD(1) 22.1417 0.3296 875.4 167.623 0.3251 1483.6

(a) (b)

Figure 6: Example 4.4: Exact singular values and approximate singular values computed
by MTRSVD(1): (a) The first 30 singular values: The exact singular values are marked by
(red) stars, while approximate ones are marked by (blue) circles. (b) The first 300 singular
values: The exact singular values are on a (blue) continuous curve, while approximate ones
are marked by (red) dots.

26

Table 7: Example 4.5: Comparison of CPU times, relative errors, and truncation index
values for TRSVD(q) and MTRSVD(q) and q ∈ {0, 1}. The order of the matrix A is n.
For all experiments, we let ` = 100.

ε = 0.1 ε = 0.001

Method Time Err k or k̂ Time Err k or k̂

n = 2500

TRSVD(0) 0.0315 0.3869 5 0.108 0.1999 11
MTRSVD(0) 0.0324 0.3707 6 0.1094 0.1809 13
TRSVD(1) 0.1672 0.3716 6 0.2406 0.1783 12
MTRSVD(1) 0.1677 0.3708 6 0.2418 0.1731 13

n = 10000

TRSVD(0) 1.5632 0.3654 6 1.7336 0.1736 13
MTRSVD(0) 1.5639 0.3654 6 1.7353 0.1727 13
TRSVD(1) 2.9248 0.3646 6 3.5356 0.1718 13
MTRSVD(1) 2.9256 0.3646 6 3.537 0.1708 13

equation of the first kind in one space-dimension discussed in [1]. Let
Ã ∈ Rm×m be a matrix from the baart test problem, and define

A = Ã⊗ Ã ∈ Rm2×m2
,

where ⊗ denotes the Kronecker product. The singular values of A are prod-
ucts of the singular values of Ã. Since the latter singular values decay to
zero rapidly with increasing index number, so do the singular values of A.
In fact, A has only a few significant nonvanishing singular values, which well
serves the purpose of illustrating that the basic MTRSVD method without
power scheme may perform well for 2D problems when the singular values
decay rapidly.

The true solution, x̂, is the tensor product of the exact solution of the
baart problem with itself. The noise-free right-hand side b̂ equals Ax̂. The
noise-contaminated vector b in (1.1) is defined by (1.2), where e models
Gaussian white noise with different noise levels ε ∈ {0.1, 0.01, 0.001}. For
all experiments in this example, we set ` = 100.

Table 7 compares the performance TRSVD(q) and MTRSVD(q) for q ∈
{0, 1}. Letting q = 1 gives computed approximations of x̂ of higher accuracy
and computing cost than q = 0. However, differently from the situation in
Example 4.4, q = 0 gives quite accurate results, especially for small noise
levels and large problem sizes. �

27

5. Conclusion

The application of truncated random singular value decomposition meth-
ods to the solution of large-scale linear discrete ill-posed problems is dis-
cussed. Several methods are described and compared. The choice of method
should depend on how quickly the singular values of the problem decay to
zero with increasing index. When the singular values decay slowly, appli-
cation of one step of power iteration is found to be beneficial, because this
enhances the accuracy of the computed approximate singular vectors. Nu-
merical examples illustrate the performance the methods discussed.

Acknowledgments

The authors would like to thank Silvia Gazzola for helpful comments
on the use of IR Tools. They also would like to thank Silvia Noschese
and the referees for comments. Research by G.H. was supported in part by
Application Fundamentals Foundation of STD of Sichuan (2020YJ0366) and
Key Laboratory of bridge nondestructive testing and engineering calculation
Open fund projects (2020QZJ03), and research by L.R. was supported in
part by NSF grants DMS-1729509 and DMS-1720259, and research by F.Y.
was supported in part by NNSF (11501392) and the Talent Project of SUSE
(2019RC09).

References

[1] M. L. Baart, The use of auto-correlation for pseudo-rank determination
in noisy ill-conditioned least-squares problems, IMA J. Numer. Anal.,
2 (1982), pp. 241–247.

[2] C. Brezinski, G. Rodriguez, and S. Seatzu, Error estimates for lin-
ear systems with applications to regularization, Numer. Algorithms, 49
(2008), pp. 85–104.

[3] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse
Problems, Kluwer, Dordrecht, 1996.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th Edition,
The John Hopkins University Press, Baltimore, MD, 2013.

[5] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions, SIAM Rev., 53 (2011), pp. 217–288.

28

[6] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM,
Philadelphia, 1998.

[7] P. C. Hansen, Regularization Tools, Version 4.0 for MATLAB 7.3, Nu-
mer. Algorithms, 46 (2007), pp. 189–194.

[8] S. Gazzola, P. C. Hansen, and J. G. Nagy, IR Tools: A MATLAB pack-
age of iterative regularization methods and large-scale test problems,
Numer. Algorithms, 81 (2019), pp. 773–811.

[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge
University Press, Cambridge, 1991.

[10] S. Kindermann, Convergence analysis of minimization-based noise level-
free parameter choice rules for linear ill-posed problems, Electron.
Trans. Numer. Anal., 38 (2011), pp. 233–257.

[11] S. Kindermann and K. Raik, A simplified L-curve method as error
estimator, Electron. Trans. Numer. Anal., 53 (2020), pp. 217–238.

[12] Z. Jia and Y. Yang, Modified truncated randomized singular value de-
composition (MTRSVD) algorithms for large scale discrete ill-posed
problems with general-form regularization, Inverse Problems, 34 (2018),
Art. 055013.

[13] S. Noschese and L. Reichel, A modified truncated singular value decom-
position method for discrete ill-posed problem, Numer. Linear Algebra
Appl., 21 (2014), pp. 813–822.

[14] L. Reichel and G. Rodriguez, Old and new parameter choice rules for
discrete ill-posed problems, Numer. Algorithms, 63 (2013), pp. 65–87.

[15] H. Xiang and J. Zou, Regularization with randomized SVD for large-
scale discrete inverse problems, Inverse Problems, 29 (2013), Art.
085008.

[16] H. Xiang, J. Zou, Randomized algorithms for large-scale inverse prob-
lems with general Tikhonov regularizations, Inverse Problems, 31
(2015), Art. 085008.

29

