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Abstract

Many complex phenomena can be modeled by networks, that is, by a set of nodes connected by edges.

Networks are represented by graphs, and several algebraic and analytical methods have been developed for

their study. However, in order to obtain a more useful representation of a system, it is often appropriate

to include more information about the nodes and/or edges, and those additions make it necessary to

adapt or modify such methods of study.

Multi-class networks, in which the set of nodes and/or the set of edges are partitioned in two or more

classes, are useful when different nodes and edges can play fundamentally distinct roles in the system. In

this article we introduce new models and methods for multi-class networks, based on how the adjacency

matrix is formed.

We apply this approach to obtain measures of node importance or centrality, in particular using the

Perron eigenvector. Perturbation results shed light on how the relative importance of a node changes by

the addition of a single edge, and experiments with both synthetic and real data sets illustrate features

of the methods discussed.

1 Introduction

Many complex phenomena can be modeled by networks, that is, by a set of nodes and a set of connections

among them, called edges. Network models simplify reality by ignoring some information. Indeed, in the

simplest network models, neither nodes nor edges have attributes and only the connectivity between the

nodes is modeled. This simplification makes it possible to apply graph theory and use powerful quantitative

methods to extract information about complex systems that might not be easily accessible otherwise; see

[12, 20] for many examples.

However, in order to obtain a more faithful representation of a system, it sometimes becomes necessary

to include more information about the nodes and/or edges, and such additions usually make it necessary to

adapt or modify the quantitative methods of analysis. An example is the inclusion of weights, in which edges

and/or nodes are assigned a numerical value, representing a characteristic of interest for the modeler; see,

e.g., [1, 19, 24]. Another example is furnished by multi-class networks, in which each node belongs to exactly

one of k node classes, and each edge belongs to exactly one of d edge classes. This kind of model becomes

necessary when different nodes can play fundamentally distinct roles in the system. It is the purpose of the

present paper to discuss models for multi-class networks. Examples of multi-class networks include:

• Bibliographic Network: The node classes may be papers, authors, and journals. Classes of edges

(relationships) may be citations (between papers), authorships (between papers and authors), and

publications (between papers and journals).
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• Twitter Network: The node classes may be users/accounts, tweets, and comments. Classes of edges

(relationships) may be following (between users), tweet posting (between users and tweets), comment

posting (between users and comments), and the relationship between comments and the tweets they

refer to.

• Healthcare Network: The node classes may be patients, health conditions, treatments, providers, and

insurers. Notice that “treatments” could be modeled simply as edges between providers and patients,

but by modeling treatments as nodes, we can connect them to the patients, the providers, the treatment

types, the health condition, and the insurer or insurers who is/are paying for it.

• Genomic Network: The node classes may be genes, diseases, chemical compounds, gene ontology

categories, and tissues. Classes of edges (relationships) between nodes may be protein-protein interac-

tion (between proteins), encoding (between genes and proteins), and up-regulation and down-regulation

(between regulatory elements and genes).

Of the many properties of networks that can be studied quantitatively, in this paper we are interested in

the ranking of nodes within node classes by their importance or centrality. Our work is inspired by previous

results on 1-class, 2-class, and 3-class models by Bini, Del Corso, and Romani in two nice papers [2, 3], which

they applied to the analysis of bibliographic networks. Our models are a modification of their approach, and

can be extended in a natural way to k-class networks with k > 3. We will discuss differences and similarities

of their and our approaches in detail.

This paper is organized as follows: Section 2 defines basic concepts. We review related work in Section 3,

with particular focus on the work by Bini et al. [2, 3]. Sections 4-6 introduce our models, starting from

one-class networks and increasing the complexity until reaching k-class networks. We include motivating

examples and establish theoretical results based on perturbation theory in these sections. Section 7 presents

computed results for some large-scale problems. In particular, these examples compare the orderings obtained

with the models of the present paper to the ordering obtained with the models used by Bini et al. [2, 3].

Section 8 contains concluding remarks.

2 Basic Definitions

We model networks using the mathematical concept of a graph G = 〈V,E〉, which is given by a pair of

sets V = {v1, . . . , vn}, containing the vertices or nodes, and E = {e1, . . . , em}, containing the edges. In a

directed graph, at least one edge has a unique starting node and a unique ending node, while in an undirected

graph all edges connect two nodes without a specified direction. For simplicity, we will not allow self-loops,

and we will not allow more than one edge between a given pair of nodes, unless the edges are directed and go

in opposite directions. Then the adjacency matrix for G is a matrix A = [aij ] ∈ Rn×n with aij = 1 if there

is an edge from node vi to node vj , and aij = 0 otherwise. If G is undirected, then A is symmetric. We will

identify a directed edge e starting at vi and ending at vj with the ordered pair (vi, vj). A walk of length k

is a sequence vi1 , vi2 , . . . , vik+1
of nodes and a sequence ei1 , ei2 , . . . , eik of edges such that eij points from vij

to vij+1
. The nodes and edges of a walk are not required to be distinct. For further discussions on networks

and graphs, we refer to [12, 20].

DEFINITION 1. A multi-class network is a directed graph G = 〈V,E〉 together with a map C : V →
{1, . . . , k} that assigns to each vertex one of k vertex classes, and a map D : E → {1, . . . , d} that assigns to

each edge one of d edge classes, such that:
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For all e = (v, w) and e′ = (v′, w′), we have: D(e) = D(e′) iff C(v) = C(v′) and C(w) = C(w′) (1)

REMARK 1. Notice that:

1. Equivalent definitions have been proposed elsewhere, e.g., in [23] under the term information network,

further specified as heterogeneous if k > 1 and homogeneous otherwise.

2. The direct conditional in (1) is a natural condition, stating that edges of the same kind should connect

nodes of the same types; one can always define more edge classes to make sure this holds.

3. The converse conditional in (1) is a technical requirement, which makes it easier to use block adjacency

matrices (see below).

4. Definition 1 uses a directed graph for greater generality; if modeling considerations indicate that the

relationship represented by a class of edges is symmetric, then this can be accommodated by adding a

reverse class of edges containing the appropriate reverse edges.

5. Algebraically, Definition 1 means that there is a graph homomorphism (see [14]) from G onto a graph

S with k vertices and d edges. One can allow self-loops in S; a self-loop corresponds to a class of edges

in G that connect nodes within the same node class.

3 Related work

An early example of ranking objects in a multi-class network is described by Law and Lodge [17], who

are interested in ranking actors. The currently most popular ranking method, PageRank, was introduced by

Brin and Page [6] and has spurred considerable related work; see [5], [20, Chapter 7], and references therein.

Recently, tensor methods for multi-relation data have received considerable attention; see [7, 18, 21, 22]. We

will comment on how our approach relates to the tensor method described by Ng et al. [21] at the end of

Section 7. Similarly as Brin and Page, we will use the left Perron vector of an adjacency matrix to rank

nodes, but the way we define the adjacency matrix is different.

The ranking of scientific publications has received considerable attention over the years. The simplest

ranking method is to count the number of citations that each paper receives without considering its contents.

The journal impact factor (JIF), introduced by Garfield [13], reflects the average number of citations that

papers published in a journal receive over two years. This method ignores the quality of the papers and

authors that provide citations. The JIF therefore might not provide an accurate measure of the quality of

the papers in a journal; see Bini et al. [2, 3], as well as Del Corso and Romani [8] for discussions.

Bini, Del Corso, and Romani proposed an integrated model to evaluate papers, authors, and journals

based on the quality of the papers, authors, and journals [2, 3]. We refer to this model as the BDR model.

Bini et al. introduce a dummy paper, a dummy author, and a dummy journal to obtain an irreducible

adjacency matrix. A dummy paper is a paper that cites all other papers and is cited by all other papers, a

dummy author is the author who writes the dummy paper, and a dummy journal is a journal in which the

dummy paper is published. Suitable normalization then yields a row-stochastic adjacency matrix, whose left

unit eigenvector, in the Euclidean norm, associated with the largest eigenvalue can be scaled to have positive

entries. This vector is unique and is referred to as the left Perron vector of the adjacency matrix. The relative

importance of a node in its class is proportional to the relative size of the corresponding component of the

left Perron vector.
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Notice that the left Perron eigenvector of a row stochastic matrix can be interpreted, under suitable

assumptions, as the steady distribution for a random walk on the nodes that follows the edges. However,

the use of the Perron eigenvectors as measures of centrality does not depend on scaling the matrix to be

row stochastic, but on the recursive notion that the centrality of a node is proportional to the sum of the

centralities of its neighbors [4]. Whether an adjacency matrix should to be scaled or not is a modeling issue.

It follows that the relative importance of a paper in the BDR model is not merely based on the number of

citations it receives, but also on the quality of the citations (the importance of the citing papers), the prestige

of its author or co-authors, and the reputation of the journal in which it is published. Bini, Del Corso, and

Romani [2, 3] proposed the following the models:

One-class model: Bini et al. [2, 3] consider n1 papers and define an associated adjacency matrix

H = [hij ] ∈ Rn1×n1 , such that hij = 1 when paper i cites paper j, and hij = 0 otherwise. They assume the

importance that paper i gives to other papers is scaled by the total number of papers it cites. This yields

the row-stochastic matrix

Ĥ = [ĥij ] ∈ Rn1×n1 , ĥij =
hij∑n1

k=1 hik
.

The above formula assumes that the denominator is positive. This is secured by letting one of the papers be

the dummy paper that cites every other paper and is cited by every paper (except by itself). We henceforth

will not explicitly discuss the dummy items in the BDR models. The entries of the unit left Perron vector of

Ĥ yield the relative importance of the papers; large entries indicate high relative importance.

Two-class model: Bini et al. [2, 3] consider a model with n2 authors and n1 papers. It is determined

by the adjacency matrix H defined above together with an additional adjacency matrix K = [kij ] ∈ Rn2×n1 ,

such that kij = 1 if author i writes paper j, and kij = 0 otherwise. To determine the importance of papers

and authors, Bini et al. use the model

S =

[
KKT K

KT H

]
.

The (ij)th entry of the matrix A = [aij ] = KKT ∈ Rn2×n2 indicates the number of papers that are co-

authored by authors i and j. Bini et al. assume that the importance given by author i to his/her co-authors

is scaled by the total number of papers that are co-authored by author i and his/her co-authors, and they

also assume that the importance that paper i gives to its authors is scaled by the total number of authors

who write paper i. They therefore row-normalize the matrices A = KKT and P = [pij ] = KT such that

Â = [âij ], âij =
aij∑n2

k=1 aik
, P̂ = [p̂ij ], p̂ij =

pij∑n2

k=1 pik
.

To avoid that the importance of a paper is not proportional to the number of co-authors, Bini et al. column-

normalization the matrix K such that

K̂ = [k̂ij ], k̂ij =
kij∑n2

`=1 k`j

and then apply the following algorithm [2, 3] to obtain a row-stochastic matrix:

ALGORITHM 1. For each i ∈ {1, . . . , n2}, compute si =
∑n1

j=1 k̂ij. If si 6 1, set k̃ij = k̂ij, for j =

1, . . . , n1 − 1, and k̃in1
= 1 −

∑n1−1
j=1 k̂ij. Else divide the entries of the ith row of K̂ by si, that is, set

k̃ij = k̂ij/si. Output K̃ = [k̃ij ].

Finally, Bini et al. compute the left Perron vector of the matrix[
Â K̃

P̂ Ĥ

]
.
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The first n2 components of the left Perron vector indicate the importance of the authors and the last n1

components show the importance of the papers.

k-class BDR model Model of Section 5

k = 2

[
KKT K

KT H

] [
H KT

K 0

]
Difference Authors receive direct importance Authors receive indirect importance

from their co-authors. from their co-authors.

Table 1: Comparison of the BDR two-class model and the two-class model of Section 5. For the bibliographic

network, we use H, K, and KT to replace matrices H11, H21, and H12 respectively for the two-class model

introduced in Section 5. The scaling of the matrices in both models has not been considered.

We say that object i receives direct importance from object j, if there is a walk of length one from object

j to object i. Object i is said to receive indirect importance from object j, if there is a walk of length strictly

larger than one from object j to object i, and there is no walk of length one from object j to object i. Figure

1 shows the difference in how importance is propagated in the BDR model and our model to be introduced

in Section 5.

Table 1 displays the adjacency matrices for the two-class BDR model and our two-class model of Section

5. The BDR model assumes that the importance of author i is given by the direct importance of the paper(s)

that he/she writes and the direct importance of his/her co-authors. However, in our model the importance

of author i is given by the direct importance of the paper(s) he/she writes; the importance of paper j written

by author i is given by the importance of the papers that cite paper j, and the importance of its authors.

Therefore, author i also receives the indirect importance from his/her co-authors through the papers they

co-author. In the BDR model, author i’s work with well-known co-authors has a higher probability to be

more important than author j’s work with less well-known co-authors, even if author j’s paper is more

important than author i’s paper. In our model, the importance of author i depends more on the importance

of the papers he/she writes than on the reputation of his/her co-authors. Therefore, the authors give more

importance to their co-authors in the BDR model than in our model. As already mentioned, the BDR model

includes a dummy author.

Pc

A

P

Ac

AP

Figure 1: Comparison of the flow of importance of the BDR two-class model and the two-class model of

Section 5. Solid lines show the flow of importance in the BDR two-class model and dashed lines show the

flow of importance in the two-class model of Section 5. Here A stands for the author or set of co-authors of

paper P , Pc stands for the set of papers that cite paper P , AP stands for one of the authors of paper P , and

Ac stands for the co-authors of author AP .

The preferred choice of model for the ranking of papers, authors, and co-authors may depend on the
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context in which the results are used. Our model is an alternative to the BDR model. More details of the

former are provided in Section 5. One of the features of the two-class model of this paper is that it naturally

generalizes to k-class models. This is illustrated below.

Three-class model: Bini et al. [2, 3] consider the joint ranking of n1 papers, n2 authors, and n3 journals

by expanding their two-class model to a three-class model that in addition to the matrices H and K includes

an adjacency matrix F = [fij ] ∈ Rn3×n1 , such that fij = 1 if journal i publishes paper j, and fij = 0

otherwise. To determine the importance of these three objects, they use the adjacency matrix of the column

labeled “BDR model” in Table 2.

k-class BDR model Our model

k = 3


FHFT FKT F

KFT KKT K

FT KT H



H KT FT

K 0 0

F 0 0


Difference 1 Authors receive direct importance Authors receive indirect importance

from his/her co-authors and journals from his/her co-authors and journals

where he/she published papers. where he/she published papers.

Difference 2 Journal i receives direct importance Journal i receives indirect importance

from authors and journals that are from authors and journals that are

associated with journal i. associated with journal i.

Table 2: Comparison between the BDR three-class model and our three-class model. The scaling of the

matrices in both models has not been considered.

Bini et al. modify the adjacency matrix shown in the column “BDR model” of Table 2 by rescaling before

computing its Perron vector. As already mentioned, the BDR model includes a dummy journal. A new

matrix F̂ is obtained from F by dividing each entry by µ = max
16i6n3

(F · e), that is, the maximum number

among the number of papers published in each journal. Here and throughout this paper e = [1,1, . . . ,1]T

denotes a vector will all entries equal to one. Algorithm 1 is applied to a row-scaled version F̂ . The scaling

is designed to make the matrix row-stochastic. This is the matrix used in the BDR model. This scaling

has the effect that a journal that publishes many papers does not automatically give high importance to the

papers published in it. The matrices FHFT , FKT and KFT are normalized similarly as F . The matrix FT

is normalized similarly as K in the BDR two-class model. These matrices are used in the adjacency matrix

of the BDR model. The (left) Perron vector of this scaled adjacency matrix determines the ranking of the

papers, authors, and journals. Scaling details of our three-class model will be discussed in Section 7.

Table 2 shows the difference between the BDR three-class model and our three-class model. The BDR

model assumes that the importance of author i is given by the direct importance of the papers he/she writes,

the direct importance of his/her co-authors, and the direct importance of the journals where he/she publishes

papers. The BDR model also assumes that the importance of journal i is given by the direct importance of

journals whose papers cite papers published in the journal, the direct importance of authors who published

their papers in journal i, and the direct importance of papers published in journal i. In our model, described

in Section 6, we assume that the importance of author i is given by the direct importance from the papers

he/she writes, indirect importance from journals through his/her papers, and indirect importance from co-

authors through papers they co-authored. We also assume that the importance of journal i is given by the

6



direct importance from the papers published in it, as well as indirect importance from authors published

papers in it, and indirect importance from other journals through papers. Therefore, the proportion of

importance that authors and journals give to an author or a journal in the BDR model is more than that in

our model. That is, for some problems, it will over-accumulate the importance that an author or a journal

receives from authors and journals.

The flow of importance of the BDR three-class model and our three class model is illustrated by Figure

2.

Jc

JP

AJ

A

P

Pc

Ac

JAP

AP

Figure 2: Comparison of the flow of importance of the BDR three-class model and our three-class model.

Solid lines show the flow of importance in the BDR three-class model and dashed lines show the flow of

importance in our three-class model. Here A denotes the author or set of co-authors of paper P , JP denotes

the journal where paper P is published, Pc denotes the set of papers that cite paper P , AP stands for one

of the authors of paper P , Ac stands for set of co-authors of author AP , JAP
denotes the set of journals

where author AP ’s papers are published, Jc denotes the set of journals that contain papers that cite papers

published in journal JP , and AJ denotes the set of authors who publish their papers in journal JP .

4 One-class model

We will use the following notation:

• O1: object class in the one-class model.

• n1: number of objects (nodes) in O1.

• o1, o2, . . . , on1 : objects in the class O1. For instance, oi may stand for paper i or user i.

Suppose that we are interested in studying the ranking of the objects in O1 in a homogeneous network.

Let H = [hij ] ∈ Rn1×n1 be the adjacency matrix for the network, such that hij = 1 if there is a link from

oi to oj , and hij = 0 otherwise. The importance of oj is given by the jth entry of the left Perron vector x

of H. Thus, x satisfies xTH = ρxT , where ρ is the spectral radius of H. For different kinds of problems,

normalization of the rows of H may have to be considered. More details will be introduced in the examples

of this section.

Some rows or columns of the adjacency matrix H may only have zero entries. This occurs when some

node oi does not have any links (edges) to other nodes, in which case oi is said to be a sink, or when a node

oi does not have any links from other nodes, in which case oi is referred to a source. The Perron vector is

unique when H is nonnegative and irreducible, but this is not the case in the presence of a sink or source.

7



The adjacency matrix can be modified so that it is nonnegative and irreducible by allowing “teleporting.”

We consider three teleporting methods. They depend on a parameter 0 < ε < 1, which determines the

probability of teleporting. The first two teleporting methods below are related to the teleporting used by the

Google PageRank model [6, 16], while the last approach generalizes the one used by Bini et al. [2, 3].

• TM1: For ε ∈ (0, 1), we define the new weighted adjacency matrix Ĥ = H + ε · [eeT − I], where

e = [1, 1, . . . , 1]T . The identity matrix I ∈ Rn1×n1 is subtracted since we do not allow self-loops.

• TM2: For ε ∈ (0, 1), we introduce the weighted adjacency matrix Ĥ = H + ε · [eeT − H − I]. The

matrix H is subtracted from the teleporting matrix because we allow teleporting only between nodes

with no citation path.

• TM3: For ε ∈ (0, 1], we introduce a dummy node on1+1 such that it has bi-directional links with all

other nodes o1, o2, . . . , on1
. This gives the new weighted adjacency matrix Ĥ ∈ R(n1+1)×(n1+1), whose

leading n1 × n1 principal submatrix is H. Its last diagonal entry vanishes and the remaining entries of

Ĥ in the last row and column equal ε.

We first illustrate the one-class model with a simple undirected network, in which the nodes represent

users and the links represent friendships.

u1

u2

u3

u4

Figure 3: Undirected network of Example 4.1.

EXAMPLE 4.1. Consider the network of Figure 3 with four users. The associated adjacency matrix is

given by

H =


0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

 .
Thus, H is nonnegative and irreducible. Its left Perron vector

xT =
[
0.2818 0.6116 0.5227 0.5227

]
shows that User 2 has the highest rank. This depends on that he/she has three friends. Users 3 and 4 have

the same, but lower rank, because both of them have two friends, only. �
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1

2

3

4

5

6

7

Figure 4: Directed network of Example 4.2.

EXAMPLE 4.2. Regard the directed network of Figure 4. The nodes represent papers and the edges stand

for citations. Paper 7 is a sink since it does not cite any paper. To obtain a unique unit left Perron vector, we

complement the network with a teleporting strategy. To understand the meaning of teleportation, imagine

that a student is conducting a research project. He starts reading a paper that interests him and wants to

look at other interesting papers. He can either pick a new paper by following the citation path of papers or

randomly look for another paper (teleporting). The parameter ε stands for the probability of teleporting.

Intuitively, we expect Paper 1 to be the least important paper, since it does not receive any citations. Papers

2 and 3 are more important than paper 1, since they receive one citation each from Paper 1. Paper 4 is

more important than Papers 2 and 3, since it receives one citation from Paper 2, which is more important

than Paper 1. Papers 6 and 7 receive two citations. Their rankings therefore are higher than the rankings of

Papers 3 and 4. Moreover, Paper 7 is cited by Paper 5, which receives three citations. This makes Paper 7

more important than Paper 6. These rankings are illustrated by Table 3. The table shows these rankings to

be independent of the teleportation method used.
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TM1: ε P1 P2 P3 P4 P5 P6 P7

0.1 0.1270 0.1966 0.1966 0.2347 0.5627 0.3634 0.6347

0.3 0.2251 0.2915 0.2915 0.3111 0.5218 0.4029 0.4980

0.5 0.2682 0.3236 0.3236 0.3351 0.4879 0.4043 0.4526

0.7 0.2924 0.3391 0.3391 0.3465 0.4660 0.4019 0.4310

0.9 0.3079 0.3480 0.3480 0.3532 0.4512 0.3992 0.4143

TM2: ε P1 P2 P3 P4 P5 P6 P7

0.1 0.1356 0.2062 0.2062 0.2430 0.5619 0.3695 0.6207

0.3 0.2559 0.3150 0.3150 0.3287 0.4983 0.4047 0.4647

0.5 0.3137 0.3511 0.3511 0.3556 0.4455 0.3980 0.4143

0.7 0.3475 0.3671 0.3671 0.3682 0.4109 0.3889 0.3926

0.9 0.3696 0.3753 0.3753 0.3754 0.3871 0.3812 0.3815

TM3 : ε P1 P2 P3 P4 P5 P6 P7 P8

0.1 0.0254 0.0561 0.0561 0.0934 0.4571 0.2066 0.8301 0.2091

0.3 0.0835 0.1406 0.1406 0.1795 0.5082 0.3020 0.6367 0.4078

0.5 0.1247 0.1863 0.1863 0.2167 0.4837 0.3238 0.5236 0.5051

0.7 0.1523 0.2117 0.2117 0.2348 0.4535 0.3263 0.4562 0.5583

0.9 0.1715 0.2268 0.2268 0.2446 0.4279 0.3235 0.4138 0.5907

Table 3: Ranking of papers by using three teleportation methods and different values of ε. P8 denotes the

dummy paper.

Table 3 shows the relative importance of Papers 5 and 7 to depend on the value of the teleportation

parameter ε. If ε > 0 is small, the reader generally looks for a new paper by following the citation path,

while if ε is large, the reader frequently ignores the citations and selects a random paper. For all of the three

teleportation methods, Table 3 shows that as ε→ 0, we obtain the ranking P7 > P5 > P6 > P4 > P3 = P2 >

P1. In particular, Paper 7 is more important than Paper 5, even though Paper 5 has three citations, while

Paper 7 only has 2. When ε → 1, Table 3 shows the ranking P5 > P7 > P6 > P4 > P3 = P2 > P1. Thus,

when ε is large, and therefore the probability of teleporting is large, the relative importance of papers with

many citations increases. �

The importance of a paper is determined by how many papers it is cited by, and in the BDR and our

models also by the importance of the citing papers, but not by how many times a paper is cited in each one

of the citing papers. However, when Paper 1 cites Paper 2 several times, the importance of Paper 2 for the

development of Paper 1 is likely to be more important than if Paper 1 cites Paper 2 only once. For instance,

the present paper cites the papers [2, 3] many times, because they are important for the development of the

present paper. It therefore may be meaningful to equip the adjacency matrix with weights that grow with

the number of citations from one paper to another.
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1 2

34

2

3

4

1

Figure 5: Directed network of Example 4.3.

EXAMPLE 4.3. Consider four papers P1, . . . , P4, which cite each other several times. Specifically, Pi cites

Pi+1 i+ 1 times for i = 1, 2, 3, and P4 cites P1 once. The network is displayed by Figure 5, with the weights

shown near each edge, and the corresponding adjacency matrix is given by

H =


0 2 0 0

0 0 3 0

0 0 0 4

1 0 0 0

 .
It has the left Perron vector

xT =
[
0.3489 0.3153 0.4273 0.7722

]
,

which shows Paper 4 to be most important. �

We are interested in investigating how the left Perron vector changes if we add a new link from node or to

node os. Similar results for row-stochastic matrices are shown by Bini et al. [2, 3]. We first consider directed

networks, and subsequently will discuss undirected ones.

EXAMPLE 4.4. Regard the unweighted network associated with the network of Figure 5, i.e., all weights

are set to one. The left Perron vector for the network is given by

xT =
[
0.5 0.5 0.5 0.5

]
.

Adding a citation (link) from Paper 2 to Paper 4 gives a new network with Perron vector

xT =
[
0.5262 0.4311 0.3531 0.6424

]
.

The importance of Paper 4 increases as expected. �

The behavior of the left Perron vector in the above example is a consequence of the perturbation results

formulated as Theorem 1 below. Theorem 1 is shown by Bini et al. [2, 3] in the special case when ρ = ρ̂ = 1.

LEMMA 1. ([9, 11]) Let the matrices A = [aij ] ∈ Rn×n and Â = [âij ] ∈ Rn×n be nonnegative and

irreducible, with spectral radii ρ and ρ̂, respectively, and associated right Perron vectors x = [x1, . . . , xn]T

and x̂ = [x̂1, . . . , x̂n]T . Thus, Ax = ρx and Âx̂ = ρ̂x̂. Define the index sets Γ0 = {1 6 i 6 n : âij =

aij ,∀ 1 6 j 6 n} and Γ = {1 6 i 6 n : i /∈ Γ0}. Hence, Γ0 contains the indices of the rows of Â that are

the same as the rows of A, while Γ contains the remaining indices. We assume that both sets Γ0 and Γ are

non-empty. Then the following inequalities hold:

(a) If ρ̂ > ρ, then x̂k

xk
6 ρ

ρ̂ max
j∈Γ

(
x̂j
xj

)
for all k in Γ0.
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(b) If ρ̂ < ρ, then x̂k

xk
> ρ

ρ̂ min
j∈Γ

(
x̂j
xj

)
for all k in Γ0.

(c) If ρ̂ = ρ, then both inequalities above hold for all k.

Let A = [aij ], B = [bij ] ∈ Rn×n. We write A > 0 if all aij > 0, and A 6 B is B −A > 0.

LEMMA 2. ([15, Corollary 8.1.19]) Let the matrices A,B ∈ Rn×n have spectral radii ρ(A) and ρ(B),

respectively. If 0 6 A 6 B, then ρ(A) 6 ρ(B).

THEOREM 1. Let the adjacency matrix H = [hij ] ∈ Rn×n be irreducible and assume that hrs = 0. Let the

entries of the adjacency matrix Ĥ = [ĥij ] ∈ Rn×n agree with the entries of H, except for ĥrs = 1. Assume

that H and Ĥ have spectral radii ρ and ρ̂, and associated left unit Perron vectors x = [x1, . . . , xn]T and

x̂ = [x̂1, . . . , x̂n]T , respectively. Thus, ρxT = xTH and ρ̂x̂T = x̂T Ĥ. Then

x̂j
xj
6
ρ

ρ̂

x̂s
xs
6
x̂s
xs
, j 6= s, (2)

and
x̂s
xs
> 1. (3)

Proof. Let ej = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn denote the jth axis vector, and note that Ĥ = H + ere
T
s . Thus,

Ĥ > H, and Lemma 2 yields ρ̂ > ρ. Let A = HT and B = ĤT . Then the matrices A and B differ in row s

only, and Ax = ρx and Bx̂ = ρ̂x̂. Lemma 1(a) now gives (2).

Assume that x̂s < xs. It then follows from (2) that ‖x̂‖2 < ‖x‖2, which contradicts that both x̂ and x

are unit vectors. Here and below ‖ · ‖2 denotes the Euclidean vector norm.

The above theorem shows that if we add an extra link from object or to object os, then the rank of object

os increases more than the rank of the other objects. This also holds for k-class models, for k ≥ 2, because

it is a rank-one perturbation. However, Theorem 1 does not carry over to the situation when more than one

link is added to the network. This is illustrated by the following example.

1 2 3

4 56

Figure 6: Directed network of Example 4.5.

EXAMPLE 4.5. Consider a network defined by 6 papers with citations according to Figure 6. Paper 6 is

a sink. We used teleportation method 1 with ε = 10−5. This gives the left Perron vector

x̂T =
[
0.00009 0.00082 0.00673 0.06177 0.06177 0.99615

]
.

Now, modify the network so that Paper 1 cites Papers 3 and 6. Thus, we introduce links from Paper 1 to

Paper 3 and to Paper 6. The left Perron vector for the modified network is given by

x̂Tnew =
[
0.000089 0.000795 0.007075 0.062975 0.062975 0.996001

]
.
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Element-wise division of the vector entries gives

x̂Tnew
x̂T

=
[
0.9822 0.9647 1.0506 1.0196 1.0196 0.9998

]
.

Since both Papers 3 and 6 receive a new citation, one might expect their relative importance to increase

more than the relative importance of the other papers. However, the rank-value of Paper 6 deceases while

the rank-value of Papers 4 and 5 increase. �

In Example 4.5 the rank of one of the papers (Paper 3), which receives new citations, increases in rank

more than the other papers. The following result shows this behavior to hold in general. Corollary 1 is shown

by Bini et al. [2, 3] in the special case when ρ = ρ̂ = 1.

COROLLARY 1. Let the adjacency matrix H = [hij ] ∈ Rn×n be irreducible and such that hrs1 = . . . =

hrs` = 0. Assume that the entries of the adjacency matrix Ĥ = [ĥij ] ∈ Rn×n agree with the entries of H,

except for ĥrs1 = . . . = ĥrs` = 1. Define the index sets Γ = {s1, s2, . . . , s`} and Γ0 = {1 6 i 6 n : i 6∈ Γ0}.
Let H and Ĥ have spectral radii ρ and ρ̂, and associated left unit Perron vectors x = [x1, . . . , xn]T and

x̂ = [x̂1, . . . , x̂n]T , respectively. Then

x̂i
xi
6 max

j∈Γ

x̂j
xj

∀ i ∈ Γ0 (4)

and

max
j∈Γ

x̂j
xj
> 1. (5)

Proof. The proof is similar to that of Theorem 1. Let A = HT and Â = ĤT . The matrices A and Â differ

in rows with indices in the set Γ. By Lemma 2, we have ρ̂ > ρ, and Lemma 1(a) yields

x̂i
xi
6
ρ

ρ̂
max
j∈Γ

x̂j
xj

∀ i ∈ Γ0,

which shows (4).

Assume that inequality (5) is violated. Then 0 < x̂j < xj for 1 6 j 6 n. Therefore, x and x̂ cannot both

be unit vectors. This shows (5).

We remark that Theorem 1 and Corollary 1 carry over to k-class models, for k ≥ 2, to be defined in

Sections 5 and 6; the adjacency matrices for these models for k = 2 and k = 3 are shown in the right-hand

side columns of Tables 1 and 2. The theorem and corollary do not hold for the BDR three-class model

introduced in Table 2, because adding a new citation from a paper to another paper will modify the matrix

FHFT and, therefore, result in a rank-two perturbation. Corollary 1 also is useful when studying undirected

networks, for which the adjacency matrix H = [hij ] is symmetric. Let hij = 0 with i 6= j. When setting

hij = 1, we also set hji = 1 to preserve symmetry.

A converse to Theorem 1 can be shown, which addresses the situation when an edge is removed from a

network. Consider the removal of an edge that points from node or to node os. We would expect this removal

to decrease the rank of node os more than the rank of the other nodes; see Example 4.6 and Theorem 2 below.

The new graph obtained when the edge has been removed has to be connected. A converse of Corollary 1

also can be shown. It addresses the situation when several edges that point from node or to nodes os1 , . . . , os`
are removed. This is discussed by Corollary 2 below.

13



1 2

34

Figure 7: Directed network of Example 4.6.

EXAMPLE 4.6. Consider a network of four papers P1, . . . , P4 connected as shown by Figure 7. The unit

left Perron vector for the network is given by

xT =
[
0.4484 0.3213 0.5516 0.6526

]
.

Removing a citation (link) from Paper 2 to Paper 4 gives a new network with left Perron vector

xT =
[
0.4311 0.3531 0.6424 0.5262

]
,

The importance of Paper 4 decreases as expected. �

THEOREM 2. Let the adjacency matrix H = [hij ] ∈ Rn×n be irreducible and assume that hrs = 1. Assume

there exists at least two nonzero entries in the rth row and the sth column. Let the entries of the adjacency

matrix Ĥ = [ĥij ] ∈ Rn×n agree with the entries of H, except for ĥrs = 0. Assume that H and Ĥ have spectral

radii ρ and ρ̂, and associated unit left Perron vectors x = [x1, . . . , xn]T and x̂ = [x̂1, . . . , x̂n]T , respectively.

Thus, ρxT = xTH and ρ̂x̂T = x̂T Ĥ. Then

x̂j
xj
>
ρ

ρ̂

x̂s
xs
>
x̂s
xs
, j 6= s, (6)

and
x̂s
xs
6 1. (7)

Proof. If either nodes r or s become a source or sink after edge removal, we can always use one of the three

teleporting methods introduced in Section 4 to make Ĥ irreducible. Let ej = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn

denote the jth axis vector, and note that Ĥ = H − ereTs . Thus, Ĥ 6 H, and Lemma 2 yields ρ̂ 6 ρ. Let

A = HT and B = ĤT . Then the matrices A and B differ in row s only, and Ax = ρx and Bx̂ = ρ̂x̂. Lemma

1(b) now gives (6).

Assume that x̂s > xs. It then follows from (7) that ‖x̂‖2 > ‖x‖2, which contradicts that both x̂ and x

are unit vectors.

COROLLARY 2. Let the adjacency matrix H = [hij ] ∈ Rn×n be irreducible and such that hrs1 = . . . =

hrs` = 1. Assume that there exists at least two nonzero entries in the rth row and jth columns for j =

1, . . . , `. Let the entries of the adjacency matrix Ĥ = [ĥij ] ∈ Rn×n agree with the entries of H, except for

ĥrs1 = . . . = ĥrs` = 0. Define the index sets Γ = {s1, s2, . . . , s`} and Γ0 = {1 6 i 6 n : i 6= Γ0}. Let H and

Ĥ have spectral radii ρ and ρ̂, and associated left unit Perron vectors x = [x1, . . . , xn]T and x̂ = [x̂1, . . . , x̂n]T ,

respectively. Then
x̂i
xi
> min

j∈Γ

x̂j
xj

∀ i ∈ Γ0 (8)

and

min
j∈Γ

x̂j
xj
6 1. (9)
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Proof. If either nodes r or s become a source or sink after edge removal, we can always use one of the three

teleporting methods introduced in Section 4 to make Ĥ irreducible. The proof is similar to that of Theorem

2. Let A = HT and Â = ĤT . The matrices A and Â differ in rows with indices in the set Γ. By Lemma 2,

we have ρ̂ 6 ρ. and Lemma 1(b) yields

x̂i
xi
>
ρ

ρ̂
min
j∈Γ

x̂j
xj

∀ i ∈ Γ0,

which shows (8).

Assume that inequality (9) is violated. Then 0 < xj < x̂j for 1 6 j 6 n. Therefore, x and x̂ cannot both

be unit vectors. This shows (9).

5 Two-class model

We will use the following notation in this section:

• O1, O2: object classes. Objects in these classes may represent papers and authors in a bibliographic

network, and users and movies in a network from the Douban web site [10].

• ni: number of objects (nodes) in the ith object class, i ∈ {1, 2}.

• oi1, oi2, . . . , oini
: nodes in the class Oi, i ∈ {1, 2}.

• ωij for 1 6 i, j 6 2: the weight ωij > 0 determines the influence of objects in class i have on the

importance of objects in class j. We set ωij = 0 if objects in the class Oi have no influence on the

importance of objects in the class Oj ; otherwise we set ωij > 0.

O1 O2

O1 ω11 ω12

O2 ω21 ω22

Table 4: Weights ωij for links between objects in the classes O1 and O2.

Consider the object classes O1 = {o1i}n1
i=1 and O2 = {o2i}n2

i=1. Let Hij = [h
(ij)
rs ] ∈ Rni×nj be an adjacency

matrix such that h
(ij)
rs = 1 when there is an edge from object (node) oir to object (node) ojs, and h

(ij)
rs = 0

otherwise, for 1 6 i, j 6 2. The most general form of our two-class model has an adjacency block matrix of

the form

S =

[
ω11H11 ω12H12

ω21H21 ω22H22

]
∈ R(n1+n2)×(n1+n2). (10)

In all examples, we choose the weights ω11 = ω12 = ω21 = 1 and ω22 = 0. This gives adjacency block matrices

of the form shown in the right-hand side of Table 1.

The relative importance of the n1 + n2 nodes is determined by computing the left Perron vector xT =

[xTO1
xTO2

] for S. The relative size of the entries of the subvector xO1 ∈ Rn1 yields the relative importance of

the objects o1i of O1, while the relative importance of the objects o2i of O2 is proportional to the size of the

entries of the subvector xTO2
. The relative importance of the objects depends on whether the matrices Hij

have been normalized. This is illustrated by examples below.
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NM1 No normalization is applied.

NM2 Column normalize H21 with respect to 1-norm so that the importance of o1i ∈ O1 is independent of

the number of nodes o2i ∈ O2. Replace the matrix H21 in (10) by the normalized matrix. With this

normalization the influence of a user is not proportional to the number of movies he/she reviews.

NM3 Column normalization of H21 as above, and analogous row normalization of H12. Replace the

matrices H21 and H12 by the corresponding normalized matrices in (10). With this normalization

the influence of user is not proportional to the number of movies he/she reviews. Moreover,

the total amount of importance that a user gives to the movies he/she reviews is independent

of the number of movies reviewed.

Table 5: Normalization methods.

u1

u2

u3

u4

m1

m2

m3

Figure 8: Directed network of Example 5.1.

EXAMPLE 5.1. Consider an example with 4 users u1, . . . , u4 and 3 movies m1,m2,m3. The relation

between users are “friendships”, which are modeled by undirected edges. An edge from ui to mj indicates

that ui reviewed mj ; the edge from mj to ui models that user ui gets “importance” by reviewing movie mj .

Thus, all edges are undirected. We refer to movies for which our model gives relatively large components of

the left Perron vector as “influential.”

The importance of a user and movie depend on whether the columns of the matrix H12 or and the rows

of matrix H21 are normalized. Three normalization methods are used in Table 6.

Method u1 u2 u3 u4 m1 m2 m3

NM1 0.2501 0.4532 0.4552 0.4840 0.4532 0.2592 0.1336

NM2 0.3445 0.5619 0.4333 0.4135 0.4355 0.1224 0.0476

NM3 0.3216 0.5087 0.4000 0.3794 0.5087 0.2463 0.1199

Table 6: Ranking of users and movies by using NM1, NM2, NM3

When using NM1, user 4 is most influential, because he/she has two friends and writes reviews for three

movies; movie 1 is the most influential movie because it receives 4 reviews. For this normalization method,
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the influence of a user is proportional to the number of friends he/she has and the number of reviews he/she

writes. With NM2, user 2 is most influential, because he/she has three friends; again movie 1 is most

influential. For NM2, the influence of a user is proportional to the number of friends, but independent of

the number of movies he/she reviews. When using NM3, the total amount of influence that a user gives to

each movie is the same. A user with many friends is likely to be most influential. �

6 k-class model

This section uses the following notation:

• O1, . . . , Ok: object classes. Objects in these classes may represent papers, authors, and journals in a

bibliographic network, and users, movies, and groups in a network from [10].

• ni: number of nodes in the ith object class, 1 6 i 6 k.

• oi1, oi2, . . . , oini : objects (nodes) in the ith object class, 1 6 i 6 k.

• ωij for 1 6 i, j 6 k: the weight ωij > 0 determines the influence of objects in the class Oi have on the

importance of the objects in the class Oj .

Regard the object classes Oj = {oji}
nj

i=1, 1 6 j 6 k, and let Hij = [h
(ij)
rs ] ∈ Rn1×nj be an adjacency

matrix such that h
(ij)
rs = 1 when there is an edge from object oir to object ojs, and h

(ij)
rs = 0 otherwise. The

most general form of our k-class model has an adjacency block matrix of the form

S =


ω11H11 ω12H12 ... ω1kH1k

ω21H21 ω22H22 ... ω2kH2k

... ... ... ...

ωk1Hk1 ωk2Hk2 ... ωkkHkk

 ∈ R(n1+...+nk)×(n1+...+nk).

In all our examples, we use the weights ωij = 1 if i = 1 or j = 1, and ωij = 0 otherwise. When k = 3

this yields an adjacency matrix of the form depicted in the right-hand side of Table 2. To determine the

importance of the objects oij , we compute the left unit Perron vector x for S. Dividing this vector into

subvectors xT = [xTO1
xTO2

, . . . , xTOk
] such that xOj

∈ Rnj , 1 6 j 6 k, makes it possible to determine the

importance of the objects in each class; the importance of the objects in Oj is determined by the relative size

of the entries of the subvector xOj
.

7 Numerical experiments

To show that our model is practical, we applied it to networks from [10] and bibliographic networks

defined by real data. Example 7.1 discusses the ranking of objects of a four-class network from [10] with

object classes users, movies, groups, and locations. The data for this network can be downloaded from the

HIN Resource Dataset [10, 25]. Example 7.2 is concerned with a two-class bibliographic network defined by

real data downloaded from the CiteSeer website.

EXAMPLE 7.1. The data set from the Douban web site [10] includes 3022 users, 6971 movies, 2269 groups,

and 244 locations. Thus, this is a four-class model. Intuitively, we expect the user with most friends, the

movie with most reviews, the group with most users, and the location with most users to be the most

influential ones in each object class. The relative importance of the 12506 nodes is determined by computing

the left Perron vector xT = [xTU xTM xTG xTL ]. The relative importance of these objects depends on the
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normalization of the matrices Hij . In particular, the normalization methods for two-class models discussed

in Section 5 have to be generalized to be applicable to the four-class model of this example. We let NM3
i

denote normalization methods for the group objects; see Table 7. For location objects, in the fourth class, we

introduce an adjacency matrix H41 = [h41
ij ], such that h41

ij = 1 if user j is at location i, and h41
ij = 0 otherwise.

No normalization has to be applied to the matrix H41, because it is impossible for user i to appear at more

than one location simultaneously, that is, the importance of a user is not proportional to the number of

locations. Furthermore, no normalization has to be applied to the matrix H14, because we assume that the

proportion of importance that each user gives to a location is the same. We denote the normalization method

for locations by NM4
1, i.e., no normalization is applied, for the object location in this paper; see Table 7.

NM3
1 No normalization is applied.

NM3
2 Column normalize H31 with respect to the 1-norm so that the importance of o1i ∈ O1 is independent

of the number of nodes o3i ∈ O3. Replace the matrix H31 by the normalized matrix. With this

normalization the influence of a user is not proportional to the number of groups he/she belongs to.

NM3
3 Column normalization of H31 as above, and analogous row normalization of H13. Replace the

matrices H31 and H13 by the corresponding normalized matrices. With this normalization

the influence of a user is not proportional to the number of groups he/she belongs to. Moreover, the

total amount of importance that a user gives to the groups is independent of the number

of groups he/she belongs to.

NM4
1 No normalization is applied.

Table 7: Updated Normalization methods for the third object group and fourth object location

User ID num. of friends User ID num. of movies User ID num. of groups

2070 36 2756 183 372 18

1116 25 546 181 636 17

1037 14 38 171 2444 17

2483 13 851 171 1307 13

1011 10 1088 171 2781 13

Table 8: Columns 1, 3, 5 list the top five users in decreasing order based on the number of friends the user

has, the number of movies the user reviews, and number of groups the user belongs to, respectively.
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Group ID num. of users Movie ID num. of reviews Location ID num. of users

1867 61 1728 403 213 410

220 26 3649 381 93 292

774 26 223 378 142 108

1248 26 2135 375 68 97

1607 25 6691 375 54 96

Table 9: Columns 1, 3, 5 list the top five objects among groups, movies, and locations in decreasing order

based on the number of users the group has, the number of reviews the movie receives, and number of users

the location has, respectively.

The importance of a user, movie, and group depend on whether the columns of the matrices H12, H13

and the rows of the matrices H21, H31 are normalized. Three normalization methods are described in Table

10.

Mtds NM1 + NM3
1 + NM4

1 NM2 + NM3
2 + NM4

1 NM3 + NM3
3 + NM4

1

Rank User Movie Group Loca. User Movie Group Loca. User Movie Group Loca.

1 2756 1728 1867 213 2070 1728 1867 213 2070 1728 774 213

2 47 2135 1607 93 1011 3024 774 93 2427 3649 1679 93

3 1242 223 1248 142 2031 3649 374 142 2031 3024 1073 68

4 913 6370 774 68 2483 2135 1381 68 1011 2135 1381 142

5 779 3649 1641 54 2427 6370 2065 54 2483 637 1777 183

Table 10: Ranking of users, movies, groups, and locations.

When using the normalizations NM1+NM3
1+NM4

1, the influence of a user is proportional to the number of

friends, movies he/she reviews, and groups he/she belongs to. The influence of a movie is determined by the

number of reviews it received, the influence of a group is determined by the number of members it has, and

the influence of the location is determined by the number of users at the location. Tables 8, 9, and 10 show

that user 2756 reviewed 183 movies, user 2070 has 36 friends, and user 372 belongs to 18 groups. Moreover,

user 2756 is most influential, because 183 is larger than 36 and 18. Movie 1728 is most the influential, because

it received 403 reviews, group 1867 is the most influential, since it has 61 members, and location 213 is most

the important one, because it has 410 users. With the normalization NM2 + NM3
2 + NM4

1, the influence of a

user is proportional to the number of friends, but independently of the number of movies he/she reviewed,

and the number of groups he/she joins. The influence of a movie, a group, and the location is determined

by the number of reviews it received, and the number of users the group or the location has. From Table 10,

we can see that user 2070 now is most influential, since he/she has 36 friends. Movie 1728, group 1867, and

location 213 are still the most influential ones. When instead using the normalization NM3 +NM3
3 +NM4

1, the

influence of a user is primarily based on the number of friends he/she has, and the total amount of influence

that a user gives to each movie and group is the same, that is, the influence of movie i and group j is based

on the influence of the user who reviews movie j and joins group j, rather than the number of reviews movie

i received and the number of members group j has. The influence of location is based on the number of users

it has and on the influence of these users. Table 10 shows user 2070 and movie 1728 to still be the most

influential ones, but group 774 becomes the most influential group, because it receives the influence from
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26 users and some of the users join the most influential group and review the most influential movies. We

conclude that the choice of normalization is important for the ranking of objects of multi-class networks. �

EXAMPLE 7.2. We consider a two-class model that uses the same data as Bini et al. [2, 3]. The data

includes 716800 papers and 410930 authors. Since some of the papers are isolated and some of the papers do

not have information about authors, we first removed isolated papers and papers without author information.

We then have a data set with 358906 papers and 257650 authors.

For our one-class model, we obtain an adjacency matrix H ∈ R358906×358906 and applied TM3 with weight

ε = 0.1. Table 11 shows the top five papers. Results for the BDR model are displayed in Table 12. The BDR

model and our model give related, but different rankings.

Paper Position Number of Citations

Bryant–Boolean Function Manipulation 1 1640

Jacob, Karels–Congestion Avoidance and Control 4 1131

Kirkpatrick, Gelatt, Vecchi–Simulated Annealing 2 1344

Rivest, Shamir, Adleman–Digital Signatures 3 1219

Floyd, Jaconson–Detection Gateways 7 1024

Table 11: One-class model of Section 4 with TM3 for ε = 0.1. The papers are shown in decreasing rank order.

The first column shows the titles and authors of the papers, the second column displays the position of the

papers ordered by decreasing number of citations received, and the last column shows the number of citations

each paper received.

Paper Position Number of Citations

Jacob, Karels–Congestion Avoidance and Control 4 1131

Diffie, Hellman–New Directions in Cryptography 31 556

Rivest, Shamir, Adleman–Digital Signatures 3 1219

Bryant–Boolean Function Manipulation 1 1640

Kirkpatrick, Gelatt, Vecchi–Simulated Annealing 2 1344

Table 12: BDR one-class model. The papers are shown in decreasing rank order. The first column shows the

titles and authors of the papers, the second column displays the position of the papers ordered by decreasing

number of citation received, and the last column shows the number of citations each paper received.

For the two-class model, we have the adjacency matrices H ∈ R358906×358906 and K ∈ R257650×358906. We

used TM3 with ε = 0.1, and normalization NM3. We introduced a dummy author, who writes the dummy

paper. Table 13 shows the five highest ranked papers.
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Author Num. Pap. Paper Num. Cit.

Douglas C. Schmidt 329 Bryant–Boolean Function Manipulation 1640

Patrick C Hew 103 Jacob, Karels–Congestion Avoidance and Control 1131

Fachbereich Informatik 507 Kirkpatrick, Gelatt, Vecchi–Simulated Annealing 1344

Sally Floyd 91 Rivest, Shamir, Adleman–Digital Signatures 1219

Aniruddha Gokhale 58 Floyd, Jacob–Detection Gateways 1024

Table 13: Two-class model of Section 5 with TM3 with weight ε = 0.1. The first column shows authors

in decreasing rank order, and the second column shows the number of papers each author has written. The

papers in the third column are identified by titles and authors, and displayed in decreasing rank order. The

last column shows the number of citations each paper received.

Rank Author num.pap. Paper num.cit.

1 Randal Bryant 83 Kirkpatrick, Gelatt, Vecchi–Simulated Annealing 1344

2 Sally Floyd 91 Bryant–Boolean Function Manipulation 1640

3 John K. Ousterhout 23 Rivest, Shamir, Adleman–Digital Signatures 1219

4 Dennis M. Ritchie 6 Canny–Computational Approach to Edge Detection 834

5 Timothy H. Harrison 17 Floyd, Jacobson–Detection Gateways 1024

9 Douglas C. Schmidt 329

Table 14: BDR two-class model. The second column shows authors in decreasing rank order, and the third

column displays the number of papers each author has written. The papers in the fourth columns are identified

by titles and authors, and shown in decreasing rank order. The last column displays the number of citations

each paper received.

The ordering determined by the one-class model of Section 4 and the BDR one-class model are quite

similar. Papers that receive more citations have higher rank than those that receive fewer citations. The

difference in the ranking determined by these models stems from the fact that in the BDR model the impor-

tance that paper i distributes to the papers it cites is scaled by the total number of papers in the reference

list of paper i; in our model, the importance of a reference is independent of the number of papers in the list

of references. We observe that the ranking of papers we obtained with the two-class model of Section 5 is

consistent with the ranking determined by the one-class model of Section 4. The authors in the BDR two-

class model receive a higher proportion of importance from other authors than the authors in our two-class

model. This results in the difference of the author rankings of these models. We finally remark that if we

adjust the weights ωij , then different rankings will result. �

We conclude this section with some comments on the tensor-based approach by Ng et al. [21]. These

authors study the probability that a “random surfer” reaches a node or uses an edge. Suitable normalizations

give probability tensors for the nodes and edges. Zero “rows” or “columns” of the tensors are replaced by

“rows” or “columns,” respectively, in which each entry has the same value. This secures that the tensors are

irreducible. The stationary probability distributions for the nodes and edges determine the importance of

the nodes and edges, respectively. Other approaches to secure irreducibility, more in line with those used by

Bini et al. [2, 3], could also be used, such as introducing dummy entities (e.g., dummy authors and dummy
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papers). A comparison of the tensor method by Ng et al. [21] with the 2-class model of the present paper

when applied to a small example with four authors and six papers resulted in the same ranking, but with

different “importance scores” for the authors and papers. We conclude that the method proposed by Ng et

al. [21] provides an alternative to our approach, which is more closely related to the technique by Bini, Del

Corso, and Romani [2, 3]. The relative advantages of these approaches requires further investigation and will

depend on the networks and applications considered.

8 Conclusion

This paper proposes new models for the analysis of multi-class or heterogeneous networks, in particular

for the ranking of nodes based on their importance or centrality. The use of block adjacency matrices provides

a systematic approach to the analysis of multi-class networks, in which the influence of nodes in one class

on the relative importance ranking of members of another class is carried by transitivity through the explicit

relationships in the model, as expressed by the powers of the matrix. For example, it becomes unnecessary

to explicitly include co-authorship relationships among authors when trying to rank articles by importance,

as the co-authorship relationships arise naturally in the powers of the block adjacency matrix,

For simplicity, the perturbation results have been stated and proved for the one-class model, but they in

fact hold for all k-call models for k ∈ N. The results establish that the chosen notion of importance, based

on the Perron eigenvector, satisfies a kind of local monotonicity, namely that when a single edge is added,

the rank of the node that is receiving the influence cannot decrease.

Weights and teleportation models affect the ranking in a transparent manner. For a one-class bibliographic

network, the importance of a paper is determined by the number of papers it is cited by, and the importance

of the citing papers. The importance of a paper is also determined by the number of times a paper is cited

in each one of the citing papers if the bibliographic network is weighted. As the probability of teleporting

increases, the relative importance of papers with many citations increases if it is a teleportation model. When

authorships and publications are considered, the importance of a paper is also determined by the importance

of its author and the importance of the journal where it is published, but independent of the number of

authors it has.

In computational terms, using block-structured adjacency matrices can lead to matrices of very large

dimensions. However, these matrices will in general be very sparse, so in many applications neither the

computations nor the storage become too demanding. We note that large matrices do not have to be stored

simultaneously in fast memory, only evaluations of matrix-vector products are required and this can be carried

out in a piecemeal fashion.

Future work will include the use further information about the components of the network, including

node and edge weights, as well as time dependence.
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