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Abstract

Gauss quadrature rules associated with a nonnegative measure with support on (part of)
the real axis find many applications in Scientific Computing. It is important to be able to
estimate the quadrature error when replacing an integral by an `-node Gauss quadrature
rule in order to choose a suitable number of nodes. A classical approach to estimate this
error is to evaluate the associated (2` + 1)-node Gauss–Kronrod rule. However, Gauss–
Kronrod rules with 2` + 1 real nodes might not exist. The (2` + 1)-node generalized
averaged Gauss formula associated with the `-node Gauss rule described in [M. M. Spalević,
On generalized averaged Gaussian formulas, Math. Comp., 76 (2007), pp. 1483–1492] is
guaranteed to exist and provides an attractive alternative to the (2` + 1)-node Gauss–
Kronrod rule. This paper describes a new representation of generalized averaged Gauss
formulas that is cheaper to evaluate than the available representation.
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1. Introduction

Let dω be a nonnegative measure with infinitely many points of support on the real
axis, and such that all moments µk =

∫
xkdω(x), k = 0, 1, 2, . . . , exist. For notational
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simplicity, we will assume that the measure has total mass one. We are interested in
approximating integrals of the form

I(f) =

∫
f(x)dω(x) (1.1)

by the `-point Gauss rule

G`(f) =
∑̀
k=1

f(x
(`)
k )w

(`)
k (1.2)

associated with the measure dω. This rule is characterized by

G`(f) = I(f) ∀ f ∈ P2`−1,

where P2`−1 denotes the set of all polynomials of degree at most 2`− 1. The nodes x
(`)
k are

known to be distinct and to live in the convex hull of the support of dω, and the weights

w
(`)
k are positive; see, e.g., Gautschi [5] or Szegő [17] for properties of Gauss quadrature

rules.
It is important to be able to estimate the quadrature error

I(f)− G`(f) (1.3)

to assess whether the number of nodes, `, has been chosen large enough to achieve an
approximation of the integral (1.1) of desired accuracy. A classical approach to estimate
the error (1.3) is to evaluate the (2`+ 1)-node Gauss–Kronrod quadrature rule associated
with (1.2), if it exists. This Gauss–Kronrod rule is a quadrature rule of the form

K2`+1(f) =
∑̀
k=1

f(x
(`)
k )ŵ

(2`+1)
k +

2`+1∑
k=`+1

f(x̂
(2`+1)
k )ŵ

(2`+1)
k ,

such that the nodes x
(`)
k , k = 1, 2, . . . , `, are the nodes in the Gauss rule (1.2), and the

Gauss–Kronrod nodes x̂
(2`+1)
k , k = ` + 1, ` + 2, . . . , 2` + 1, and the weights ŵ

(2`+1)
k , k =

1, 2, . . . , 2`+ 1, are determined so that

K2`+1(f) = I(f) ∀ f ∈ P3`+1.

Generally, the Gauss–Kronrod nodes x̂
(2`+1)
k , k = ` + 1, ` + 2, . . . , 2` + 1, are required

to be real and to interlace the Gauss nodes. In addition, the Gauss–Kronrod weights

ŵ
(2`+1)
k , k = 1, 2, . . . , 2`+1, should be positive. Efficient numerical methods for computing

the nodes and weights of the Gauss–Kronrod rule K2`+1, when the nodes x̂
(2`+1)
k , k =

`+ 1, `+ 2, . . . , 2`+ 1, and weights ŵ
(2`+1)
k , k = 1, 2, . . . , 2`+ 1, satisfy these conditions are

described in [1, 11]. The quadrature error (1.3) is approximated by K2`+1(f)− G`(f).
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However, for many measures dω, including various Jacobi measures, and for certain
numbers of nodes, Gauss–Kronrod rules, whose nodes and weights satisfy the above condi-
tions do not exist; see Notaris [13] for a nice recent survey of Gauss–Kronrod rules and their
properties. The non-existence of Gauss–Kronrod rules for important measures prompted
Laurie [10] to develop anti-Gauss and averaged rules for the estimation of the error in
Gauss rules. The (`+ 1)-point anti-Gauss rule, G̃`+1, associated with the Gauss rule (1.2)
is determined by the requirement

(G̃`+1 − I)(f) = −(G` − I)(f) ∀ f ∈ P2`+1, (1.4)

and the associated averaged rule is given by

A2`+1(f) =
1

2
(G` + G̃`+1)(f). (1.5)

It follows from (1.4) that the degree of precision of A2`+1 is at least 2`+ 1, i.e.,

A2`+1(f) = I(f) ∀ f ∈ P2`+1.

It is well known that the Gauss rule (1.2) can be represented by a symmetric tridiagonal
matrix

T` =


α0

√
β1 0√

β1 α1
√
β2

. . .
. . .

. . .√
β`−2 α`−2

√
β`−1

0
√
β`−1 α`−1

 ∈ R`×`, (1.6)

whose entries αk ∈ R and βk > 0 are recursion coefficients for the sequence of monic
orthogonal polynomials {pk}∞k=0 associate with the measure dω,

pk+1(t) = (t− αk)pk(t)− βk pk−1(t), k = 0, 1, . . . ,

where p−1(t) ≡ 0, p0(t) ≡ 1; see, e. g., Gautschi [5] for details. The eigenvalues of T` are
the nodes and the squared first components of the normalized eigenvectors are the weights
of G`; see [5, 8]. Recall that the total mass of the measure is assumed to be one; otherwise
the formula for the weights differs.

A popular approach to compute the nodes and weights of G` is furnished by the Golub–
Welsch algorithm [9], which requires only c`2 + O(`) arithmetic floating point operations
(flops), where c > 0 is a fairly small constant independent of `; see also Laurie [12] for a
more recent discussion on the computation of nodes and weights. We remark that Glaser
et al. [7] describe an algorithm that is faster for certain classical orthogonal polynomials,
such as Legendre, Hermite, and Laguerre polynomials, for large values of `. However, in
many applications ` is not large enough for the latter algorithm to be competitive.
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One of the attractions of the anti-Gauss rule G̃`+1 and the averaged rule A2`+1 are
their ease of computation: the symmetric tridiagonal matrix T̃`+1 associated with the anti-
Gauss rule G̃`+1 is obtained by multiplying the last off-diagonal elements of the symmetric
tridiagonal matrix T`+1 associated with Gauss rule G`+1 by

√
2; see [10]. We denote the

tridiagonal matrix so obtained by T `+1. The Golub–Welsch algorithm can be applied to
compute the nodes and the weights of the anti-Gauss rule G̃`+1 in c`2 +O(`) flops. Thus,
the computational cost of determining the nodes and weights of both the Gauss rule G`
and the averaged rule A2`+1 is 2c`2 +O(`) flops.

Spalević [16] observed that the averaged rule can be represented differently from (1.5)
and this representation led to the generalized averaged quadrature rule associated with the
Gauss rule G` described below. We first outline the alternate representation of the averaged
rule. Introduce the reverse matrix

T ′` =


α`−1

√
β`−1 0√

β`−1 α`−2
√
β`−2

. . .
. . .

. . .√
β2 α1

√
β1

0
√
β1 α0

 ∈ R`×`,

which is obtained by reversing the order of the rows and columns of the matrix (1.6), and
define the concatenated symmetric tridiagonal matrix

T̂2`+1 =

 T`
√
β`e` 0√

β`e
T
` α`

√
β`e

T
1

0
√
β`e1 T ′`

 ∈ R(2`+1)×(2`+1). (1.7)

Using results by Peherstofer [15], Spalević [16] showed that the nodes and weights of the
averaged rule (1.5) are the eigenvalues and the squared first components of normalized
eigenvectors, respectively, of the matrix (1.7). This representation is helpful for showing
properties of the averaged rule; see [2, 3] for examples. However, the computation of the
nodes and weights of the averaged rule (1.5) by applying the Golub–Welsch algorithms to
the matrix (1.7) requires 4c`2 +O(`) flops in addition to the c`2 +O(`) flops necessary for
the computation of the nodes and weights of the Gauss rule (1.2). Hence, the computation
of the nodes and weights of the averaged rule (1.5) by applying the Golub–Welsch algorithm
to the matrix (1.7) is more expensive than the approach to compute the nodes and weights
of this rule outlined above.

In [16], Spalević also introduced the generalized averaged Gauss rule Ğ2`+1 with 2`+ 1
nodes associated with the Gauss rule (1.2). Its nodes and weights are the eigenvalues
and the square of the first components of the normalized eigenvectors, respectively, of the
matrix

T̆2`+1 =

 T`
√
β`e` 0√

β`e
T
` α`

√
β`+1e

T
1

0
√
β`+1e1 T ′`

 ∈ R(2`+1)×(2`+1), (1.8)
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which differs from the matrix (1.7) in that the elements in positions (` + 1, ` + 2) and
(` + 2, ` + 1) are replaced by

√
β`+1. This generalized averaged Gauss rule is exact for

at least all polynomials in P2`+2 and, thus, generally of higher degree of precision than
the averaged Gauss rule (1.5). The generalized averaged Gauss rule Ğ2`+1 can be used
to estimate the quadrature error (1.3) similarly as the averaged Gauss rule (1.5). In this
application, one typically uses Ğ2`+1(f) as an approximation of the integral (1.1), and then
considers Ğ2`+1(f)− G`(f) an estimate of the quadrature error.

A drawback of the rule Ğ2`+1, compared to the averaged rule (1.5), is that the former
is more expensive to compute. The computation of its nodes and weights by the Golub–
Welsch algorithm requires 4c`2 + O(`) flops, just like the computation of the eigenvalues
and first components of the eigenvectors of the matrix (1.7). In addition, the nodes and
weights of the Gauss rule have to be calculated.

It is the purpose of the present paper to describe a new representation of the generalized
averaged Gauss rule Ğ2`+1 that is analogous to the representation (1.5) and, therefore, is
cheaper to compute. This representation is described in Section 2. A computed example
with timings is presented in Section 3, and Section 4 contains concluding remarks.

2. A new representation of generalized averaged Gauss rules

The following result provides a decomposition of the generalized averaged quadrature
rule Ğ2`+1 that is analogous to the representation (1.5) of the averaged Gauss rule.

Theorem 1. The generalized averaged Gauss quadrature rule defined by the tridiagonal
matrix (1.8) can be expressed as

Ğ2`+1 =
β`+1

β` + β`+1
G` +

β`
β` + β`+1

G∗`+1, (2.1)

where the quadrature rule G∗`+1 is determined by the symmetric tridiagonal matrix

T ∗`+1 =



α0
√
β1 0√

β1 α1
√
β2

. . .
. . .

. . .√
β`−2 α`−2

√
β`−1√

β`−1 α`−1
√
β` + β`+1

0
√
β` + β`+1 α`


∈ R(`+1)×(`+1). (2.2)

It follows that using the representation (2.1), one can compute the nodes and weights of
the quadrature rule in 2c`2 +O(`) flops by the Golub–Welsch algorithm. This is the same
flop count as required for computing the nodes and weights for the averaged rule (1.5). The
flop count includes the computation of the nodes and weights for the Gauss rule (1.2).
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Proof. The nodes of the generalized averaged Gauss quadrature rule Ğ2`+1, defined by
the tridiagonal matrix (1.8), are the zeros of the polynomial (cf. [16])

t2`+1 = p` · FS
`+1 (2.3)

with
FS
`+1 = p`+1 − β`+1 · p`−1, (2.4)

where pj denotes the monic orthogonal polynomial of degree j associated with the measure
dω. The nodes of the quadrature rule G∗`+1 are the zeros of polynomial FS

`+1 in (2.3), which
has the form (2.4); cf. [16, Eq. (2.6) on p. 1487].

We now apply [4, Proposition 1] with q`+1 = FS
`+1 and

(1 + γ)
h`
h`−1

= β`+1,

where
h` = β0 β1 · · · β`

and

γ = γ` := −1 +
β`+1

β`
. (2.5)

We obtain from [4, Eq. (3)] that(
G∗`+1 − I

)
(xk) = −β`+1

β`
(G` − I) (xk), k = 0, 1, . . . , 2`+ 1,

where I denotes the integral operator (1.1). Equation (2.5) and [4, Eq. (4)] now yield
(2.1). 2

We remark that among all possible quadrature rules Q2`+1 in [4, Eq. (4)], the rule
Ğ2`+1 has maximal degree of exactness, 2` + 2, for general measures. When the measure
dω in (1.1) is even, the degree of exactness increases to 2`+ 3.

To estimate the error I(f)− G`(f), we can use the formula

I(f)− G`(f) ≈ Ğ2`+1(f)− G`(f) =
β`

β` + β`+1

(
G∗`+1(f)− G`(f)

)
. (2.6)

The nodes and weights of the expression G∗`+1−G` can be computed in 2c`2 +O(`) flops by
computing the nodes and weights for the quadrature rules G∗`+1 and G` separately, similarly
as in the computation of the averaged rule (1.5). In particular, this flop count includes the
calculation of the Gauss rule G`.

As the generalized averaged Gauss rule Ğ2`+1 has maximal degree of exactness among
all averaged quadrature rules, and its computation requires about the same number of
flops as the averaged rule (1.5), we propose that the right-hand side of (2.6) be used for
estimating the error in the Gauss rule (1.2).
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3. Computed examples

Many illustrations of the performance of generalized averaged Gauss rules for the es-
timation of the error in the underlying Gauss quadrature rule have been described in
[2, 3, 14]. We therefore only present timings for the evaluation of the `-node Gauss rule
(1.2) and the (2`+ 1)-node generalized averaged Gauss rule when the latter is represented
by the matrix (1.8) or the formula (2.1). We use a Matlab implementation gauss.m of the
Golub–Welsch algorithm made available by Gautschi [6]. This implementation does not
fully exploit the structure of the problem and computes the (full) spectral factorization of
the tridiagonal matrix to which it is applied. This code requires O(`3) flops to compute the
spectral factorization of the matrix (1.6). All computations are carried out using Matlab
version R2016b on a MacBook Pro laptop computer with a 2.5 GHz Intel Core i5 proces-
sor and 8GB 1600MHz DDR3 memory. The computations are performed with about 15
significant decimal digits.

Table 1: Ratios of CPU times for computing the Gauss rule (1.2) and the generalized averaged Gauss rule
using the representation (1.8), and for computing the Gauss rule (1.2) and the generalized averaged Gauss
rule using the representation (2.1) for several values of `. The table shows averages over 1000 timings each
of 106 runs.

`
time for computing the rules (1.2) and (1.8)
time for computing the rules (1.2) and (2.1)

20 ' 2.5
40 ' 1.8
80 ' 2.6

160 ' 3.2

Example 3.1. We compute the nodes and weights of the Gauss rule (1.2) as well as of the
generalized averaged Gauss rule by using the Golub–Welsch algorithm as implemented by
the Matlab function gauss.m in [6]. The representations (1.8) and (2.1) for the generalized
averaged Gauss rule are used. The former representation requires that the Golub–Welsch
algorithm be applied to the matrix (1.8) of order 2`+1; the latter only demands application
of the Golub–Welsch algorithm to the matrix (2.2) of order `+ 1 since the Gauss rule (1.2)
is computed separately. The flop count for determining the quadrature rules (1.2) and (1.8)
is 9c`3 +O(`2) using the code gauss.m, while the flop count for computing (1.2) and (2.1)
is only 2c`3 + O(`2) using the same code. The ratio of the flop counts therefore is about
4.5 for ` large. In addition to the arithmetic operations, the timings include many other
things, such as function calls and data access. Table 1 shows the ratio of the computing
times for these approaches when dω(t) ≡ 1. The variance of the computing times between
different runs is fairly large. We therefore report the average ratio of 1000 computations
of the quadrature rules 106 times each. The symbol ' stands for “usually larger than
and often fairly close to” the number reported. What is clear from the timings is that
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computing the quadrature rules (1.2) and (2.1) is faster than when using (1.2) and the
matrix (1.8).

4. Conclusion

A new representation of generalized averaged Gauss rules is derived. It is analogous to
the representation of averaged Gauss rules described by Laurie [10]. A numerical example
illustrates that it is faster to compute than the representation derived in [16].
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