
Noname manuscript No.
(will be inserted by the editor)

Centrality Measures for Node-Weighted Networks
via Line Graphs and the Matrix Exponential

Omar De la Cruz Cabrera · Mona Matar ·
Lothar Reichel

the date of receipt and acceptance should be inserted later

Abstract This paper is concerned with the identification of important nodes in
node-weighted graphs by applying matrix functions, in particular the matrix expo-
nential. Many tools that use an adjacency matrix for a graph have been developed to
study the importance of the nodes in unweighted or edge-weighted networks. How-
ever, adjacency matrices for node-weighted graphs have not received much attention.
The present paper proposes to use a line graph associated with a node-weighted graph
to construct an edge-weighted graph, that can be analyzed with available methods.
Both undirected and directed graphs with positive node weights are considered. We
show that when the weight of a node increases, the importance of this node in the
graph increases as well, provided that the adjacency matrix is suitably scaled. Ap-
plications to real-life problems are presented.

Key words: network analysis, node weight, node importance, line graph, matrix
exponential

AMS subject classifications: 05C50, 15A16, 65F60, 90B10

1 Introduction

A network is a set of entities, commonly referred to as vertices or nodes, that are
connected by edges. Mathematically, networks can be represented by graphs. The
mathematical and computational analysis of a graph can give valuable information
about the network it models, even though most of the particular attributes of the

Omar De la Cruz Cabrera
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. E-mail:
odelacru@kent.edu

Mona Matar
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. E-mail:
mmatar2@kent.edu

Lothar Reichel
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. E-mail:
reichel@math.kent.edu



2 Omar De la Cruz Cabrera et al.

individual vertices and edges are ignored. A few examples of the many phenomena
that can be modeled by graphs are: interactions among people or animals in a group
(social networks), gene regulatory interactions, telecommunication, power and trans-
portation infrastructure, and scientific collaboration; see, e.g., [2,5,16,29,32,35,41,
43] for these and other applications.

A major concern in network analysis is determining which nodes are “important”
in some sense. The importance of a node depends not only on how many neighboring
nodes it has, but also on the importance of the neighboring nodes. For instance, con-
sider a graph in which the nodes represent scientific papers and the edges represent
citations. A paper is important if it is cited by many important papers; at the same
time, an important paper conveys importance to papers that it cites and, to a lesser
extent, papers that cite an important paper also may be of interest. Network analy-
sis can help determine which nodes (papers) contribute the most to broadcasting or
receiving information through the network.

A popular approach to determine the importance of a node in a graph is to use
the exponential of the adjacency matrix A for the graph and compute the subgraph
centrality of the nodes. The subgraph centrality of node i is defined as the ith
diagonal entry of exp(A). Node i is considered important if [exp(A)]ii ≥ [exp(A)]jj
for all j; see Estrada and Hatano [17] for a discussion on this importance measure for
undirected graphs. The related importance measures [exp(A)1]i and [exp(AT )1]i for
node i as a broadcaster or receiver of information, respectively, for directed graphs,
where 1 denotes the vector with all entries one, are discussed, e.g., in [7,12]. Here the
importance of node i as a broadcaster increases with the relative size of [exp(A)1]i.
Thus, node i is a most important broadcaster if

[exp(A)1]i ≥ [exp(A)1]j ∀j. (1.1)

Analogously, node i is a most important receiver of information if

[exp(AT )1]i ≥ [exp(AT )1]j ∀j. (1.2)

The subgraph centrality as well as the importance measures (1.1) and (1.2) take into
account both the number of nodes that node i is connected to and the importance
of these nodes. Further discussions on these measures and additional references are
provided in Sections 2 and 3. For additional discussions on importance measures, we
refer to [16,18,20,25,32]. These notions of importance are not equivalent, in general,
and tend to capture different aspects of the idea of importance.

Measures of node importance are sometimes referred to as centrality measures.
In this manuscript, since we consider directed networks, we prefer to use the term
importance. For example, in a directed network with a universal source and a uni-
versal sink, those two nodes would fit the informal notion of “important,” but not
so much the informal notion of “central”.

It is often meaningful to assign weights to edges or nodes. For example, if each
node represents a city and each edge represents a road, an edge weight may represent
the capacity of transportation of the road. Edge-weighted networks have received
considerable attention in the literature; see, e.g., [4,10,31,34,44]. It can also be useful
to assign weights to nodes. The interpretation of node weights depends on the context
of the model. For instance, in a network that models a part of the brain, where each
node corresponds to a region of the brain, node weights may be chosen proportional
to the size of the region of interest [1]. In networks, in which each node corresponds



Node Importance in Node-Weighted Networks 3

to a city and the edges are roads between cities, a node weight may be chosen
proportional to the number of restaurants in a city [27]. Node weights also may
measure precipitation in a geographical region in a climate network [40]. We will in
Subsection 7.1 analyze genotype mutations with the aid of node-weighted networks.
However, despite many applications of node-weighted networks, the construction of
suitable adjacency matrices for their graphs has, to the best of our knowledge, not
received much attention in the literature.

This paper is concerned with the identification of the most important nodes of
a node-weighted network by using matrix functions, in particular the matrix expo-
nential. A main challenge is the construction of a suitable adjacency matrix. Our
approach is to transform a given node-weighted graph to an edge-weighted graph by
applying a line graph associated with the given graph. We describe several ways to
construct line graphs, and apply the exponential to adjacency matrices associated
with the line graph to determine the most important nodes in the line graph by using
analogues of the formulas (1.1) and (1.2) with the adjacency matrix A for the graph
replaced by an adjacency matrix E for the line graph. The entries of the analogues of
the vectors (1.1) or (1.2) so obtained provide edge weights that take into account not
only to how many edges an edge is connected to, but also to their importance. These
edge weights define an edge-weighted adjacency matrix Ã for the original graph. The
importance of the nodes of the original graph is computed by formulas analogous to
(1.1) and (1.2) with the A replaced by Ã. This approach allows us to incorporate
node weights for the original graphs. Both undirected and directed graphs are con-
sidered. We also discuss how increasing an edge weight affects the importance of the
node.

The organization of this paper is as follows. Section 2 introduces graphs and
associated adjacency matrices. The use of the matrix exponential function for edge-
weighted graphs is reviewed in Section 3. We discuss ways to transform a node-
weighted graph into an edge-weighted graph in Section 4, and Section 5 shows results
on how node importance (according to our definitions) changes when the weight
of an edge is modified. Section 6 is concerned with the identification of the most
important node(s) and edge(s) of a node-weighted graph, and Section 7 presents
real-life applications of our methods. Computed illustrations are provided in most
sections. A discussion on numerical approaches for large networks is provided in
Section 8, and concluding remarks can be found in Section 9.

2 Graphs

This section reviews definitions and well-known properties of graphs and the associ-
ated adjacency matrices. For more thorough discussions; see, e.g., [16,32].

2.1 Notation

Mathematically, a network is represented by a graph G = (V, E), consisting of a set
V = {vi}ni=1 of vertices or nodes, and a set E = {ek}mk=1 of edges, which are the links
between the nodes. A graph is said to be directed if at least one of the edges has a
direction; otherwise the graph is undirected. For directed graphs, each element of E
corresponds to an ordered pair ek = (vi, vj) of elements of V, and we say that ek



4 Omar De la Cruz Cabrera et al.

incides on vj , exsurges from vi, and connects vi and vj . In the undirected case, each
element of E corresponds to an unordered pair ek = {vi, vj} of elements of V, and
we say that ek incides on both vi and vj , and connects vi and vj (and also vj and
vi). In some cases we will require that “self-loops”, the case when ek connects vi to
itself, do not exist. We assume that there are no multiple edges between any pair
of vertices. The underlying undirected graph of a directed graph has the same set of
vertices, with all directed edges replaced by undirected ones (eliminating duplicate
edges, if any).

Whether directed or not, a network is said to be edge-weighted (or node-weighted),
if there is a number assigned to each edge (or node, respectively). We refer to these
numbers as “weights.” Graphs may be both edge-weighted and node-weighted, but
this case is beyond the scope of the present paper. The interpretation of the weights
depends on the application. In general, node weights correspond to the “size” of
a node, while edge weights indicate a capacity or speed of transportation, or the
reciprocal of a transfer or communication cost. In this paper we only consider positive
weights, although negative weights may be meaningful in some contexts.

For undirected unweighted graphs, the degree of a node is defined as the number
of edges inciding on it; for directed unweighted graphs, we identify the indegree of
a node as the number edges inciding on at it, and the outdegree of a node as the
number of edges exsurging from it.

This paper is concerned with node-weighted graphs, for which each node is as-
signed a positive weight. All edges have weight one. When constructing an associated
edge-weighted graph, its nodes will have weight one, and its edges will have weights
as described in Section 4.

2.2 Matrix Representation of Graphs

Algebraic Graph Theory is a powerful approach for the analysis of graphs. It is based
on Linear Algebra, and uses matrices to represent graphs; see, e.g., [14,16,21,32] for
more details. This section reviews a few concepts needed for this paper.

2.2.1 Adjacency and Incidence Matrices of Unweighted Graphs

For an unweighted graph G = (V, E) with node set V = {vi}ni=1 and edge set E =
{ek}mk=1, and without multiple edges, the adjacency matrix of G is an n× n matrix
A = [Aij ] with Aij = 1 if there exists an edge that points from node vi to node
vj , and Aij = 0 otherwise. The matrix A is symmetric if the graph is undirected;
for directed graphs, A is generally nonsymmetric. If a directed unweighted graph
has a symmetric adjacency matrix, then the directed graph can be replaced by its
undirected underlying graph.

While the adjacency matrix of a graph gives a representation of node-to-node
connections, the incidence matrix is determined by node-to-edge connections. If the
network is undirected, the incidence matrix of G is an n×m matrix B = [Bik] with
Bik = 1 if ek incides on vi, and Bik = 0 otherwise. Each column of B has exactly two
nonzero entries, which are equal to one, unless the corresponding edge is a self-loop,
in which case exactly one entry is one. If there are no self-loops, then BBT = A+D,
where D = [Dij ] is a diagonal matrix with the diagonal entry Dii equal to the degree
of vi. Throughout this paper the superscript T denotes transposition.



Node Importance in Node-Weighted Networks 5

For directed networks, there are various ways to define an incidence matrix; see,
e.g., [9,21]. In this paper we will adopt the definition used in [13]. Thus, for a directed
and unweighted graph G, the incidence matrix and exsurgence matrix of G are the
n ×m matrices Bi = [Bi

ik] and Be = [Be
ik], respectively, with Bi

ik = 1 if ek incides
on vi, Be

ik = 1 if ek exsurges from vi, and all other entries vanish. We say that the
head of an edge ek is at vi if ek incides on vi, and that the tail of ek is at vj if ek
exsurges from vj . Informally, an edge ek is said to transmit information from node
vj to node vi, if the head of ek is at vi and its tail is at vj . Each column of Bi and
Be has exactly one nonzero entry, equal to unity. We have that

A = BeBiT . (2.1)

2.2.2 Adjacency and Incidence Matrices of Edge-Weighted Graphs

Let the edges of the graph G have positive weights and denote the associated weighted
adjacency matrix by Ã. Thus, the (ij)th entry of Ã is the weight of the edge from node
vi to node vj . We refer to the adjacency matrix Ã as edge-weighted. The “unweighted”
adjacency matrix A that is associated with Ã has all edge weights equal to one. Thus,
the entries of A belong to {0, 1}.

Consider the unweighted adjacency matrix (2.1) associated with the edge-weighted
graph G, and let the matrix Z = diag(z1, z2, . . . , zm) hold the edge weights z1, z2, . . . , zm
of the graph. Then the weighted adjacency matrix for the graph G can be written as

Ã = BeZBiT . (2.2)

2.3 Line Graphs

2.3.1 Line Graph of an Undirected Graph

The line graph of an undirected unweighted graph G = (V, E) is an undirected graph
G∗ = (E ,F), in which an edge f ∈ F connects the nodes e, e′ ∈ E if and only if there
is a node v ∈ V such that both e and e′ incide on v in G. Line graphs are used to
analyze networks in various contexts; see, e.g., [15,22,37,38].

It is easy to show that if B is the incidence matrix of G, then E = BTB − 2Im
is the adjacency matrix of G∗. Here and below, Im stands for the identity matrix of
order m. We will refer to E as the line graph adjacency matrix.

2.3.2 Line Graphs of a Directed Graph

While there is only one natural notion of line graph for undirected graphs, several
different line graphs can be associated with a directed unweighted graph G = (V, E);
see [13]. We will use the line graph G∗ = (E ,F) described by Thulasiraman and
Swamy [42], where each edge in G corresponds to a node in G∗, and an edge exists
from node ei to node ej in G∗ only if edge ej in G emerges from the node that edge
ei points to. The line graph adjacency matrix of G is E→ = BiTBe; this is shown in
[13].



6 Omar De la Cruz Cabrera et al.

3 Identifying the Most Important Edges and Nodes in Edge-Weighted
Graphs

3.1 Importance of Nodes For Undirected and Directed Graphs

Many methods have been proposed to assess the importance or centrality of nodes in
graph. We will focus on methods that use matrix functions, in particular the matrix
exponential; see, e.g., [11,12,18,19] for discussions on this approach. Let Ã ∈ Rn×n
be the adjacency matrix of an edge-weighted graph, and let p be a positive integer.
Then the matrix entry [Ãp]ij is a sum with one term for each walk of length p starting
at vi and ending at vj (following edge directions, if the graph is directed), and each
term being the product of the weights of the edges in the corresponding walk. Hence,
the (ij)th entry of the matrix function f evaluated at Ã,

f(Ã) =
∞∑
p=0

cpÃ
p, (3.1)

is a weighted sum with terms corresponding to walks of various lengths from node
vi to node vj . The coefficients cp are chosen to penalize walks that traverse many
edges, because such walks are typically considered less important than walks that
traverse few edges. The coefficients generally are chosen to be nonnegative and to
eventually decrease as functions of p. A common choice is cp = 1/p!, in which case
f(Ã) = exp(Ã); see, e.g., [18] for a discussion on this matrix function. The term c0In
in (3.1) does not affect the ordering of the diagonal entries and, therefore, is of no
importance.

A popular centrality measure for node vi of a network is the subgraph centrality,
which is given by [f(Ã)]ii; see, e.g., [11,12,17–19]. Another commonly used measure
is

[f(Ã)1]i, i = 1, 2, . . . , n, 1 = [1, 1, . . . , 1]T ; (3.2)

see, e.g., [7,13,16,18,25]. For undirected graphs, Ã is symmetric, and a relatively
large value of [f(Ã)]ii or [f(Ã)1]i indicates that node vi is important. For directed
graphs, the relative size of [f(Ã)1]i shows the importance of node vi as a broadcaster,
and the relative size of [f(ÃT )1]i shows its importance as a receiver; see [12] for a
thorough discussion of the case when f is the exponential function. In this paper we
will use the measures aggregate downstream reachability,

ADR = exp(Ã)1, (3.3)

and aggregate upstream reachability,

AUR = exp(ÃT )1. (3.4)

The ordering of the ADR entries provides a ranking of all nodes in the network in
their role as broadcasters, and the ordering of the AUR entries determines a ranking
of the nodes in their role as receivers. The largest values correspond to the most
important nodes. For undirected graphs, the ADR- and AUR-values are the same.



Node Importance in Node-Weighted Networks 7

3.2 Importance of Edges in Undirected Networks

Let E ∈ Rm×m be the line graph adjacency matrix associated with an undirected
graph G. The edges of G may be ranked by comparing the edge line graph centralities

[exp(E)]kk =
∞∑
p=0

1
p! [E

p]kk, k = 1, 2, . . . ,m. (3.5)

The largest entries are associated with the most important edges; see [13]. Alterna-
tively, one may compare the relative size of the quantities

eLCk = [exp(E)1]k, (3.6)

which are analogous to (3.2). Again, the largest quantities are associated with the
most important edges. These centrality measures also can be applied to line graphs
with weighted edges. We will refer to the adjacency matrix associated with a weighted
line graph as Ẽ.

3.3 Importance of Edges in Directed Graphs

The line graph adjacency matrix E→ of a directed unweighted graph has an entry
1 in position (k, j) if edge ek passes information to edge ej through a node, i.e.,
if the head of edge ek coincides with the tail of edge ej . The entries of the matrix
(E→)2 tell us whether information is passed from an edge to another edge through
two nodes. In other words, [(E→)2]kj = 1 if there exists an edge pointing from the
target node of ek to the source node of ej . Similarly, the element [(E→)p]kj counts
the number of ways that information is transferred from edge ek to edge ej through
p nodes. The matrix exponential, exp(E→), is a weighted sum of positive powers
of E→, with transfers of information via many nodes having a smaller weight than
transfers via few nodes; cf. (3.5). The matrix E→ generally is nonsymmetric.

Row k of exp(E→) expresses the edge ek in its broadcaster role, while column k
of exp(E→) expresses the role of edge ek as a receiver. Specifically, a relatively large
edge line graph outcentrality,

eLCoutk = [exp(E→)1]k, (3.7)

indicates that edge ek is an important transmitter of information through the net-
work, and a relatively large edge line graph incentrality,

eLCink = [exp(E→T )1]k, (3.8)

suggests that edge ek is an important receiver of information.

4 Transformation of Node-Weighted to Edge-Weighted Graphs

In this section we consider ways of incorporating node weights into an adjacency
matrix. Differently from edge weights, there is not a single natural approach that
always can be used to encode node weights into an adjacency matrix. As will be seen
below, different approaches may be useful in various circumstances. Subsection 4.1



8 Omar De la Cruz Cabrera et al.

describes available approaches, Subsection 4.2 discusses factorizable node weight
functions, and Subsection 4.3 is concerned with the application of node weights via
a line graph. The latter approach will be used in the node weighting method of this
paper.

As shown in Subsection 2.2.2, the weighted adjacency matrix Ã of an edge-
weighted graph can be defined in a natural by (2.2). We may rewrite this factorization
as Ã = B̃eB̃iT by using the weighted incidence and exsurgence matrices B̃i = BiZ1
and B̃e = BeZ2, where the matrices Z1 and Z2 are diagonal with positive diagonal
entries, and Z = Z2Z1 in the definition (2.2) of Ã. Clearly, given the diagonal matrix
Z, the choice of the diagonal matrices Z1 and Z2 is not unique.

Let the node weights w1, w2, . . . , wn be given, and define the matrix W =
diag(w1, w2, . . . , wn). We would like to encode these weights into an edge-weighted
adjacency matrix Ã. Hence, our goal is to determine edge weights

Z = diag(z1, z2, . . . , zm) = H(W ) (4.1)

that depend only on W . In principle, each edge weight zk may depend on all node
weights, but in Subsections 4.1 and 4.2 we only consider “local” dependencies, i.e.,
each zk is a function of the weights of the nodes at the endpoints of the edge only.
We will consider “global” dependencies in Subsection 4.3.

Below we discuss various ways of defining the function H in (4.1) and, for each
approach, we describe a setting in which it is meaningful to use this approach.
Often, methods already discussed in the literature turn out to be particular cases
of weighting schemes of type (4.1). The graphs considered include the small node-
weighted graphs in Figure 1. These graphs are well suited for comparison of the
discussed modeling approaches. The node weights are displayed in parenthesis.

v1(4) v2(2) v3(7) v4(1)
e1 e2 e3

(a) A directed chain.

v1(4)

v2(2) v3(7)

v4(1)

e1

e2

e3

e4

(b) A cyclic graph.

v1(4)

v6(5) v7(1)

v4(1)

v2(2) v3(7) v5(2)

e1

e4 e5 e6 e2 e3

(c) An undirected graph.

v4(1)v5(2)

v7(1) v6(5)

v1(4) v2(2) v3(7)
e1

e2

e3

e4

e5

e6e7

(d) A directed graph.

Fig. 1 Node-weighted sample graphs. Node weights are displayed in parentheses.



Node Importance in Node-Weighted Networks 9

4.1 Edge Weights from Endpoint Node Weights

Let the nodes vi and vj be the endpoints of the edge ek, and let zk = h(wi, wj)
for some function h. If the network is undirected, then h should be symmetric, i.e.,
h(x, y) = h(y, x) for all x, y ∈ R.

4.1.1 Sum of Endpoint Node Weights

Consider a network consisting of buildings as nodes, and each street linking two
buildings as an edge. Each edge should be built large enough to accommodate all
occupants from both buildings in case they have to escape a fire in the building
they live in. If this network is node-weighted, with a node’s weight proportional to
the building capacity, then it is natural to convert the graph into an edge-weighted
graph with each edge weight equal to the sum of its endpoint node weights. This
weighting is most meaningful for undirected graphs. Thus, we determine Z from W
by calculating the sum node weights (snw)

Z = snw(W ) or zk = h(wi, wj) = wi + wj . (4.2)

This defines the function H in (4.1).
Figure 2 shows the edge-weighted graphs obtained by assigning each edge the

sum of the weights from Figure 1 of the nodes it connects. Zou et al. [45] assigned
to each edge half the sum of its endpoint node weights. This is simply a scaling by
1
2 of the adjacency matrix that we obtain.

v1 v2 v3 v4

e1(6) e2(9) e3(8)

(a) A directed chain.

v1

v2 v3

v4

e1(6)

e2(9)

e3(8)

e4(5)

(b) A cyclic graph.

v1

v6 v7

v4

v2 v3 v5

e1(5)

e4(3) e5(8) e6(3) e2(9) e3(5)

(c) An undirected graph.

v4v5

v7 v6

v1 v2 v3

e1(6)

e2(5)

e3(9)

e4(3)
e5(6)

e6(9)e7(6)

(d) A directed graph.

Fig. 2 Edge weighted graphs obtained from the graphs in Figure 1 using (4.2).



10 Omar De la Cruz Cabrera et al.

4.1.2 Product of Endpoint Node Weights

Another approach to assign node weights is to make the edge weight proportional
to each one of the two endpoint node weights. By symmetry considerations, the
constant of proportionality should be the same for all edges. This yields the product
node weights (pnw)

Z = pnw(W ) or zk = h(wi, wj) = wiwj . (4.3)

A situation when this approach to define the functions h and H in (4.1) is meaningful
arises, for instance, when the nodes represent cities, the edges represent roads that
connect the cities, and the traffic between the cities is assumed to be proportional
to the populations of the cities. The node weight assignment (4.3) also is appro-
priate when the node weight corresponds to the probability of the node becoming
“activated” at a given time. If different nodes get activated independently of each
other, and an edge is activated when both its endpoint nodes are activated, then the
product node weight provides the probability of activation of each edge.

4.1.3 Inheriting the Weight of an Endpoint Node

When the network is directed, it may be meaningful for the function h to be non-
symmetric. Examples include

h(wi, wj) = wi and h(wi, wj) = wj . (4.4)

These functions correspond to inheriting the weight of the source node, and inheriting
the weight of the target node, respectively. These weight assignment approaches are
considered in [36] and [23], respectively. These approaches make the edge weight
proportional to the weight of the source or target nodes. In the edge activation
scenario described above, the weightings (4.4) correspond to that an edge is activated
whenever its source or target are activated.

4.2 Factorizable Node Weight Functions

When the function h can be factored

h(wi, wj) = h1(wi)h2(wj), (4.5)

the relation (4.1) can be expressed with matrices in a simple manner. Assume that
(4.5) holds, and let H1(W ) be the diagonal matrix with the kth diagonal entry equal
to h1(wi), where vi is the source node of edge ek, for k = 1, 2, . . . ,m. Define the
diagonal matrix H2(W ) analogously for target nodes. Then H(W ) = H1(W )H2(W ),
and we obtain from (2.2) that

Ã = BeZBiT = BeH(W )BiT = BeH1(W )H2(W )BiT .

It is natural to introduce the weighted incidence matrices B̃e = BeH1(W ) and
B̃i = BiH2(W ). Then Ã = B̃e(B̃i)T .

We may let h(x, y) = xαyβ for fixed α, β ∈ R. This weighting scheme includes
some of the schemes described above as special cases. For instance, α = β = 1



Node Importance in Node-Weighted Networks 11

corresponds to (4.3), and α = 1, β = 0 and α = 0, β = 1 correspond to (4.4).
Negative values of α or β may make sense in some modeling situations. For example,
α = 1 and β = −1 corresponds to the case when each edge weight is proportional to
the weight of the source node and inversely proportional to the weight of the target
node. An example of this could be a network, in which the nodes are countries,
edges are military attacks, and the node weights measure military strength; edge
weights can be obtained that correspond to the effectiveness of the attack, which
would be proportional to the strength of the attacker and inversely proportional to
the strength of the defender.

4.3 Graph Node Weights to Line Graph Edge Weights

Roughly, the roles of nodes and edges of a graph G are interchanged in the associated
line graph G∗; see Subsection 2.3. It is therefore natural to consider how node weights
of G can be incorporated as edge weights in an adjacency matrix for G∗.

4.3.1 Simple Weighting

By using the expressions that relate the adjacency matrix of G∗ to the incidence
matrix (or incidence matrices) for G (see Subsection 2.3), we obtain expressions for
incorporating node weights W for G as edge weights into the adjacency matrix for
G∗.

Consider first the directed case. Here we have that E→ = BiTBe. Similarly to
the expression for the weighted adjacency matrix Ã in (2.2), we define the simply
weighted adjacency matrix of the line graph as

Ẽ→SW = BiTWBe.

For undirected graphs, the unweighted adjacency matrix of the undirected line
graph is E = BTB − 2Im, where B is the incidence matrix described in Subsection
2.2.1. We define the simply weighted adjacency matrix of the line graph as

ẼSW = BTWB − C,

where C is the diagonal matrix with ckk = wi+wj , whenever vi and vj are endpoints
of the edge ek, k = 1, 2, . . . ,m. Figure 3 shows edge-weighted line graphs correspond-
ing to the graphs in Figure 1. In Figure 1(c), all connections in the left-hand side
cluster have weight 1, and those in the right hand-side cluster have weight 4. We
remark that this weighting method does not capture the weights of nodes that are
only in direct contact with one edge in the original graph. In order to accommodate
for these weights without changing the network topology, we add a self-loop to each
node of the graphs in Figure 1, and then determine the associated line graph. We
only illustrate this approach in Figure 4 for the graph in Figure 1(a), but we perform
it on all graphs from this point onward. Note that, while these self-loops add nodes
and edges in the line graph, we are not concerned with their ranking.



12 Omar De la Cruz Cabrera et al.

(2) (7)
e1 e2 e3

(a) A directed chain.

(4)

(2) (7)

(1)

e1

e2

e3

e4

(b) A cyclic graph.

(1) (4)

e1

e4

e5

e6
e2 e3

(c) An undirected graph.

(1)

(1)

(5)

(5)

(4)

(4)
(2)

e1

e2
e3

e4

e5

e6

e7

(d) A directed graph.

Fig. 3 Edge-weighted line graphs of the node-weighted graphs in Figure 1 sample networks.

v1(4) v2(2) v3(7) v4(1)
e1 e2 e3

(a) Adding self-loops to the graph of
Figure 1(a).

(2) (7)(4) (1)

(2) (2)(7) (7)

e1 e2 e3

(b) Edge-weighted line graph.

Fig. 4 Added self-loops to the graph in Figure 1(a) and the corresponding line graph. The
effect of these additions is displayed in gray.

4.3.2 Scaling by Node Degree

A node vi in G does not necessarily correspond to a single edge in G∗. In fact, in
undirected graphs, each node vi produces a complete subgraph (a clique) in G∗,
containing

(
dvi
2

)
edges in G∗, where dvi denotes the degree of vi in G. The simple

weighting approach described above assigns the weight wi to all those
(
dvi
2

)
edges in

G∗.
For example, in Figure 3(c), we notice that all edges of the cluster on the left-

hand side have weight 1, which is the weight of node v4 connecting these edges in
Figure 1(c). From a modeling point of view, one may argue that in some applications,
v4 should distribute its weights to the surrounding edges, i.e., each edge should have
the weight 1

4 . This suggests scaling the weights of those edges by the degree of v4.
For an undirected graph, where D is the diagonal matrix holding the degree of

its nodes, we define the degree scaled weighted adjacency matrix of the line graph as

ẼDS = BTWD−1B − CDS, (4.6)



Node Importance in Node-Weighted Networks 13

where CDS = [diag(ckk)] is the diagonal matrix with ckk = wi/dvi +wj/dvj , and the
nodes vi and vj , of degrees dvi and dvj , respectively, are the endpoints of the edge
ek in G.

For directed networks, each node vi in G results in indegree(vi) × outdegree(vi)
edges in G∗ (connecting each of the G-edges inciding on vi to each of the G-edges
exsurging from vi). The number of edges in the line graph depends on the number
of edges exsurging from the nodes in the original graph. Let Dout be the diagonal
matrix holding the out-degrees of the nodes of G and define the out-degree scaled
weighted adjacency matrix of the line graph as

Ẽ→ODS = BiTWD−1
outB

e. (4.7)

The in-degree scaled version, Ẽ→IDS, is defined similarly.

4.3.3 Strong Degree Scaling

Rather than scaling node vi by its degree dvi , it may in some situations be meaningful
to divide by the number of the corresponding edges in G∗. For undirected graphs,
this means dividing by

(
dvi
2

)
. The algebra is similar to the scaling above, using a

diagonal matrix Ds that contains the values
(
dvi
2

)
, i = 1, 2, . . . , n, instead of the

matrix D in (4.6). This gives the strongly out-degree scaled adjacency matrix ẼSDS.
For directed networks, we similarly define the strongly degree scaled weighted

adjacency matrix of the line graph as

Ẽ→SDS = BiTWD−1
s Be, (4.8)

which is analogous to (4.7). To avoid division by zero when a node is a source (and
therefore has zero indegree) or a sink (and then has zero outdegree), we add self-
loops to each node of G before deriving G∗. This gives the strongly in-degree scaled
weighted adjacency matrix of the line graph, Ẽ→SIDS.

We will illustrate the performance of severel of the weighted adjacency matrices
of line graphs in computed examples in Section 6.

5 The Sensitivity of Node Centrality to Weight Change

This section is concerned with how the importance of a node changes when its
weight is modified. In particular, we show that the rank of a node as broadcaster
will increase, or at least remain the same, if its weight is increased. Related issues
have been discussed by Bini et al. [8] for ranking methods based on the relative size
of the entries of the left Perron vector of a row stochastic adjacency matrix of a
graph.

To simplify notation, we denote the edge-weighted adjacency matrix by A in this
section (this matrix is referred to as Ã elsewhere in this paper). Let the weight of
node vs increase. Thus, the edge(s) exsurging from node vs increase in weight, while
no edge exsurging from vs decreases in weight. With each increment δ in the weight
Ast of the edge pointing from node vs to node vt, the adjacency matrix associated
with the perturbed graph can be expressed as

Â = A+ δ1s1Tt ,



14 Omar De la Cruz Cabrera et al.

where 1t = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn denotes the tth axis vector. We show in
Section 5.2 that the ADR measure increases the most for node vs (compared to
all other nodes), under certain conditions on the graph. Therefore, its ranking as
broadcaster either increases or remains the same.

5.1 Preliminaries

Lemma 1 Let the nonnegative matrix A ∈ Rn×n satisfy

A1 ≤ 1,

where the inequality is component-wise. Thus, A is substochastic. Then for any in-
teger p ≥ 1,

Ap1 ≤ 1 (5.1)

and
exp(A)1 ≤ e1. (5.2)

These inequalities are sharp.

Proof. The result is easily shown by induction. The inequality (5.1) holds for p = 1
by assumption. Assume that (5.1) holds for p > 1. Then

Ap+11 = A(Ap1) ≤ A1 ≤ 1,

where we have used that all entries of A are nonnegative. For the exponential, we
have

exp(A)1 =
∞∑
p=0

Ap1
p! ≤

∞∑
p=0

1
p! = e1.

The inequalities (5.1) and (5.2) become equalities for certain matrices, including the
identity matrix and the cyclic shift matrix. The latter corresponds to an unweighted
cyclic graph.

Results analogous to those of Lemma 1 also hold for AT .

Lemma 2 Let the matrix A satisfy the conditions of Lemma 1. Then for any non-
negative integer n2,

∞∑
n1=1

(n2 + 1)!
(n2 + n1 + 1)!A

n11 < 1, (5.3)

where the inequality holds component-wise.

Proof. We first bound the coefficients in (5.3) by induction over n1. For n1 = 1, we
have

(n2 + 1)!
(n2 + 2)! = 1

n2 + 2 ≤
1

2n1! .

Let n1 ≥ 1 be an arbitrary integer and assume that

(n2 + 1)!
(n2 + n1 + 1)! <

1
2n1! .



Node Importance in Node-Weighted Networks 15

We would like to show that the above inequality holds for n1 replaced by n1 + 1.
Using the above inequality, we obtain

(n2 + 1)!
(n2 + n1 + 2)! = (n2 + 1)!

(n2 + n1 + 1)!(n2 + n1 + 2) <
1

2n1!(n2 + n1 + 2)

<
1

2n1!(n1 + 1) = 1
2(n1 + 1)! .

It follows that

∞∑
n1=1

(n2 + 1)!
(n2 + n1 + 1)!A

n11 <
∞∑

n1=1

1
2(n1 + 1)!A

n11 < 1
2(exp(A)1− 1) ≤ e− 1

2 1 < 1,

where the penultimate inequality is a consequence of (5.2). This shows (5.3).

5.2 Matrix Perturbation Results

This section considers adjacency matrices that satisfy the conditions of Lemma 1. As
usual, 1 = [1, 1, . . . , 1]T ∈ Rn is the vector of only ones, and 1j = [0, . . . , 0, 1, 0, . . . , 0]T ∈
Rn denotes the jth axis vector for j = 1, 2, . . . , n. We will perturb the entry Ast of
the adjacency matrix A ∈ Rn×n by δ. This perturbation is denoted by δA = δ1s1Tt .
We will use the formulas

(δA)1 = δ1s, A(δA) = δ(A1s1Tt ), (δA)A = δ1s1Tt A.

When s 6= t, we have (δA)2 = 0.

Theorem 1 Let the adjacency matrix A = [Aij ] ∈ Rn×n for the graph G satisfy the
conditions of Lemma 1. Add δ > 0 to the matrix entry Ast for some s 6= t, without
changing any of the other entries of A. If δ is small enough, then the ADR-value of
the vertex vs increases more than the ADR-value of any other vertex. It follows that
the rank of the vertex vs as a broadcaster either increases or stays the same. More
precisely, let δA = δ1s1Tt and Â = A+ δA. Then

[exp(Â)1]s − [exp(A)1]s > [exp(Â)1]q − [exp(A)1]q ∀q 6= s. (5.4)

Proof. The binomial expansion gives

exp(Â)− exp(A) =
∞∑
p=0

1
p! ((A+ δA)p −Ap) + δA (5.5)

+
∞∑
p=2

1
p!
(
Ap−1(δA) +Ap−2(δA)A+ . . .+A(δA)Ap−2 + (δA)Ap−1)+O(δ2).



16 Omar De la Cruz Cabrera et al.

Multiplying the terms in the above sum by 1 from the right-hand side gives

for p = 2, 1
2! (A(δA) + (δA)A)1 = δ

2! (A1s + 1s1Tt A1),

for p = 3, 1
3! (A

2(δA) +A(δA)A+ (δA)A2)1 = δ

3! (A
21s +A1s1Tt A1 + 1s1Tt A21),

for p = 4, 1
4! (A

3(δA) +A2(δA)A+A(δA)A2 + (δA)A3)1 = δ

4! (A
31s +A21s1Tt A1

+A1s1Tt A21 + 1s1Tt A31),
. . . .

Adding all the above terms “column-wise” and substituting into (5.5) multiplied by
1 from the right-hand side, we get(

exp(Â)− exp(A)
)

1 = δ

(
1s + 1

2!A1s + 1
3!A

21s + 1
4!A

31s + . . .

+
( 1

2!1s + 1
3!A1s + 1

4!A
21s + 1

5!A
31s + . . .

)
(1Tt A1)

+
( 1

3!1s + 1
4!A1s + 1

5!A
21s + 1

6!A
31s + . . .

)
(1Tt A21)

+
( 1

4!1s + 1
5!A1s + 1

6!A
21s + . . .

)
(1Tt A31) + . . .

)
+O(δ2)

= δ

∞∑
n1=0

(
∞∑

n2=0

An11s
(n1 + n2 + 1)! (1

T
t A

n21)

)
+O(δ2).

It follows that

[exp(Â)1]s − [exp(A)1]s = 1Ts
(

exp(Â)− exp(A)
)

1

= δ

∞∑
n1=0

(
∞∑

n2=0

1Ts An11s
(n1 + n2 + 1)! (1

T
t A

n21)

)
+O(δ2) (5.6)

≥ δ
∞∑

n2=0

1
(n2 + 1)! (1

T
t A

n21) +O(δ2),

where the inequality is obtained by ignoring all terms with n1 > 0. Now applying
Lemma 2, and using the inequality 1Tq An11s ≤ 1Tq An11, and the fact that 1Tq A01s =
0 for q 6= s, gives
∞∑

n2=0

1
(n2 + 1)! (1

T
t A

n21) >
∞∑

n2=0

(
∞∑

n1=1

1Tq
(n2 + 1)!

(n2 + n1 + 1)!A
n11

)
1

(n2 + 1)! (1
T
t A

n21)

≥
∞∑

n2=0

∞∑
n1=1

1Tq An11s
(n2 + n1 + 1)! (1

T
t A

n21).

Comparing this expression and (5.6) shows that

[exp(Â)1]s − [exp(A)1]s > [exp(Â)1]q − [exp(A)1]q +O(δ2).

This concludes the proof.



Node Importance in Node-Weighted Networks 17

Corollary 1 Let the conditions of Theorem 1 hold. Assume in addition that the
network consists of two clusters that are only connected by one directed edge from
node vs in the first cluster to node vt in the second one. Then (5.4) holds for any
δ > 0.

Proof. Let G1 be the graph of the first cluster of n1 nodes, including the node vs,
and denote the associated adjacency matrix by A1 ∈ Rn1×n1 . Similarly, let G2 be the
graph of the second cluster of n2 nodes, including the node vt, and let A2 ∈ Rn2×n2

be the adjacency matrix of G2. We can arrange the rows and columns of A to have
the form

A =
[
A1 B1
0 A2

]
, (5.7)

where B1 is an n1 × n2 matrix with all entries zero except for the entry (s, t), which
holds the weight of the edge going from node vs to node vt. The lower left block of
A is an n2×n1 matrix with all entries zero, because no edge goes from G2 to G1. We
can show by induction that all powers of A have the structure

Ap =
[
Ap1 Bp
0 Ap2

]
,

where Bp is some n1 × n2 matrix. Indeed, by (5.7), the matrix Ap has the desired
structure for p = 1. Suppose that Ap has the desired structure. Then

Ap+1 = ApA

=
[
Ap1 Bp
0 Ap2

][
A1 B1
0 A2

]
=
[
Ap+1

1 Ap1B1 +BpA2
0 Ap+1

2

]
=
[
Ap+1

1 Bp+1
0 Ap+1

2

]
.

It follows that [Ap]ts = 0 for all p = 1, 2, 3, . . . .
Let δA = δ1s1Tt with s 6= t. Then (δA)p = 0 for all p > 1. In addition,

(δA)Ap(δA) = δ1s1Tt Apδ1s1Tt = δ21s[Ap]ts1Tt = 0.

Therefore, all terms of orderO(δ2) in (5.5) vanish. This eliminates the need to require
that 0 < δ � 1 in the proof of Theorem 1.

Corollary 2 Let the conditions of Theorem 1 hold. Assume in addition that the
graph G is such that there is no walk from node vt to node vs. Then (5.4) holds for
any δ > 0.

Proof. Since there is no walk from node vt to node vs, we have [Ap]ts = 0 for all
p = 1, 2, 3, . . . . Hence,

(δA)Ap(δA) = δ1s1Tt Apδ1s1Tt = δ21s[Ap]ts1Tt = 0.

Similarly to the proof of Corollary 1, we conclude that all terms of order O(δ2) in
(5.5) vanish and the desired result follows.



18 Omar De la Cruz Cabrera et al.

Corollary 3 Let the transpose of the adjacency matrix A = [Aij ] ∈ Rn×n for the
graph G satisfy the conditions of Lemma 1. Add δ > 0 to the matrix entry Ast for
some s 6= t, without changing any of the other entries of A. If δ is small enough,
then the AUR-value of the vertex vt increases more than the AUR-value of any other
vertex. It follows that the rank of the vertex vt as a receiver either increases or stays
the same. More precisely, let δA = δ1s1Tt and Â = A+ δA. Then

[exp(ÂT )1]t − [exp(AT )1]t > [exp(ÂT )1]q − [exp(AT )1]q ∀q 6= t.

Proof. The result follows by applying Theorem 1 to the matrix AT .

5.3 Example of Sensitivity to Weight Change

Consider the weighted network in Figure 5. The numbers in parenthesis are edge
weights. To satisfy the condition of Theorem 1, we scale the adjacency matrix A for
the graph by the maximum of the largest column sum and the largest row sum, i.e.,
we divide all the entries of the adjacency matrix by 11.

v9

v7

v8

v1

v3

v10 v5

v2

v4

v6

(3)

(2)

(1)

(4)

(1) (2) (3)
(3)

(6)

(3) (6)

(3)

(2)

(7)

(1)

(2)

Fig. 5 Graph for the example in Section 5.3.

We increase the weight of the edge pointing from node v1 to node v3 by δ = 0.01.
The new adjacency matrix is Â = A+ δ111T3 . According to Theorem 1, node v1 gets
the highest ADR increase, which is in agreement with values reported in Table 1.
By Corollary 3 no node should get a larger increase in its AUR-value than node v3,
which also is illustrated by Table 1.

Broadcasting nodes (ADR) Receiving nodes (AUR)
node vq [exp(Â)1]q − [exp(A)1]q node vq [exp(ÂT )1]q − [exp(AT )1]q
v1 2.395 v3 2.168
v7 0.299 v2 0.280
v10 0.100 v5 0.280
v8 0.008 v6 0.074

Table 1 Ranking the top 4 nodes of the graph in Figure 5 showing the ADR- and AUR-values
before and after perturbation of the edge pointing from node v1 to node v3. The graph G is
scaled to satisfy the conditions of Lemma 1.

In the computed examples of the following sections, we scale the adjacency ma-
trices A to be substochastic.



Node Importance in Node-Weighted Networks 19

6 Computing Node Importance in Node-Weighted Graphs

Based on the several ways of incorporating node weights into adjacency matrices
described in Section 4, we can use aggregate downstream and upstream reachability
measures (described in Section 3) to find the most important nodes and edges in the
graph. To rank the edges, we apply (3.6) (if the graph is undirected) and (3.7) and
(3.8) (if the graph is directed). Which one of the line graphs from Section 4.3 (Ẽ→SW,
Ẽ→ODS, Ẽ→SDS, or their counterparts for undirected networks) is most appropriate
depends on the application. Recall that we add self-loops before deriving the line
graph. In analogy with (3.3) and (3.4), we refer to the edge ranking determined by
(3.7) as the ability of edges to broadcast information, and the edge ranking obtained
with (3.8) as the ability of edges to receive information. Thus, we rank edges as
broadcasters and receivers, just like we rank nodes.

We apply (3.3) and (3.4) to rank the nodes and have to decide which edge-
weighted adjacency matrix to use. The edge weights may be defined by the methods
considered in Section 4. These methods were dictated by particular application. We
now will describe two approaches that are independent of the application. They will
be used in subsequent computed examples.

After ranking the edges of the graph via the line graph, we can substitute these
values as edge weights (without the self-loops) into the original graph, i.e.,

Z = {eLC}k from (3.6), if the graph is undirected,

Z = {eLCout}k + {eLCin}k from (3.7) and (3.8), if the graph is directed. (6.1)
We define the edge-weighted adjacency matrix by (2.2). An advantage of these meth-
ods is that they determine the weight of each edge by taking into consideration not
only the weights of both its source and target nodes, but also of all other nodes in
the graph.

Broadcasting edges (eLCout) Receiving edges (eLCin)

edge ek [eẼ→
SW 1]k [eẼ→

ODS 1]k [eẼ→
SDS 1]k [(eẼ→

SW )T 1]k [(eẼ→
ODS )T 1]k [(eẼ→

SDS )T 1]k
e1 1.378 1.379 1.379 1.286 1.286 1.286
e2 2.146 2.167 1.317 1.317 1.317 1.339
e3 1.071 1.143 1.143 2.214 2.214 2.218

Broadcasting nodes (ADR) Receiving nodes (AUR)
node vi SW ODS SDS SW ODS SDS
v1 2.275 2.270 2.270 1.000 1.000 1.000
v2 2.474 2.482 2.482 1.769 1.765 1.765
v3 1.949 1.964 1.959 2.385 2.382 2.382
v4 1.000 1.000 1.000 2.545 2.568 2.568

Table 2 Top part: Ranking of edges of example (a) in Figure 1 as broacasters and re-
ceivers through the network using (3.7) and (3.8), for the adjacency matrix options of the
line graph described in Section 4.3. The options are simply weighted (SW): Ẽ→SW = BiTWBe,
out-degree scaled (ODS): Ẽ→ODS = BiTWD−1

outB
e, and strongly degree scaled (SDS): Ẽ→SDS =

BiTWD−1
io Be. Bottom part: For the options above, the edges in Figure 1 are given the weight

as the sum of broadcasting and receiving values, then ADR and AUR are calculated to rank
nodes. Highest values are bold.



20 Omar De la Cruz Cabrera et al.

Broadcasting edges (eLCout) Receiving edges (eLCin)

edge ek [eẼ→
SW 1]k [eẼ→

ODS 1]k [eẼ→
SDS 1]k [(eẼ→

SW )T 1]k [(eẼ→
ODS )T 1]k [(eẼ→

SDS )T 1]k
e1 1.173 1.173 1.173 1.181 1.181 1.181
e2 1.073 1.070 1.070 1.179 1.179 1.179
e3 1.205 1.197 1.197 1.066 1.066 1.066

Broadcasting nodes com. dist. Receiving nodes com. dist.
node vi SW ODS SDS SW ODS SDS
v1 2.275 2.270 2.270 1.000 1.000 1.000
v2 2.474 2.482 2.482 1.769 1.765 1.765
v3 1.949 1.964 1.959 2.385 2.382 2.382
v4 1.000 1.000 1.000 2.545 2.568 2.568

Table 3 Top part: Ranking of edges of example (a) in Figure 1 as broacasters and re-
ceivers through the network using (3.7) and (3.8), for the adjacency matrix options of the
line graph described in Section 4.3. The options are simply weighted (SW): Ẽ→SW = BiTWBe,
out-degree scaled (ODS): Ẽ→ODS = BiTWD−1

outB
e, and strongly degree scaled (SDS): Ẽ→SDS =

BiTWD−1
io Be. Bottom part: For the options above, the edges in Figure 1 are given the weight

as the sum of broadcasting and receiving values, then ADR and AUR are calculated to rank
nodes. Highest values are bold.

We first illustrate this procedure for the graphs in Figure 1. Tables 2, 4, and
6 show the calculated measures for the components of the graphs in Figures 1(a),
1(b), and 1(d). The top part displays the values of {eLCout}k and {eLCin}k for each
edge ek, using the SW, ODS, and SDS adjacency matrix options of the line graph
as described in Section 4.3.

To turn the original network into an edge-weighted one, we assign each edge
a weight equal to the sum of its in and out values as in (6.1). The corresponding
weighted adjacency matrix becomes Ã = BeZBiT . The bottom parts of Tables 2, 4,
and 6 give the ADR- and AUR-values for each node vi using the matrix Ã. We have
found that the rankings obtained are quite similar for all methods of Table 2. The
computations are summarized by Algorithm 1.

Algorithm 1: Computing node importance for a node-weighted graph
1 Input: Graph G with n nodes and a vector w ∈ Rn with node weights.
2 Output: Node ranking determined by the vector wnode ranking.
3 Determine the incidence matrix Bi and the exsurgence matrix Be for the graph G,

such that A = BeBiT is the unweighted adjacency matrix for G; cf. (2.1).
4 Determine the adjacency matrix E for a line graph associated with the graph G.
5 Incorporate the node weights for G as edge weights for the line graph. This gives a

weighted adjacency matrix Ẽ for the line graph.
6 Evaluate wedge weight = exp(Ẽ)1 or wedge weights = exp(ẼT )1.
7 The vector wedge weights contains edge weights for the graph G.
8 Define the weighted adjacency matrix Ã given by (2.2) with Z = diag(wedge weights).
9 Compute wnode ranking = exp(Ã)1 or wnode ranking = exp(ÃT )1. The size of the

entries of wnode ranking determines the ranking of the nodes of G.

The edge-weighted adjacency matrix Ã in step 8 of Algorithm 1 is defined by (2.2)
with Z = diag(wnode ranking), i.e., the jth diagonal entry of the diagonal matrix Z is



Node Importance in Node-Weighted Networks 21

the jth component of the vector wedge weights. We remark that it is straightforward
to replace the approaches of step 6 to determine edge weights wedge weight by another
measure, such as the subgraph centrality wedge weight = diag(exp(Ẽ)). The approach
used in step 6 has the advantage of being cheaper to evaluate; see Section 8 for
a discussion on the evaluation of the expressions in step 6. Also the node ranking
wnode ranking in step 9 can be determined as described in Section 8.

Broadcasting edges (eLCout) Receiving edges (eLCin)

edge ek [eẼ→
SW 1]k [eẼ→

ODS 1]k [eẼ→
SDS 1]k [(eẼ→

SW )T 1]k [(eẼ→
ODS )T 1]k [(eẼ→

SDS )T 1]k
e1 1.3791 1.3791 1.3791 1.6389 1.6389 1.6389
e2 2.1713 2.1713 2.1713 1.3419 1.3419 1.3419
e3 1.1685 1.1685 1.1685 2.2186 2.2186 2.2186
e4 1.6662 1.6662 1.6662 1.1871 1.1871 1.1871

Broadcasting nodes (ADR) Receiving nodes (AUR)
node vi SW ODS SDS SW ODS SDS
v1 2.460 2.460 2.460 2.368 2.368 2.368
v2 2.647 2.647 2.647 2.354 2.354 2.354
v3 2.502 2.502 2.502 2.580 2.580 2.580
v4 2.310 2.310 2.310 2.619 2.619 2.619

Table 4 Top part: Ranking of edges of example (b) in Figure 1 as broadcasters and receivers
through the network using (3.7) and (3.8), for the simply weighted (SW), out-degree scaled
(ODS), and strongly degree scaled (SDS) adjacency matrix options of the line graph as de-
scribed in Section 4.3. Bottom part: For the options above, the edges in Figure 1 are given the
weight as the sum of broadcasting and receiving values, then ADR and AUR are calculated to
rank nodes. Highest values are bold.

Table 5 shows the calculated measures for the components of the graph in Fig-
ure 1(c).

Edge centrality Node centrality (ADR = AUR)

edge ek [eẼSW 1]k [eẼDS 1]k [eẼSDS 1]k node vi SW DS SDS
e1 2.379 1.974 1.190 v1 2.335 2.215 1.919
e2 2.437 2.360 2.199 v2 1.325 1.323 1.322
e3 2.173 1.897 1.327 v3 1.411 1.483 1.649
e4 1.439 1.389 1.339 v4 2.305 2.280 2.250
e5 1.821 2.078 2.705 v5 1.325 1.323 1.322
e6 1.439 1.389 1.339 v6 1.552 1.536 1.476

v7 1.492 1.431 1.287

Table 5 Left part: Ranking of edges of example (c) in Figure 1 using (3.7) and (3.8), for the
adjacency matrix options of the line graph described in Section 4.3. The options are simply
weighted (SW): ẼSW = BTWB − C, degree scaled (ODS): ẼDS = BTWD−1B − CDS , and
strongly degree scaled (SDS): ẼSDS = BTWD−1

s B − CSDS . Right-hand side: For the given
options, the edges in Figure 1 are given the weight as the centrality value from the left-hand
side of this table, then ADR is calculated to rank nodes. Highest values are bold. Note that
SW-values for node centrality are calculated after subtracting µI from Ã, where µ is the
spectral radius of Ã, to avoid overflow.



22 Omar De la Cruz Cabrera et al.

Dissipating edges (eLCout) Absorbing edges (eLCin)

edge ek [eẼ→
SW 1]k [eẼ→

ODS 1]k [eẼ→
SDS 1]k [(eẼ→

SW )T 1]k [(eẼ→
ODS )T 1]k [(eẼ→

SDS )T 1]k
e1 1.308 1.341 1.341 1.728 1.474 1.232
e2 1.237 1.159 1.078 1.728 1.474 1.232
e3 1.467 1.933 1.933 1.321 1.306 1.290
e4 1.133 1.267 1.267 1.158 1.100 1.047
e5 1.888 1.830 1.775 1.158 1.100 1.047
e6 1.946 1.609 1.292 2.151 2.141 2.132
e7 1.888 1.830 1.775 1.067 1.067 1.067

Dissipating nodes (ADR) Absorbing nodes (AUR)
node vi SW ODS SDS SW ODS SDS
v1 2.374 2.306 2.202 2.058 1.995 1.931
v2 1.465 1.556 1.569 1.740 1.694 1.640
v3 1.000 1.000 1.000 1.616 1.727 1.731
v4 2.131 2.131 2.109 1.723 1.649 1.575
v5 1.000 1.000 1.000 1.503 1.523 1.513
v6 2.107 2.022 1.932 2.161 2.144 2.128
v7 1.726 1.717 1.705 1.000 1.000 1.000

Table 6 Top part: Ranking of edges of example (d) in Figure 1 according to their importance
as braodcasters and receivers using (3.7) and (3.8), for the simply weighted (SW), out-degree
scaled (ODS), and strongly degree scaled (SDS) adjacency matrix options of the line graph as
described in Section 4.3. Bottom part: For the options above, the edges in Figure 1 are given
the weight as the sum of broadcasting and receiving values, then ADR and AUR are calculated
to rank nodes. Highest values are bold.

7 Real-Life Examples

7.1 Genotype Mutation

This section discusses a biological example to illustrate some of the methods de-
scribed above. To study the resistance of bacteria to an antibiotic, Nichol et al. [33]
use an example that involves genotypes of 3 bits; see Figure 6(a). Each genotype is
assigned a fitness level according to the fitness landscape in Figure 6(c). A genotype
can only mutate to other genotypes if they have a higher fitness level. The authors
present possible scenarios for the probability of these transitions, such as the prob-
ability being proportional to the fitness level increase, or the probability being that
of a random walk as shown in Figure 6(b). In this paper we suggest a probability
transition based on edge weights calculated using (6.1).

We display the network’s node-weighted graph in Figure 7 with the node weights
equal to the corresponding fitness levels. Note that we do not add self-loops to the
nodes v1 and v8 as in [33], since we allow each genotype to remain the same, and not
mutate, by adding self-loops to all nodes of the graph as described in Section 4.3.

We construct Ẽ→SW, Ẽ→ODS, and Ẽ→SDS from Section 4.3 to get the edge-weighted
adjacency matrix of the line graph. We then calculate eLCoutk and eLCink from
(3.7) and (3.8), respectively, and report them at the top of Table 7. The ODS method
resulted in the edges e3, e4, and e8 having the highest eLCout-value. Both the SW
and SDS methods favor the edges e5 and e10. All methods ranked edge e4 representing
the transition from “010” to “000” to have the highest eLCin-value.

We use the sum (6.1) as the weight of edge ek, for k = 1, 2, . . . , 12, in the edge-
weighted version of the graph in Figure 7. The importance of nodes as broadcasters



Node Importance in Node-Weighted Networks 23

(a) Graph connecting
genotypes.

(b) The corresponding
stochastic transitions based

on mutation to a better
fitted neighbor.

(c) Fitness landscape.

Fig. 6 The genotype network for a bit strings of length 3 and the corresponding stochastic
transitions according to the fitness levels and equations presented in [33].

v4(0.24) v6(0.10)

v8(0.73) v2(0.54) v5(0.35) v7(0.49)

v1(0.32) v3(0.14)

e3

e1

e2

e4

e5 e6

e7e8

e9

e10

e11

e12

Fig. 7 The genotype directed graph of Figure 6. The nodes weights are from Figure 6(c).

is identified by calculating their ADR-values, and their importance as receivers by
computing their AUR-values. These values are reported at the bottom of Table 7.

We conclude from the ADR-values of all methods considered that the genotypes
“110”, i.e., node v6, and “001”, i.e., node v1, are the least stable genotype states,
or the most likely to transition into another state. This is regardless of the choice
of SW, ODS, or SDS. On the other hand, Table 7 also shows that genotype “111”,
i.e., node v7, is most likely to eventually be the last genotype reached by mutation,
followed by “000”, i.e., node v8. Note that the genotypes “111” and “000” have ADR-
value 1 because, according to the fitness landscape in this example, they have higher
fitness scores than the states that differ from them by one digit. Therefore “111” and
“000” do not mutate. Similarly “110” and “001” have AUR-value 1, because they
have lower fitness scores than the genotypes that differ from them by one digit, so
the latter ones do not mutate to “110” or “001”. The specific value of 1 comes from
the identity matrix in the Taylor expansion of the exponential function.

7.2 Social Networks: Medium and Twitter

In this example we investigate who are the most influential users in the Medium
social network, based on their connectivity in Medium, and the influence of their



24 Omar De la Cruz Cabrera et al.

Dissipating edges (eLCout) Absorbing edges (eLCin)

edge ek [eẼ→
SW 1]k [eẼ→

ODS 1]k [eẼ→
SDS 1]k [(eẼ→

SW )T 1]k [(eẼ→
ODS )T 1]k [(eẼ→

SDS )T 1]k
e1 1.221 1.070 1.035 1.146 1.037 1.006
e2 1.351 1.172 1.172 1.146 1.037 1.006
e3 1.333 1.333 1.333 1.146 1.037 1.006
e4 1.333 1.333 1.333 1.824 1.389 1.387
e5 1.568 1.276 1.276 1.135 1.043 1.021
e6 1.224 1.224 1.224 1.135 1.043 1.021
e7 1.351 1.172 1.172 1.228 1.074 1.037
e8 1.333 1.333 1.333 1.228 1.074 1.037
e9 1.224 1.224 1.224 1.536 1.251 1.248
e10 1.568 1.276 1.276 1.046 1.011 1.002
e11 1.379 1.120 1.060 1.046 1.011 1.002
e12 1.224 1.224 1.224 1.046 1.011 1.002

Dissipating nodes (ADR) Absorbing nodes (AUR)
node vi SW ODS SDS SW ODS SDS
v1 2.042 2.031 2.021 1.000 1.000 1.000
v2 1.385 1.363 1.366 1.696 1.658 1.658
v3 1.681 1.668 1.668 1.289 1.281 1.275
v4 1.680 1.670 1.666 1.296 1.284 1.278
v5 1.337 1.330 1.333 1.666 1.637 1.632
v6 2.051 2.036 2.030 1.000 1.000 1.000
v7 1.000 1.000 1.000 2.052 2.076 2.079
v8 1.000 1.000 1.000 2.177 2.162 2.162

Table 7 Ranking edges and nodes of the genotype mutation graph in Figure 7 in dissipating
and receiving through the network using (3.7) and (3.8), for the simply weighted (SW), out-
degree scaled (ODS), and strongly degree scaled (SDS) adjacency matrix options of the line
graph as described in Section 4.3. Bottom part: For the options above, the edges in Figure 1
are given the weight as the sum of dissipating and receiving values, then ADR and AUR are
calculated to rank nodes. Highest values are bold.

Twitter accounts. We use a data set collected in 2016 that describes 1075983 users,
who are identified by numerical IDs to protect their privacy [28]. The data set con-
tains information about the users whom they follow and those they are followed by
in Medium, along with information about whether their account is linked to their
Twitter account, and some information about the Twitter account, if available. The
data were collected to argue that linking Medium with Twitter is helpful to attract
a large number of new users. We use the data provided publicly, and construct the
network adjacency matrix from the edge list showing how accounts follow each other
on Medium. We only take into account users who have a linked Twitter account, and
use the number of followers they have on Twitter as node weights in the graph.

For computational purposes, we reduce our data set to users, who have more
than 5000 Twitter followers. Our network consists of 10077 users represented by
nodes and of 992539 directed connections expressed by edges. Because of the large
network size, the MATLAB function expm cannot be be used to compute the matrix
exponential. In the computations for this section, we use iterative Krylov subspace
methods described in Section 8 to approximate the matrix exponential.

For each one of the options Ẽ→SW, Ẽ→ODS, and Ẽ→SDS from Section 4.3, we calculate
approximations of eLCout = exp(Ẽ→)1 and eLCin = 1T exp(Ẽ→) using the tech-
niques described in Section 8. We use the sum (6.1) as the weight of edges in the
edge-weighted version of the graph representing Medium network. The top 15 ranked



Node Importance in Node-Weighted Networks 25

users for Medium are reported in Table 8. The three methods give almost identical
rankings. We observe a redundancy in IDs between influencing accounts and those
influenced. A likely explanation is that high-impacting social media users have high
impact on each other, as well.

Dissipating nodes (ADR) Absorbing nodes (AUR)
SW ODS SDS SW ODS SDS

14745 14486 14486 722 722 722
14486 14745 14745 45 45 45
6602 6602 6602 2265 553 553
553 553 553 553 2265 2265

2639 2639 2639 540 579 579
2631 2631 2631 6385 540 540
6385 6385 6385 579 6385 6385
722 722 722 2681 2681 2681
540 540 540 297 297 297

2265 2265 2265 2631 2631 2631
2681 2681 2681 2326 2326 2326
2187 2187 2187 2187 2690 2690

17956 17956 17956 2690 2187 2187
2210 2210 2210 4566 4566 4566

21398 21398 21398 2806 2806 2806
2326 2784 2784 7650 7650 7650
2784 2326 2326 8340 8340 8340
8839 3670 3670 2255 2255 2255
3670 8839 8839 8058 8058 8058

14965 14965 14965 2264 2264 2264

Table 8 Top 15 ranked accounts in Medium social network based on the associated accounts
influence on Twitter using the simply weighted (SW), out-degree scaled (ODS), and strongly
degree scaled (SDS) adjacency matrix options of the line graph as described in Section 4.3.

8 Computational Aspects

This section discusses some computational aspects of how to evaluate exp(E→)1 and
related matrix functions for large networks. For small to medium-sized (square) ma-
trices M , we can first evaluate exp(M) with the MATLAB function expm (provided
that overflow does not occur), and then multiply the matrix exp(M) by the vector
1. Methods for evaluating exp(M) for small to medium-sized matrices are described
by Higham [24]. However, when the matrix M is large, the evaluation of exp(M) is
difficult for several reasons:

1. Adjacency matrices M that represent networks typically are sparse, but the ma-
trix exp(M) generally is not. The memory requirement for computing and sub-
sequently storing exp(M) may be substantial.

2. The computational effort required for evaluating exp(M) for a large matrix M
may be prohibitive.



26 Omar De la Cruz Cabrera et al.

3. Overflow is more likely to take place when M is a large adjacency matrix, than
when M is small.

Our models require that we first evaluate exp(E→)1 and 1T exp(E→) to form
the edge-weighted graph. This defines the adjacency matrix Ã. Subsequently, we
compute exp(Ã)1 and 1T exp(Ã) to rank nodes. To simplify the discussion, we will
let M denote either one of the matrices E→ and Ã.

To avoid overflow, we can evaluate (an approximation of) the spectral radius
µ of M and compute exp(M − µI) instead of exp(M). The replacement of M by
M−µI does not affect the relative importance of edges and nodes in the graph. This
rescaling has also been used in [20].

Large memory requirements make it impossible to evaluate the exponential of
the matrices from the Medium-Twitter example in Section 7.2 on a standard laptop
computer. This difficulty can be circumvented by approximating exp(M) by a low-
rank matrix that is determined by application of a few steps of the Arnoldi or
nonsymmetric Lanczos processes. We will compare these methods.

8.1 The Arnoldi Process

Let M ∈ Rn×n and 1 = [1, . . . , 1]T ∈ Rn. Application of `� n steps of the Arnoldi
process to the matrix A with initial vector 1 gives the Arnoldi decomposition

MW` = W`H` + g`1T` , (8.1)

where the columns of the matrix W` = [w1,w2, . . . ,w`] ∈ Rn×` form an orthonormal
basis for the Krylov subspace K`(M,1) = span{w1,Mw1, . . . ,M

`−1w1} and w1 =
1/‖1‖. Here ‖ · ‖ denotes the Euclidean vector norm. The matrix H` ∈ R`×` is of
upper Hessenberg form and g` ∈ Rn satisfies WT

` g` = 0; details on the Arnoldi
process can be found, e.g., in Meurant [30] and Saad [39, Chapter 6]. We assume
that ` is small enough so that the decomposition (8.1) with the stated properties
exists. This is the generic situation. The computation of this decomposition requires
the evaluation of ` matrix-vector products with the matrix M . We approximate
exp(M)1 by the right-hand side of

exp(M)1 ≈W` exp(H`)11‖1‖; (8.2)

see, e.g., [6,26] for properties of this approximation method. For many adjacency
matrices M , it suffices to let ` in the decomposition (8.1) be fairly small to obtain a
good enough approximation of exp(M)1. This is illustrated below. When the matrix
M is large and ` is fairly small, the dominating computational effort required to com-
pute the left-hand side of (8.1) is the evaluation of ` matrix-vector products with M .
In applications of interest to us, the matrix M generally is nonsymmetric. Then the
computations have to be repeated with M replaced by MT when an approximation
of exp(MT )1 also is desired



Node Importance in Node-Weighted Networks 27

8.2 The Nonsymmetric Lanczos Process

Application of ` steps of the nonsymmetric Lanczos process to the matrix M ∈ Rn×n
with initial vector 1 = [1, 1, . . . , 1]T ∈ Rn gives the Lanczos decompositions

MV` = V`T` + δ`+1v`+11T` ,
MTW` = W`T

T
` + β`+1w`+11T` ,

(8.3)

where the columns of the matrix V` = [v1,v2, . . . ,v`] ∈ Rn×` span the Krylov sub-
space K`(M,v1) = span{v1,Mv1, . . . ,M

`−1v1} with v1 = 1/‖1‖, and the columns
of the matrixW` = [w1,w2, . . . ,w`] ∈ Rn×` span the Krylov subspace K`(MT ,w1) =
span{w1,Mw1, . . . ,M

`−1w1} with w1 = 1/‖1‖. The columns of the matrices V` and
W` are biorthogonal, i.e., V T` W` = I`. Moreover, V T` w`+1 = 0 and WT

` v`+1 = 0. It
follows from (8.3) that

W`MV` = T`.

The matrix T` ∈ R`×` is tridiagonal. For details on the nonsymmetric Lanczos
method, see, e.g. Saad [39, Chapter 7]. We assume that ` is small enough so that the
decompositions (8.3) with the stated properties exists. How to proceed when this is
not the case is discussed in [3]. The computation of the decomposition (8.3) requires
` matrix-vector product evaluations with M and with MT . Analogously to (8.2), we
use the approximation

exp(M)1 ≈ V` exp(T`)11‖1‖.

In our experience with large-scale real-world networks, we found that a small number
of steps, `, with the nonsymmetric Lanczos algorithms typically was sufficient to
render a quite accurate approximation of exp(M)1.

8.3 Approximations for the Medium-Twitter Example

This section discusses in detail applications of the Arnoldi and nonsymmetric Lanczos
processes to the ranking of the nodes of the Medium-Twitter example of Section 7.2.
We first apply ` steps of the Arnoldi or nonsymmetric Lanczos processes to one of the
three matrices Ẽ→SW, Ẽ→ODS, and Ẽ→SDS, with initial vector 1 = [1, . . . , 1]T . The purpose
of these computations is to determine edge weights and form the weighted adjacency
matrix Ã following (6.1). Subsequently, we apply the Arnoldi and nonsymmetric
Lanczos processes to approximate exp(Ã)1 and 1T exp(Ã) to rank the nodes of the
original graph.

Since we are interested in the node ranking, we show the smallest number of
iterations with the Arnoldi and nonsymmetric Lanczos processes, when applied to
one of the matrices Ẽ→SW, Ẽ→ODS, and Ẽ→SDS and to Ã, required so that the ranking of
the top 20 nodes does not change when carrying out more steps. While this “stopping
criterion” is not practical to use for the Arnoldi and nonsymmetric Lanczos processes,
it illustrates that only a fairly small number of steps are required to gain insight into
the node ordering. We found this to be true for other real-world large-scale networks
as well. Hence, the computations required for many real-world large-scale network
problems are not very expensive. Table 9 reports results for the matrices Ẽ→SW, Ẽ→ODS,
and Ẽ→SDS in the top row of each “window”. Of course, identical ranking does not
imply identical ADR- and AUR-values. The table therefore also displays the error in



28 Omar De la Cruz Cabrera et al.

Arnoldi Nonsymmetric Lanczos
number of time ADR rel. AUR rel. number of time ADR rel. AUR rel.
iterations (sec.) error error iterations (sec.) error error

16 34.5 2.2E-2 9.9E-3 8 33.5 5.8E+1 1.4E+3
SW 17 36.2 4.1E-3 2.0E-3 11 41.6 4.5E-3 8.6E-2

20 40.6 2.1E-5 3.9E-5 14 52.1 9.1E-6 1.1E-4
10 20.9 1.8E-1 2.0E-1 6 27.9 1.5E-2 1.5E-2

ODS 11 24.0 3.2E-2 1.3E-3 7 30.4 2.3E-3 2.3E-3
20 39.6 8.7E-9 3.4E-7 14 32.7 6.1E-7 6.2E-7
8 3.7 1.1E-1 3.1E-2 5 3.0 8.1E-1 8.1E-1

SDS 9 4.1 1.7E-3 9.0E-3 6 3.5 6.6E-3 6.6E-3
20 10.8 2.1E-10 3.1E-9 14 7.5 2.7E-7 1.6E-7

Table 9 Comparison of the performance of Arnoldi and nonsymmetric Lanczos approxima-
tions when applied to the Medium social network using simply weighted (SW), out-degree
scaled (ODS), and strongly degree scaled (SDS) adjacency matrices for the line graph.

these values as well as the errors achieved when the number of iterations is increased.
The “exact values” are determined by carrying out 100 iterations with the Arnoldi
and nonsymmetric Lanczos processes.

The computations were carried out on a Lenovo Ideapad 510 laptop computer
with a 2.5 GHz Intel Core i7 processor and 6 GB 2133 MHz DDR4 memory using
MATLAB. Each time reported in Table 9 is the average of 10 runs. The adjacency
matrix Ẽ→SW has the largest number of nonvanishing entries, and the adjacency matrix
Ẽ→SDS the least. We observe that the former matrix requires the largest number of
iterations and the longest computing time to satisfy our “stopping criterion”, and the
latter matrix requires the smallest number of iterations and the shortest computing
time. In this example, the Arnoldi process requires more iterations to satisfy the
“stopping criterion” than the nonsymmetric Lanczos process, but the fact that each
iteration with the latter requires two matrix-vector product evaluations, while the
former only demands the evaluation of one matrix-vector product evaluation per
iteration, results in that application of the Lanczos process does not always require
less computing time than the Arnoldi process.

The matrix line graph adjacency matrices are about 106 × 106, whereas the ma-
trix Ã is only about 104 × 104. The line graph adjacency matrices are very sparse.
On average, the Arnoldi and nonsymmetric Lanczos processes applied to the approx-
imation of exp(Ã)1 required 5 iterations each, computed in less than 0.1 seconds.

9 Conclusion

While the incorporation of edge weights into methods based on the adjacency ma-
trix is fairly direct, incorporating node weights is less straightforward. Similarly, the
computation of importance or centrality measures for nodes has been well studied,
but the extension of matrix function methods to compute importance measures for
edges also runs into some difficulties. In this article we described how matrix func-
tion methods can be combined with node weights, as well as for computing edge
importance measures, by using line graphs.

We discussed several novel modeling approaches to determine the most important
nodes in a graph with positive node weights. These methods are built upon the



Node Importance in Node-Weighted Networks 29

notions of aggregate reachability (downstream and upstream, for directed graphs),
which use the matrix exponential applied to a weighted adjacency matrix for the
network. We investigated several ways in which node weights can be incorporated
into an adjacency matrix. While this paper focuses on the application of the matrix
exponential, it is straightforward to replace this function by a resolvent. Discussions
on the use of the resolvent can be found in, e.g., [18,25,32].

In Section 5 we studied analytically the sensitivity of some of the measures of
importance to changes in the weight of a single edge. Those results show that the
measures of importance considered behave as expected (that is, increasing the weight
of a node does not decrease its importance), at least for small perturbations; we also
found some conditions under which the expected behavior holds regardless of the
magnitude of the perturbation.

As many networks of interest are large, the adjacency matrix of the network
graph, and especially the adjacency matrix of the corresponding line graph, can be
very large. In Subsections 8.1 and 8.2 we discussed how to use the Arnoldi and
nonsymmetric Lanczos processes to make approximate computations feasible.

Acknowledgments

The authors would like to thank a referee for comments that lead to clarifications
of the presentation. This work was supported in part by NSF grants DMS-1729509
and DMS-1720259.

References

1. S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E.D. Bullmore. A resilient, low-
frequency, small-world human brain functional network with highly connected association
cortical hubs. Journal of Neuroscience, 26:63–72, 2006.

2. J. M. Aldous and R. J. Wilson. Graphs and Applications: An Introductory Approach.
Springer, London, 2000.

3. Z. Bai, D. Day, and Q. Ye. ABLE: An adaptive block Lanczos method for non-hermitian
eigenvalue problems. SIAM Journal Matrix Analysis and Applications, 20:1060–1082,
2009.

4. A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of com-
plex weighted networks. Proceedings of the National Academy of Sciences, 101(11):3747–
3752, 2004.

5. T. Baskaran, F. Blöchl, T. Brück, and F. J. Theis. The Heckscher–Ohlin model and the
network structure of international trade. International Review of Economics & Finance,
20:135–145, 2011.

6. B. Beckermann and L. Reichel. Error estimation and evaluation of matrix functions via
the Faber transform. SIAM Journal on Numerical Analysis, 47:3849–3883, 2009.

7. M. Benzi and C. Klymko. Total communicability as a centrality measure. Journal of
Complex Networks, 1(2):124–149, 2013.

8. D. A. Bini, G. M. Del Corso, and F. Romani. Evaluating scientific products by means of
citation-based models: a first analysis and validation. Electronic Transactions on Numer-
ical Analysis, 33:1–16, 2008.

9. W.-K. Chen. Graph Theory and its Engineering Applications, volume 5. World Scientific,
Singapore, 1997.

10. X. Chu, Z. Zhang, J. Guan, and S. Zhou. Epidemic spreading with nonlinear infectivity
in weighted scale-free networks. Physica A: Statistical Mechanics and its Applications,
390(3):471–481, 2011.

11. J. J. Crofts, E. Estrada, D. J. Higham, and A. Taylor. Mapping directed networks. Elec-
tronic Transactions on Numerical Analysis, 37:337–350, 2010.



30 Omar De la Cruz Cabrera et al.

12. O. De la Cruz Cabrera, M. Matar, and L. Reichel. Analysis of directed networks via the
matrix exponential. Journal of Computational and Applied Mathematics, 355:182–192,
2019.

13. O. De la Cruz Cabrera, M. Matar, and L. Reichel. Edge importance in a network via line
graphs and the matrix exponential. Numerical Algorithms, 83:807–832, 2020.

14. R. Diestel. Graph Theory. Springer, Berlin, 2000.
15. E. Estrada. Edge adjacency relationships and a novel topological index related to molecular

volume. Journal of Chemical Information and Computer Sciences, 35:31–33, 1995.
16. E. Estrada. The Structure of Complex Networks: Theory and Applications. Oxford Uni-

versity Press, Oxford, 2012.
17. E. Estrada and N. Hatano. Communicability in complex networks. Physical Review E,

77:036111, 2011.
18. E. Estrada and D. J. Higham. Network properties revealed through matrix functions.

SIAM Review, 52:696–714, 2010.
19. E. Estrada and G. Silver. Accounting for the role of long walks on networks via a new

matrix function. Journal of Mathematical Analysis and Applications, 449:1581–1600, 2017.
20. C. Fenu, D. Martin, L. Reichel, and G. Rodriguez. Network analysis via partial spectral

factorization and Gauss quadrature. SIAM Journal on Scientific Computing, 35:A2046–
A2068, 2013.

21. C. Godsil and G. F. Royle. Algebraic Graph Theory. Springer, New York, 2013.
22. I. Gutman and E. Estrada. Topological indices based on the line graph of the molecular

graph. Journal of Chemical Information and Computer Sciences, 36:541–543, 1996.
23. J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths. Node-weighted measures

for complex networks with spatially embedded, sampled, or differently sized nodes. The
European Physical Journal B, 85(1):38, 2012.

24. N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia,
2008.

25. L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–
43, 1953.

26. L. A. Knizhnerman. Calculation of functions of unsymmetric matrices using Arnoldi’s
method. USSR Comput. Math. Math. Phys., 31(1):1–9, 1991.

27. I. X. Y. Leung, S. Y. Chan, P. Hui, and P. Lio. Intra-city urban network and traffic flow
analysis from gps mobility trace. arXiv preprint arXiv:1105.5839, 2011.

28. F. Li, Y. Chen, R. Xie, F. Ben Abdesslem, and A. Lindgren. Understanding service in-
tegration of online social networks: A data-driven study. In 2018 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom Work-
shops), pages 848–853. IEEE, 2018.

29. X. Liu, J. Bollen, M. L. Nelson, and H. Van de Sompel. Co-authorship networks in the
digital library research community. Information Processing & Management, 41:1462–1480,
2005.

30. G. Meurant. Computer Solution of Large Linear Systems. Elsevier, Amsterdam, 1999.
31. M. E. J. Newman. Analysis of weighted networks. Physical Review E, 70(5):056131, 2004.
32. M. E. J. Newman. Networks: An Introduction. Oxford University Press, Oxford, 2010.
33. D. Nichol, P. Jeavons, A. G Fletcher, R. A. Bonomo, P. K. Maini, J. L. Paul, R. A.

Gatenby, A. R. A. Anderson, and J. G. Scott. Steering evolution with sequential therapy
to prevent the emergence of bacterial antibiotic resistance. PLoS Computational Biology,
11(9):e1004493, 2015.

34. T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted networks: Gener-
alizing degree and shortest paths. Social Networks, 32(3):245–251, 2010.

35. K. Park, K. Lee, S. Park, and H. Lee. Telecommunication node clustering with node
compatibility and network survivability requirements. Management Science, 46:363–374,
2000.

36. M. Pelillo, K. Siddiqi, and S. W. Zucker. Many-to-many matching of attributed trees using
association graphs and game dynamics. In International Workshop on Visual Form, pages
583–593. Springer, 2001.

37. J. B. Pereira-Leal, A. J. Enright, and C. A. Ouzounis. Detection of functional modules
from protein interaction networks. PROTEINS: Structure, Function, and Bioinformatics,
54:49–57, 2004.

38. C. Pizzuti. Overlapped community detection in complex networks. In Proceedings of the
11th Annual conference on Genetic and evolutionary computation, pages 859–866. ACM,
2009.



Node Importance in Node-Weighted Networks 31

39. Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd ed., SIAM, Philadelphia, 2003.
40. S. Scarsoglio, F. Laio, and L. Ridolfi. Climate dynamics: a network-based approach for

the analysis of global precipitation. PLoS One, 8(8):e71129, 2013.
41. A. J. Scott. A programming model of an integrated transportation network. In Papers of

the Regional Science Association, volume 19, pages 215–222. Springer, 1967.
42. K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. Wiley, New York,

1992.
43. A. H. Y. Tong, G. Lesage, G. D. Bader, H. Ding, H. Xu, X. Xin, J. Young, G. F. Berriz,

R. L. Brost, and M. Chang. Global mapping of the yeast genetic interaction network.
Science, 303:808–813, 2004.

44. D. Wei, X. Deng, X. Zhang, Y. Deng, and S. Mahadevan. Identifying influential nodes
in weighted networks based on evidence theory. Physica A: Statistical Mechanics and its
Applications, 392(10):2564–2575, 2013.

45. F. Zou, X. Li, S. Gao, and W. Wu. Node-weighted Steiner tree approximation in unit disk
graphs. Journal of Combinatorial Optimization, 18(4):342–349, 2009.


