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Summary

Discrete ill-posed inverse problems arise in many areas of science and engineer-

ing. Their solutions are very sensitive to perturbations in the data. Regularization

methods aim at reducing this sensitivity. This paper considers an iterative regular-

ization method, based on iterated Tikhonov regularization, that was proposed in [M.

Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill-

posed problems, with application to image deblurring, Inverse Problems, 29 (2013),

Art. 095008, 16 pages]. In this method, the exact operator is approximated by an

operator that is easier to work with. However, the convergence theory requires the

approximating operator to be spectrally equivalent to the original operator. This con-

dition is rarely satisfied in practice. Nevertheless, this iterative method determines

accurate image restorations in many situations. We propose a modification of the iter-

ative method, that relaxes the demand of spectral equivalence to a requirement that is

easier to satisfy. We show that, although the modified method is not an iterative reg-

ularization method, it maintains one of the most important theoretical properties for

this kind of methods, namely monotonic decrease of the reconstruction error. Sev-

eral computed experiments show the good performances of the proposed method.
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1 INTRODUCTION

We are concerned with the solution of discrete ill-posed problems of the form

min
x∈ℝn

‖Ax − b
�‖, (1)

where A ∈ ℝ
m×n is a matrix, whose singular values decay to zero with increasing index, without a significant gap. In particular,

the matrix A is of ill-determined rank and may be rank-deficient; see, e.g.,1, 2 for discussions on ill-posed and discrete ill-posed

problems. The norm ‖ ⋅ ‖ in (1) denotes the Euclidean vector norm. The vector b� ∈ ℝ
m represents measured data and is

corrupted by an error � ∈ ℝ
m, i.e., b� = b + �, where b ∈ ℝ

m is the unavailable error-free vector associated with b� . We will

assume that each entry of � is the realization of a Gaussian random variable with zero mean, and we sometimes will refer to the

error � as “noise”.

Let A† denote the Moore-Penrose pseudo-inverse of A. Due to the presence of the error � in b� and the ill-conditioning of A,

the naïve solution A†b� of (1) is usually a poor approximation of the desired vector xtrue = A†b. To reduce the sensitivity of the
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vector A†b� to the error �, one generally applies a regularization method to compute an approximate solution of (1). One of the

most popular regularization methods is Tikhonov regularization, which replaces (1) by the penalized least-squares problem

x� = arg min
x∈ℝn

{‖Ax − b
�‖2 + �‖x‖2}, (2)

where � > 0 is a regularization parameter. We note for future reference that the solution of (2) can be written as

x� = (ATA + �I)−1AT
b
� = AT (AAT + �I)−1b� , (3)

where the superscript T denotes transposition.

The sensitivity of the solution x� of (2) to the error � and the closeness of x� to the desired solution xtrue depends on the

choice of the regularization parameter �. We will assume that a fairly accurate estimate � for ‖�‖ is known, i.e.,

‖b� − b‖ ≤ �, (4)

and that b is in the range of A. Then � can be determined by the discrepancy principle, which prescribes that � > 0 be chosen

so that

‖Ax� − b
�‖ = ��,

where � > 1 is a user-specified constant that is independent of �; see, e.g.,1. Other methods for determining � also can be used,

including the L-curve criterion and generalized cross validation; see2–6 for discussions.

Many strategies have been proposed for improving the accuracy of the computed solution (3), i.e., its closeness to the desired

solution x†, such as imposing nonnegativity constraints7–10, inserting a regularization operator L in the second term of (2)11–14,

and by iterative improvement15–19. In this paper we consider the latter approach.

Let xk be an approximate solution of (1) and define the error

ek = xtrue − xk. (5)

An approximation hk of ek can be determined by solving the least-squares problem

min
h∈ℝn

‖Ah − rk‖, (6)

where rk = b� −Axk. Since A is ill-conditioned and rk is contaminated by error, an approximate solution of (6) can be obtained

by Tikhonov regularization (2). Thus, we can solve

hk = AT (AAT + �I)−1rk.

An improved approximation of x† may then be computed as

xk+1 = xk + hk = xk + AT (AAT + �I)−1rk. (7)

This iterative method can be seen as a preconditioned version of Landweber iteration with preconditioner AT (AAT +�I)−1, and

is commonly referred to as the iterated Tikhonov method; see1, 15 for more details. We remark that although it would be natural

to regard (AAT + �I)−1 as the preconditioner, we will refer to AT (AAT + �I)−1 as the preconditioner, following the notation

of16. The main drawbacks of the iterative method (7) are that i) when the matrix A is large, a large linear system of equations

has to be solved at each iteration, and ii) the computed solution may be sensitive to the choice of the parameter �. Donatelli and

Hanke address these difficulties in16 by replacing the matrix A in the preconditioner AT (AAT + �I)−1 by a matrix C , whose

structure allows fast application of the preconditioner, and by choosing the parameter � so that it satisfies a damped version of

the discrepancy principle. This algorithm, which is described below by Algorithm 1, is demonstrated in16 to give accurate image

reconstructions for a reasonable computational cost for several examples. Following, Donatelli and Hanke16, we refer to their

method as the Approximated Iterated Tikhonov (AIT) method. This algorithm (or similar variants) are also discussed in18, 20–23.

Donatelli and Hanke16 provide a theoretical analysis of the AIT method. In particular, they show that it is a regularization

method under the assumption that the matrices A and C are spectrally equivalent; see Assumption 1 below. Unfortunately,

this requirement is rarely satisfied in practical applications. Nevertheless, Algorithm 1 performs well when applied to image

reconstruction problems with sufficiently much noise in the data vector b� .

It is the purpose of the present paper to weaken the spectrally equivalence assumption and to propose a new iterative method,

which we will refer to as the Modified Approximated Iterated Tikhonov (MAIT) method. We will show convergence results for

this method. Numerical examples reported in Section 4 illustrate that when the error in b� is large enough, the MAIT and AIT

methods determine very similar image reconstructions. On the other hand, when the error in b� is small, the AIT method may

fail, while the MAIT method is able to provide accurate reconstructions. We remark that our requirement on A and C is weaker
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than spectral equivalence, however the MAIT method is not a regularization method. We recall that an algorithm is said to be a

regularization method if, denoting by x� the approximate solution computed with right-hand side b� , it holds that x� → x† as

� → 0; see [1] for more details on regularization methods. Nevertheless, we are able to provide some theoretical insight on the

performance of the MAIT method.

In this paper we consider, similarly as in16, image deblurring as our main application, since, as we will illustrate in Section 4,

in this application it is straightforward to find a matrix C that is easy to work with and approximates A well. However, our

method also can be applied to other large-scale discrete ill-posed problems for which the given matrix A can be approximated

well by a “simpler matrix” C .

This paper is structured as follows: Section 2 describes the AIT method by Donatelli and Hanke16 and recalls the theoretical

results available for this method. We describe our modified method in Section 3, where we also present some analysis of the

method. Section 4 reports numerical results, and concluding remarks can be found in Section 5.

2 THE APPROXIMATED ITERATED TIKHONOV METHOD

We outline the AIT method and discuss the main theoretical results shown by Donatelli and Hanke16. In particular, Donatelli

and Hanke16 make the following assumption.

Assumption 1. (Spectral equivalence) Let A,C ∈ ℝ
m×n and 0 < � < 1∕2. Assume that, for all z ∈ ℝ

n, it holds

‖(A − C)z‖ ≤ �‖Az‖.

It is easy to see that Assumption 1 implies that  (A) =  (C), where  (M) denotes the null space of the matrix M .

Algorithm 1 AIT

Let A and C satisfy Assumption 1 for a given 0 < � < 1∕2, and fix q ∈ (2�, 1). Let � > 0 satisfy (4) and let x0 be an initial

guess for x†.

r0 = b� − Ax0
� =

1+2�

1−2�

for k = 0, 1,… do

�k =
‖‖rk‖‖ ∕�

qk = max{q, 2� + (1 + �)∕�k}

Determine �k such that ‖‖rk − CCT (CCT + �kI)
−1rk

‖‖ = qk
‖‖rk‖‖

hk = CT (CCT + �kI)
−1
rk

xk+1 = xk + hk

rk+1 = b� −Axk+1
if ‖‖rk+1‖‖ ≤ �� then

exit

end if

end for

We review some results shown by Donatelli and Hanke16 about the AIT method.

Proposition 1. (Reference16) Let Assumption 1 hold and let �∗ = (1 + �)∕(1 − 2�). Then, if �k =
‖‖rk‖‖ ∕� > �∗, it follows that

‖rk − Cek‖ ≤
(
� +

1 + �

�k

)
‖‖rk‖‖ < (1 − �) ‖‖rk‖‖ ,

where ek = x† − xk and rk = b� −Axk.

The following result shows that the norm of the error ek in the iterates xk, cf. (5), decreases monotonically with the iteration

number, k, until the discrepancy principle is satisfied.
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Proposition 2. (Reference16) Let Assumption 1 hold. Then the norm of the error ek in the iterate xk generated by Algorithm 1

decreases monotonically,

‖ek‖2 − ‖ek+1‖2 ≥ 2�‖(CCT + �kI)
−1
rk‖ ‖rk‖,

as long as ‖rk‖ > ��, where rk = b� − Axk.

Corollary 1. (Reference16) Under the assumptions of Proposition 2, let k� denote index of the last iterate determined by

Algorithm 1. Then

‖e0‖2 ≥ 2�

k�−1∑

k=0

‖(CCT + �kI)
−1
rk‖ ‖rk‖ ≥ c

k�−1∑

k=0

‖‖rk‖‖
2
,

for some constant c > 0 that only depends on � and q, where q is defined in Algorithm 1.

The above corollary implies that, if � > 0, then the computations with Algorithm 1 terminate after a finite number of iterations.

The following theorem shows that, when � = 0, the iterates generated by Algorithm 1 converge to a solution of the exact problem

(with data vector b) that is closest to x0. In particular, if x0 = 0 and � = 0, then the iterations of Algorithm 1 converge to xtrue.

Theorem 1. (Reference16) Assume that � = 0 and that x0 is not a solution of (1) with b� replaced by b. Then the sequence of

iterates xk, k = 0, 1, 2,… , generated by Algorithm 1 converges as k → ∞ to the solution of (1) that is closest to x0.

The AIT algorithm is an iterative regularization method, i.e., the following result holds.

Theorem 2. (Reference16) Let Assumption 1 be valid and let � → b� be a function such that (4) holds for all � > 0. For fixed

parameters � and q (defined in Algorithm 1), let x� denote the approximate solution computed by Algorithm 1. Then, as � → 0,

x
� converges to the solution of (1) that is closest to x0.

3 A MODIFIED APPROXIMATED ITERATED TIKHONOV METHOD

This section describes an alternative to Algorithm 1, whose analysis does not require Assumption 1. We first relax this assumption

as follows.

Assumption 2. (Relaxed spectral equivalence) Let A,C ∈ ℝ
m×n, � ≥ 0, and 0 < � < 1∕2. Assume that, for all z ∈ ℝ

n, it holds

‖(A − C)z‖ ≤ �(‖Az‖+ �).

Let us first observe that if � = 0, then the Assumptions 1 and 2 are exactly the same. For a general � > 0, we have that

Assumption 1 implies Assumption 2, but the converse is not true. Here � plays the role of a “relaxation parameter” as, intuitively,

it measures how much weaker Assumption 2 is than Assumption 1. In particular, the larger � is, the easier it is to satisfy

Assumption 2. The latter assumption forms the basis for Algorithm 2.

Algorithm 2 differs from Algorithm 1 in the definition of �k and in the stopping criterion. The introduction of the parameter

t0 is technical and will help in the following proofs. Intuitively, this parameter measures the relative importance of � and �. We

would like to briefly discuss the stopping criterion of Algorithm 2. Let us first observe the following:

Lemma 1. With the notation and assumptions of Algorithm 2, assume that ‖rk‖ > 0 and that C is not the zero matrix. Then

the equation

‖rk − CCT (CCT + �kI)
−1
rk‖ = qk‖rk‖ (8)

has a unique solution 0 < �k < ∞ when 0 < qk < 1 is close enough to 1, and the components of rk, when expressed in terms

of the eigenvectors of CCT , satisfy the conditions (11) specified in the proof. These conditions are generally satisfied.

Proof. Assume first that qk = 0 and �k > 0. Then it follows from (8) that rk = CCT (CCT + �kI)
−1rk, which is equivalent to

rk = (CCT + �kI)
−1CCT rk. This equation only holds if �krk = 0. Hence, qk > 0.

The symmetric positive semidefinite matrix CCT has a spectral decomposition CCT = QΛQT , where the matrix Q ∈ ℝ
m×m

is orthogonal and Λ = diag[�1, �2,… , �m] contains the nonnegative eigenvalues. Substituting this decomposition into (8) and

squaring the equation gives

‖rk −QΛ(Λ + �kI)
−1QT

rk‖2 = q2
k
‖rk‖2. (9)

Let r̂ = [r̂1, r̂2,… , r̂m]
T = QT rk and define the index sets

J = {j ∶ 1 ≤ j ≤ m, r̂j ≠ 0}, J1 = {j ∈ J ∶ �j ≠ 0}, J0 = J ⧵ J1 = {j ∈ J ∶ �j = 0}.
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Algorithm 2 MAIT

Let A and C satisfy Assumption 2 for given 0 < � < 1∕2 and � ≥ 0. Fix q ∈ (2�, 1), let � > 0 satisfy (4), and let x0 be an initial

approximation of x†.

t0 = min
{

�

�
,
�

�

}
+ 1

r0 = b� − Ax0
� =

1+2�

1−2�

for k = 0, 1,… do

�k = t0

‖‖rk‖‖
� + �

qk = max{q, 2� + (1 + �)∕�k}

Determine �k such that ‖rk − CCT (CCT + �kI)
−1rk‖ = qk‖rk‖

hk = CT (CCT + �kI)
−1
rk

xk+1 = xk + hk

rk+1 = b� −Axk+1

if ‖‖rk+1‖‖ ≤ �� or ‖‖rk+1‖‖ ≤ �
� + �

t0
then

exit

end if

end for

Then (9) can be expressed as
∑

j∈J1

(
1 −

�j

�j + �k

)2

r̂2
j
+
∑

j∈J0

r̂2
j
=
∑

j∈J

q2
k
r̂2
j
. (10)

Introduce the function

�(�) =
∑

j∈J1

(
1 −

�j

�j + �

)2

r̂2
j
.

Then

�(0) = 0, lim
�→∞

�(�) =
∑

j∈J1

r̂2
j
,

and the derivative satisfies �′(0) = 0 and �′(�) > 0 for � > 0. Hence, the function �(�) is monotonically increasing for � > 0.

It follows that equation (10) has a unique finite solution � = �k if and only if
∑

j∈J0

r̂2
j
< q2

k

∑

j∈J

r̂2
j

and
∑

j∈J

r̂2
j
> q2

k

∑

j∈J

r̂2
j
. (11)

The right-hand side inequality holds when 0 < qk < 1 and the left-hand side inequality holds when qk is large enough and the

cardinality of J0 is small enough compared to the cardinality of J .

Remark 1. Observe that, by construction, q ≤ qk. Therefore, the conditions in Lemma 1 on qk can be satisfied by choosing q

large enough. We set q = 0.7 in the numerical experiments reported in Section 4.

Lemma 1 is relevant for both Algorithms 1 and 2. We now derive a condition that secures that 0 ≤ qk < 1. First consider

Algorithm 2. By the proof of Lemma 1, we have qk > 0. We therefore only need to check under which condition qk < 1. By the

definitions of qk and �k, we have

qk = max

{
q, 2� +

1 + �

�k
= 2� +

(1 + �)(� + �)

t0‖rk‖

}
.

Thus, since q < 1, qk < 1 if and only if

2� +
(1 + �)(� + �)

t0
‖‖rk‖‖

< 1,

which is equivalent to

‖rk‖ >
1 + �

1 − 2�

� + �

t0
. (12)
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Thus, the additional stopping criterion in Algorithms 2 is included to ensure that the computation of �k can be carried out since

� >
1+�

1−2�
.

Observe that, when we let � → 0+, Algorithm 2 reduces to Algorithm 1, since t0 → 1. Thus, condition (12) for AIT translates

into

‖rk‖ >
1 + �

1 − 2�
�,

which is always satisfied if ‖‖rk‖‖ >
1+2�

1−2�
�. Thus, qk < 1 for all k in Algorithm 1. Therefore, the algorithm does not need the

additional stopping criterion of Algorithm 2.

Remark 2. We would like to discuss for which values of � the additional stopping criterion of Algorithm 2 does not terminate

the iterations before the discrepancy principle is satisfied. In other words, we would like to solve the inequality

�
� + �

t0
≤ ��.

Simple computations show that, in order for the discrepancy principle to be satisfied, we need

� ≤ (t0 − 1)�.

This means that the discrepancy principle can be satisfied only if the error in b
� is able to “cover” the approximation error

�. In particular, this shows that when the data vector b� is error-free, we cannot expect the iterates generated by Algorithm 2

to converge to an exact solution of the problem (1) if � > 0. It follows that the MAIT method is not a regularization method.

Nevertheless, we will show below that the MAIT method has some desirable properties and is able to determine accurate image

restorations.

The following auxiliary result is needed below.

Proposition 3. Assume that Assumption 2 holds, and let �k = t0
‖rk‖
�+�

, where t0 = min
{

�

�
,
�

�

}
+ 1 is defined in Algorithm 2.

Then

‖rk − Cek‖ ≤
(
� + t0

1 + �

�k

)
‖‖rk‖‖ − �.

Proof. We have

‖rk − Cek‖ = ‖b� − b + b − Axk − Cek‖
= ‖b� − b + A(x† − xk) − Cek‖
≤ ‖b� − b‖ + ‖(A − C)(x† − xk)‖
≤ ‖b� − b‖ + �(‖A(x† − xk)‖ + �)

≤ ‖b� − b‖ + �(‖b − b
� + b

� − Axk‖ + �)

≤ (1 + �)� + �‖rk‖ + ��.

By the definition of �k, we get

� = t0

‖‖rk‖‖
�k

− �.

Substituting this expression into the above inequality yields

‖rk − Cek‖ ≤ (1 + �)

(
t0

‖‖rk‖‖
�k

− �

)
+ � ‖‖rk‖‖ + �� =

(
� + t0

1 + �

�k

)
‖rk‖ − �.

We can now show our main result.

Theorem 3. Let Assumption 2 hold. With the notation of Algorithm 2, we have that, if

‖rk+1‖ > �� and ‖rk+1‖ > �
� + �

t0
,

then

‖ek‖2 − ‖ek+1‖2 ≥ 2�
� − 1

�
‖(CCT + �kI)

−1
rk‖ ‖rk‖.

In particular, it follows from � > 1, that ‖ek‖ decreases monotonically as k increases.
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Proof. The proof of this result is inspired by the proof of16, Proposition 2. Let ⟨v, u⟩ denote the standard inner product. Then we

obtain

‖ek‖2 − ‖ek+1‖2 = 2 ⟨ek, hk⟩ − ‖hk‖2

≥ 2
⟨
ek, C

T (CCT + �kI)
−1
rk

⟩
− 2

⟨
rk, CCT (CCT + �kI)

−2
rk

⟩

= 2
⟨
rk, (CCT + �kI)

−1
rk

⟩
− 2

⟨
rk − Cek, (CCT + �kI)

−1
rk

⟩

− 2
⟨
rk, CCT (CCT + �kI)

−2
rk

⟩

= 2
⟨
rk, �k(CCT + �kI)

−2
rk

⟩
− 2

⟨
rk − Cek, (CCT + �kI)

−1
rk

⟩

≥ 2‖(CCT + �kI)
−1‖

(
‖�k(CCT + �kI)

−1‖ − ‖rk − Cek‖
)
.

By the definition of hk, we have

rk − Chk = rk − CCT (CCT + �kI)
−1
rk = �k(CCT + �kI)

−1
rk.

Combining the above inequality and equality, and using the definitions of �k and �k, as well as Proposition 3, we obtain

‖‖ek‖‖
2
− ‖‖ek+1‖‖

2 ≥ 2‖(CCT + �kI)
−1‖

(
‖rk − Chk‖ − ‖rk − Cek‖

)

≥ 2‖(CCT + �kI)
−1‖

(
qk‖rk‖ − ((1 + �)� + �‖rk‖ + ��)

)

≥ 2‖(CCT + �kI)
−1‖

((
2� +

1 + �

�k
− �

)
‖rk‖ − (1 + �)� − ��

)

≥ 2‖(CCT + �kI)
−1‖

(
�‖rk‖ +

1 + �

t0‖rk‖
(� + �)‖rk‖ − (1 + �)� − ��

)

= 2‖(CCT + �kI)
−1‖

(
�‖rk‖ +

1 + �

t0
(� + �) − (1 + �)� − ��

)
.

We now show that
1 + �

t0
(� + �) − (1 + �)� − �� ≥ −��.

First consider the expression
� + �

t0
.

If � ≥ �, then �∕� ≥ �∕� and, thus,
� + �

t0
=

� + �

�∕� + 1
= �. (13)

Conversely, if � ≤ �, then �∕� ≤ �∕� and, therefore,

� + �

t0
=

� + �

�∕� + 1
= �. (14)

Combining the expressions (13) and (14), we obtain

� + �

t0
= max{�, �}.

We can now majorize
1 + �

t0
(� + �) − (1 + �)� − ��.

Thus,

1 + �

t0
(� + �) − (1 + �)� − �� = (1 + �) max{�, �} − (1 + �)� − ��

= (max{�, �} − (1 + �)�) + (�max{�, �} − ��)

≥ (� − (1 + �)�) + (�� − ��) = −��.



8 A. BUCCINI ET AL

Recalling that, by assumption, ‖rk‖ ≥ ��, we obtain

‖‖ek‖‖
2
− ‖‖ek+1‖‖

2 ≥ 2‖(CCT + �kI)
−1‖

(
�‖rk‖ − ��

)

≥ 2‖(CCT + �kI)
−1‖

(
�‖rk‖ − �

‖rk‖
�

)

= 2‖(CCT + �kI)
−1‖�� − 1

�
‖rk‖.

4 NUMERICAL EXAMPLES

We present a few numerical examples to illustrate the performance of the MAIT method. Like in16, 17, we consider space-

invariant image deblurring as our main application. Image blurring can be modeled by a Fredholm integral equation of the first

kind,

b(s, t) = ∫
Ω

�(u, s, v, t)x(u, v)dudv, (s, t) ∈ Ω, (15)

where b represents the blurred image, � is a point spread function (PSF), and Ω is the domain of the exact image, which is

represented by x. When the blur is spatially invariant, i.e., when the blur does not depend on the spacial location, we have

k(u, s, v, t) = k(u − s, v − t). This is the case in the computed examples below. Discretization of (15) gives a problem of the

form (1), where the structure of the matrix A ∈ ℝ
n×n depends on the boundary conditions imposed; see, e.g.,24 for a discussion

on image deblurring. For any of the standard boundary conditions commonly used, the matrix A ∈ ℝ
n×n can be written as

A = T + R + E,

where T is a block Toeplitz matrix with Toeplitz blocks, R is a matrix of low rank, andE is a matrix of small norm. The matrixA

can be accurately approximated by a block circulant matrix C with circulant blocks associated to T ; see, e.g.,12, 16, 24 for further

details. The matrix C can be determined by imposing periodic boundary conditions when discretizing (15). We will choose this

matrix in Assumption 2. This is the same choice as in16. The matrix C can be diagonalized by the discrete Fourier transform.

Therefore, the vector (CCT + �kI)
−1rk can be computed in O(n log n) arithmetic floating point operations with the aid of the

fast Fourier transform algorithm. Moreover, the computation of �k in each iteration can be carried out cheaply with just a few

iterations with Newton’s method; see16 for more details.

We set � = 10−3 and q = 0.7 in all our computed examples, similarly as in16. In most of the computations, we set � = 150,

however, we also will illustrate the effect of different choices of this parameter. Finally, we set the maximum number of iteration

to 50 and, as suggested in17, we set x0 = ATb� . By Assumption 2, the choice of � is only required to depend on the matrices A

and C . However, there is no easy way to determine which value to choose in actual computations. In the computed examples,

we therefore choose � in an ad hoc manner.

To assess the quality of the computed solution, we compute the Relative Reconstruction Error (RRE), which is defined by

RRE(x) =
‖‖x − xtrue

‖‖
‖‖xtrue‖‖

,

where xtrue represents the desired blur- and error-free image. Moreover, we also compute the Structure SIMilarity (SSIM) index

defined in25. The definition of the SSIM index is quite involved and we do not report it here. Intuitively, the SSIM index measures

how the computed image reconstructs the overall structure of the original image. The larger value of the SSIM index, the better

the reconstruction. The largest possible value is 1.

We are primarily interested in illustrating how the MAIT and AIT methods compare. Therefore, we do not report results for

other methods. Comparisons of the AIT and other image restoration methods are reported in16, 17. Our examples show the MAIT

and AIT methods to perform very similarly when the latter converges, and that MAIT outperforms AIT when the latter fails to

converge.

It is pointed out in16 that the AIT method may fail if the amount of error that corrupts the data b
� is very small. This is due

to the fact that in this case the error is not large enough to “cover” the approximation error made when approximating A by C

when Assumption 1 does not hold. We will illustrate that when � in (4) can be chosen small, the AIT method fails to converge,

while the MAIT method produces an accurate reconstruction of the original image. Moreover, when � in (4) has to be chosen
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(a) (b) (c)

FIGURE 1 Phantom image: (a) true image (237 × 237 pixels), (b) PSF (237 × 237 pixels), (c) blurred and noise-free image

(237 × 237 pixels).

large (enough), the AIT and MAIT methods are equivalent and produce reconstructions of the same quality. In this section, we

set � = ‖�‖.

All the computations were carried out in Matlab R2018b with about 15 significant decimal digits on a Windows 10 laptop

with an i7-8750H @2.20 GHz with 16 GB of RAM.

Phantom

We first consider Example 2 in16, which discusses restoration of a phantom image. The exact image is blurred with a

nonsymmetric Gaussian PSF from26; see Figure 1. Due to the nature of this image, we impose zero boundary conditions.

The authors of16 pointed out that the AIT method may fail for this example when there is not enough noise in the available

blur- and noise-contaminated image to be restored. They proposed a possible strategy to remedy this issue, namely to increase

the value of �. We consider here two choices for the noise level � and two choices for the parameter �, and compare the results.

Thus, we let � ∈ {0.1% ‖b‖ , 1% ‖b‖} and � ∈ {10−3, 10−2}. We report the computed results in Table 1. We can observe that,

for � = 10−3 and � = 0.1% ‖b‖, the AIT method provides very unsatisfactory results. As pointed out in16, this behavior can

be identified by observing the computed values of �k, which become very oscillatory for increasing k. In this case, i.e., when

� = 0.1% ‖b‖, we are able to “save” the AIT method by increasing the value of �, and obtain good reconstructions. On the other

hand, when � = 1% ‖b‖, the AIT and MAIT methods produce very similar results, independently of the choice of �. Finally, we

observe that the MAIT method is able to produce satisfactory reconstructions for all noises level and values of �.

Figure 2 reports the behavior of the RRE versus the number of iterations for all cases considered. By visual inspection of these

graphs, we can observe that the iterations with the MAIT method are terminated before the RRE grows when � = 0.1% ‖b‖ and

� = 10−3. On the other hand, when AIT converges, the MAIT method behaves very similarly and, although the iterations stop

earlier, the quality of the reconstructions is about the same; see Figs. 3 and 4.

We would like to point out that, in this case, the RRE obtained with MAIT for � = 0.1% ‖b‖ is larger than the RRE obtained

for � = 1% ‖b‖. This is due to the fact that, when ‖b‖ is small, � is quite small as well, and the chosen value of � tends to stop

the iterations earlier than needed. This illustrates the fact that the MAIT method is not a regularization method. Nevertheless,

we can observe that the SSIM for the computed reconstructions is larger for � = 0.1% ‖b‖ than for � = 1% ‖b‖.

Cameraman

Our second example considers the cameraman image. We blur the exact image with an average PSF; see Figure 5. Since the image

is generic, we impose reflective boundary conditions. We first fix � = 10−3. Two noise levels are considered, �1 = 0.1% ‖b‖
and �2 = 1% ‖b‖. Figure 6 displays the RRE at each iteration for both the AIT and MAIT methods for both noise levels. We

can observe that when the noise level is small, the AIT method fails to converge. In this particular case, after the 18th iterations,

some entries of the reconstructed solution become NaN and, thus, we cannot compute the RRE or visualize the reconstruction.

The MAIT method produces an accurate reconstruction and the RRE stabilizes after very few iterations. When we increase the

noise level to 1%, we note that the two methods are numerically equivalent and produce the same reconstruction. We would
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(b) � = 1% ‖b‖, � = 10−3.
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(c) � = 0.1% ‖b‖, � = 10−2.
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(d) � = 1% ‖b‖, � = 10−2.

FIGURE 2 Phantom image: plot of the RRE against the iterations for different choices of � and �, the red dashed curve is the

RRE for the AIT method, while the blue solid curve is the RRE for MAIT method. We report below each figure the values of �

and �.

like to show that, in this case, increasing � does not allow the AIT method to converge when � = �1. We now fix � = 10−1 and

consider the same noise levels as before. Figure 6 shows that also in this case the AIT method fails to converge when � = �1.

This illustrates that it is not possible to “save” the convergence of AIT by increasing the value of �. These considerations are

confirmed by visual inspection of the reconstructions in Figure 7 and 8 and by the RRE and SSIM values reported in Table 1.

We would like to briefly discuss the effect of changing the parameter � in the MAIT algorithm. Consider the noise level

�1 = 0.1% ‖b‖, run the MAIT algorithm for � ∈ {50, 100, 150, 200}, and plot the RRE against the iteration number for all cases.

The results are reported in Figure 9. We observe that for � = 50, the MAIT and AIT methods perform the same. The MAIT

method also converges for the other choices of �. The larger �-value, the earlier the iterations with the MAIT method are stopped.

This is to be expected, since a large value of � implies that we do not “trust” the matrix C to be an accurate approximation of

A, and therefore terminate the iteration earlier.

Finally, we would like to note that, in this particular case, since the PSF is quadrantally symmetric, the matrix A can be

diagonalized by the discrete cosine transform. However, we do not exploit this property for uniformity and in order to show the

generality of the proposed method.
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(a) AIT, � = 0.1% ‖b‖ (b) AIT, � = 1% ‖b‖

(c) MAIT, � = 0.1% ‖b‖ (d) MAIT, � = 1% ‖b‖

FIGURE 3 Phantom image reconstructions with � = 10−3. We report below each figure the algorithm used for computing the

reconstruction and the value of �.

Clock

For our third example, we consider the clock image in Figure 10(a). We blur this image using the motion PSF in Figure 10(b).

This yields the blurred (and noise-free image) in Figure 10(c). Just as in the previous example, we use two different noise levels:

�1 = 0.1% ‖b‖ and �2 = 1% ‖b‖. Since the image is generic we use reflexive boundary conditions.

Figure 11 reports the evolution of the RRE throughout the iterations, and Table 1 displays the final values of the RRE and

SSIM for both the AIT and MAIT methods and for both noise levels. We can observe that, like in the previous example, the AIT

method fails to converge when the noise level is small, while the MAIT method is able to provide an accurate reconstruction in

this situation. On the other hand, for larger noise levels, the AIT and MAIT methods are numerically equivalent and produce

identical reconstructions. These observations are confirmed by visual inspection of the reconstructions in Figure 12.

Like in the previous example, also for this case the AIT method is not convergent for any value of � when � = �1. Since the

results are very similar as above, we do not consider other choices of �.

Grain

We describe the performance of the AIT and MAIT methods when applied to the grain image in Figure 13(a). We blur this

image with the non-symmetric PSF shown in Figure 13(b). The blurred image so obtained is depicted in Figure 13(c). We use

the noise levels � = 0.1% ‖b‖ and � = 1% ‖b‖, and compare the reconstructions obtained. Due to the nature of the considered

image we impose reflexive boundary conditions.

Figure 14 and Table 1 report the evolution of the RRE and the final RRE and SSIM for the AIT and MAIT methods. The

relative performance of these methods is similar as in the previous two examples. For � = �1 the AIT method fails to converge,

while the MAIT method stops after fewer than 15 iterations and produces a very satisfactory reconstruction; see Figure 15(c).
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(a) AIT, � = 0.1% ‖b‖ (b) AIT, � = 1% ‖b‖

(c) MAIT, � = 0.1% ‖b‖ (d) MAIT, � = 1% ‖b‖

FIGURE 4 Phantom image reconstructions with � = 10−2: We report below each figure the algorithm used for computing the

reconstruction and the value of �.

When we use a higher noise level, � = �2, both methods converge and provide very similar reconstructions. These observations

are confirmed by visual inspection of the reconstructions depicted in Figure 15.

Finally, we would like to stress that, like in the previous two cases, the AIT method does not converge for any choice of �,

when � = 0.1% ‖b‖. Since these results are very similar to the ones discussed above, we do not report the details.

4.1 Nonstationary choice of �

As we discussed above, the choice of the parameter � is not crucial for the algorithm, however, it influences the quality of the

reconstructed solution somewhat; see Figure 9. In particular, a large value of � may terminate the iterations too early; see the

phantom example.

We outline a heuristic approach for improving the quality of the computed solution by replacing the fixed value of � used in

the previous computations by a a nonstationary sequence of values of �. We will choose the sequence

�k = min{(k − 1)2, �max},

where �max is the maximum value we would like �k to attain. In our experiments, we set �max = 150. The intuition supporting

this heuristic choice is that the AIT method starts to diverge only after some iterations have been carried out, but the very first

iterations are stable. The increasing sequence of �ks allows us to exploit properties of the AIT method during the first few

iteration and in later iterations the method behaves like MAIT. This approach seeks to avoid that the iterations with the MAIT

method terminate too early. However, this approach is heuristic and may fail in some situations. Finally, we would like to mention

that the idea of using an increasing sequence of regularization parameter has previously been exploited in the iterated Tikhonov

regularization method; see27. Algorithm 3 describes the nonstationary MAIT algorithm.
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(a) (b) (c)

FIGURE 5 Cameraman image: (a) true image (248 × 248 pixels), (b) PSF (18 × 18 pixels), (c) blurred and noise-free image

(248 × 248 pixels).

Algorithm 3 MAITNS

Let A and C satisfy Assumption 2 for given 0 < � < 1∕2 and �max ≥ 0. Fix q ∈ (2�, 1), let � > 0 satisfy (4), and let x0 be an

initial approximation of x†.

r0 = b
� − Ax0

� =
1+2�

1−2�

for k = 0, 1,… do

�k = min{(k − 1)2, �max}

t0 = min
{

�

�k
,
�k

�

}
+ 1

�k = t0

‖‖rk‖‖
� + �k

qk = max{q, 2� + (1 + �)∕�k} Determine �k such that ‖rk − CCT (CCT + �kI)
−1
rk‖ = qk‖rk‖

hk = CT (CCT + �k)
−1rk

xk+1 = xk + hk

rk+1 = b
� −Axk+1

if ‖‖rk+1‖‖ ≤ �� or ‖‖rk+1‖‖ ≤ �
� + �k

t0
then

exit

end if

end for

We apply the proposed nonstationary algorithm to all the previous examples. The results are reported in Table 1. The computed

reconstructions are displayed in Figure 16. We can observe that the MAITNS method generally is able to provide more accurate

reconstructions than both the MAIT and AIT methods for � = 0.1% ‖b‖ and to determine reconstructions of the same quality

as both the AIT and MAIT methods when � = 1% ‖b‖. The only exception is the clock image, for which the MAITNS method

fails to converge for � = 0.1% ‖b‖. This behavior is due to the fact that for this image, the AIT method diverges very quickly

(see Figure 11(a)) and the chosen sequence of �-values does not increase fast enough.

5 CONCLUSIONS

This paper describes a modification of the preconditioned method proposed in16. The convergence analysis in16 requires a

very strong condition to hold. Our modified preconditioned method can be shown to converge, albeit in a weaker sense (see

Theorem 3), under much weaker conditions. Moreover, we illustrate that under certain circumstances the method in16 may
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FIGURE 6 Cameraman image: plot of the RRE against the iterations for different choices of � and �, the red dashed curve is

the RRE for the AIT method, while the blue solid curve is the RRE for MAIT method. We report below each figure the values

of � and �.

fail to converge and produce unsatisfactory results, while our modification is able to provide accurate computed solutions. An

extension of our modification to the iterative method discussed in17 is a topic of future research.
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(a) AIT, � = 0.1% ‖b‖ (b) AIT, � = 1% ‖b‖

(c) MAIT, � = 0.1% ‖b‖ (d) MAIT, � = 1% ‖b‖

FIGURE 7 Cameraman image reconstructions with � = 10−3. We report below each figure the algorithm used for computing

the reconstruction and the value of �.
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(a) (b) (c)

FIGURE 10 Clock image: (a) true image (248×248 pixels), (b) PSF (7×7 pixels), (c) blurred and noise-free image (248×248

pixels).
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FIGURE 13 Grain image: (a) true image (238×238 pixels), (b) PSF (17×17 pixels), (c) blurred and noise-free image (238×238

pixels).
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(a) AIT, � = 0.1% ‖b‖ (b) AIT, � = 1% ‖b‖

(c) MAIT, � = 0.1% ‖b‖ (d) MAIT, � = 1% ‖b‖

FIGURE 15 Grain image reconstruction with � = 10−3. We report below each figure the algorithm used for computing the

reconstruction and the value of �.
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(a) � = 0.1% ‖b‖,
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(d) � = 1% ‖b‖,
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(k) � = 0.1% ‖b‖,
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FIGURE 16 Reconstructions obtained with the MAITNS method for all considered examples. Below each figure we report the

values of � and �. Panels (a)-(d) are referred to the Phantom image, panels (e)-(h) are referred to the Cameraman image, panels

(i) and (j) are referred to the Clock image, and panels (k) and (l) are referred to the Grain image.
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TABLE 1 Comparison of the RRE and SSIM obtained by AIT, MAIT, and MAITNS in the considered examples.

Example � Noise Level Method RRE SSIM

Phantom

10−3

0.1%

AIT 0.91481 0.10378

MAIT 0.32756 0.82184

MAITNS 0.31245 0.83211

1%

AIT 0.29326 0.79453

MAIT 0.31098 0.81840

MAITNS 0.29326 0.79453

10−2

0.1%

AIT 0.25475 0.72261

MAIT 0.32847 0.82137

MAITNS 0.31245 0.83211

1%

AIT 0.29888 0.81120

MAIT 0.31341 0.81808

MAITNS 0.29888 0.81120

Cameraman

10−3

0.1%

AIT −− −−

MAIT 0.10128 0.79081

MAITNS 0.086838 0.79514

1%

AIT 0.10649 0.70911

MAIT 0.10649 0.70911

MAITNS 0.10637 0.70927

10−1

0.1%

AIT −− −−

MAIT 0.11041 0.77641

MAITNS 0.090613 0.79959

1%

AIT 0.12544 0.73317

MAIT 0.12544 0.73317

MAITNS 0.12555 0.73289

Clock 10−3

0.1%

AIT 18.231 0.017874

MAIT 0.035864 0.92097

MAITNS 18.174 0.017898

1%

AIT 0.052109 0.84054

MAIT 0.052109 0.84054

MAITNS 0.052109 0.84054

Grain 10−3

0.1%

AIT 0.52519 0.73557

MAIT 0.12254 0.87857

MAITNS 0.10988 0.89684

1%

AIT 0.12565 0.84422

MAIT 0.12579 0.84460

MAITNS 0.12565 0.84422
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