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Abstract

The power series expansion of functions of the adjacency matrix for
a network can be interpreted in terms of walks in the network. This
makes matrix functions, such as the exponential or resolvent, useful for
the analysis of graphs. For instance, these functions shed light on the
relative importance of the nodes of the graph and on the overall connec-
tivity. However, the power series expansions may converge slowly, and the
coefficients of these expansions typically are not helpful in assessing how
important longer walks are in the network. Expansions of matrix func-
tions in terms of orthogonal or bi-orthogonal polynomials make it possible
to determine scaling parameters so that a given network has a specified
effective diameter (the length after which walks become essentially irrele-
vant for the connectivity of the network). We describe several approaches
for generating orthogonal and bi-orthogonal polynomial expansions, and
discuss their relative merits for network analysis.

1 Introduction

Many complex systems that describe the interaction between entities can be
modeled by networks. For mathematical and statistical modeling, as well as for
analysis, networks are usually represented by a graph G = {V,E}, which consist
of a set of vertices V = {vj}nj=1 and a set of edges E = {ek}`k=1, the latter being
the links between the vertices. A graph may be undirected, in which case each
edge ek represents a “two-way street” between a pair of vertices {vi, vj}, or
directed, in which case at least one of the edges is a “one-way street” between a
pair of nodes. Examples of networks include:

• Flight networks, with airports represented by vertices and flights by di-
rected edges.
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• Social networking services, such as Facebook, Twitter, and Snapchat, with
members or accounts represented by vertices, and interactions between any
two accounts by edges, which can be undirected (e.g., a “friendship”) or
directed (e.g., “follow” or “like”).

• Phone networks can be modeled by directed graphs, in which phone num-
bers are represented by vertices, and text messages or calls that occur in
a fixed span of time by edges from the originator to the receiver.

Numerous applications of networks and associated directed or undirected graphs
are described in [12, 14, 17, 19, 31].

We consider unweighted graphs G = {V,E} with n vertices vj and ` edges
ek, without self-loops or multiple edges. For a directed graph G, the associated
adjacency matrix A = [aij ]

n
i,j=1 ∈ Rn×n has the entry aij = 1 if there is an

edge emerging from vertex vi and pointing to vertex vj ; otherwise aij = 0.
Thus, A has vanishing diagonal entries and ` non-vanishing entries. Typically,
1 ≤ ` � n2, which makes the matrix A sparse. The adjacency matrix for an
undirected graph is symmetric and has 2` entries aij = 1. Adjacency matrices
associated with weighted graphs can easily be defined by allowing the non-
vanishing entries to be arbitrary positive real numbers. The discussion of this
paper can be extended to weighted graphs. This is illustrated in Subsection 5.2.

A common task in network analysis is to determine which vertices of an
associated graph are the most important ones by measuring how well-connected
a vertex is to other vertices in the graph. This kind of importance measure,
which often is referred to as a centrality measure, ignores intrinsic properties of
the vertices but often provides vital information about the vertices just from
network connections. Simple centrality measures for a vertex vk of a directed
graph are its in-degree and out-degree, which count the number of edges that
point directly to vk and the number of edges that emerge from vk, respectively.
In undirected graphs, every edge from vertex vj to vertex vk also is an edge
from vertex vk to vertex vj . The number of distinct edges that connect a vertex
vk to other vertices of the graph is referred to as the degree of vk.

The in-degree, out-degree, or degree of a vertex vk are centrality measures
that are easily computable. However, these measures may be unsatisfactory
measures of importance of a vertex vk, because they do not take into account
the importance of the vertices that are connected to vk. This shortcoming has
spurred the introduction of several alternative centrality measures. Of particular
interest are centrality measures derived from the application of matrix functions
to the adjacency matrix A of G. A nice introduction to matrix functions in
network analysis is provided by Estrada and Higham [21]; see also [9, 10, 11,
15, 16, 19, 20] for discussions and examples.

We will need the notion of a walk in a graph. A walk of length k is a sequence
of k+1 vertices vi1 , vi2 , . . . , vik+1

and a sequence of k edges ej1 , ej2 , . . . , ejk such
that ej` points from vi` to vi`+1

for j = 1, 2, . . . , k. The vertices in a walk do
not have to be distinct.

A fundamental property of A is that for any positive integer k, the entry
[Ak]ij of Ak gives the number of walks of length k that start at the vertex vi and
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end at the vertex vj ; see, e.g., [21]. This suggests the use of linear combinations
of powers of A to measure the centrality of vertices of a graph. Commonly
used matrix functions for measuring the centrality of the vertices of a graph
include the exponential function exp(γeA) and the resolvent (I−γrA)−1, where
γe and γr are positive user-chosen parameters; see, e.g., [21]. The power series
expansions of these functions are given by

exp(γeA) = I + γeA+
1

2!
(γeA)2 +

1

3!
(γeA)3 + . . . , (1.1)

(I − γrA)−1 = I + γrA+ (γrA)2 + (γrA)3 + . . . . (1.2)

For the resolvent, the parameter γr has to be chosen small enough so that the
power series (1.2) converges, that is, γr should be strictly smaller than 1/ρ(A),
where ρ(A) denotes the spectral radius of A.

Long walks are considered less important than short walks. Therefore, the
coefficients for high powers of A are chosen to be smaller than the coefficients for
low powers. For instance, the coefficients for Ak are γke /(k!) for the exponential
and γkr for the resolvent.

The diagonal entries [exp(γeA)]ii and [(I − γrA)−1]ii measure how easy it
is to return from the vertex vi back to itself via available edges. These entries
are commonly referred to as subgraph centralities of the vertex vi, and are used
as centrality measures for the vertex. Similarly, the entries [exp(γeA)]ij and
[(I − γrA)−1]ij , for i 6= j, measure how easy communication is between the
vertices vi and vj . These entries are referred to as the communicability between
the vertices vi and vj ; see, e.g., [21] for further details.

The subgraph centralities and communicabilities depend on the choice of the
parameters γe and γr in (1.1) and (1.2). However, the choices of these param-
eters have not received much attention in the literature. Insightful discussions
are provided by Estrada et al. [20], who interpret γe in (1.1) as reciprocal
temperature in a system of oscillators, by Benzi and Klymko [11], who analyze
the behavior of the subgraph centrality and communicability as the parameter
γe in (1.1) goes to zero or infinity, or the parameter γr in (1.2) increases to
1/ρ(A) or decreases to zero, and by Aprahamian et al. [3] who examine how
the parameters γe and γr can be related.

We seek to shed some light on the choices of γe and γr by expanding the
matrix functions (1.1) and (1.2) in terms of orthogonal and bi-orthogonal poly-
nomials. These expansions help us define the effective diameter of a graph,
which is the maximum length of walks that contribute substantially to the com-
munication within the network. The effective diameter depends on the choices
of the parameters γe and γr. In particular, these parameters can be chosen to
achieve a desired effective diameter. Our analysis complements that of Benzi
and Klymko [11].

The expansion of a matrix function as a power series, like (1.1) and (1.2), is
not always “efficient”, in the sense that many terms may be required to approx-
imate the function to desired accuracy. Often expansions in terms of suitably
defined orthogonal polynomials require fewer terms to approximate the matrix
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function to a specified accuracy. This means that an expansion in terms of or-
thogonal polynomials gives a better idea of how important long walks are in the
network than a power series expansion. This paper investigates three approaches
for generating orthogonal polynomial bases, and evaluates their strengths and
weaknesses as tools for network analysis.

The three methods considered might seem quite different at first sight, but
they can be seen as particular cases of a general construction. Let A be an
algebra, with an algebra product A × A → A, and assume that A also has an
inner product 〈·, ·〉A. Let Pn denote the set of polynomials of degree at most n.
For a0 ∈ A, define a linear map Pn → A by p 7→ p(a0). Then we can pull back
the inner product in A to Pn by 〈p, q〉 = 〈p(a0), q(a0)〉A (this is an inner product
in Pn as long as p(a0) 6= 0 for all non-zero p ∈ Pn and n is sufficiently small).
Using this inner product, we can define a basis {p0, p1, . . . , pn} of orthogonal
polynomials for Pn. As particular cases, we have:

1. A = C([a, b]) (continuous functions on [a, b]), with the algebra prod-
uct given by point-wise multiplication, and the inner product given by

〈f, g〉A =
∫ b
a
f(x)g(x)W (x)dx with an appropriate weight function W (x).

We take a0 to be the identity function a0(x) = x on [a, b]. Then we obtain,
for instance, the orthogonal Chebyshev polynomials for the interval [a, b];
see Section 2.

2. A = Rm×m, with matrix multiplication, and inner product given by
〈A,B〉A = trace(ATB). Here and throughout this paper the superscript
T denotes transposition. Let a0 be the given, fixed, adjacency matrix A.
Then we obtain the global Arnoldi (or nonsymmetric Lanczos) orthogonal
(or bi-orthogonal) polynomials; see Section 3.

3. A = Rm×m, like above, but now with the inner product given by 〈A,B〉A =
1TATB1. Taking a0 again to be A, we obtain the standard Arnoldi (or
nonsymmetric Lanczos) orthogonal (or bi-orthogonal) polynomials; see
Section 4.

This paper is organized as follows: Section 2 reviews the approximation
of analytic functions by expansions in terms of orthogonal polynomials. Ex-
pansions in terms of Chebyshev polynomials, as well as in terms of orthogonal
polynomials associated with inner products defined by the adjacency matrix A
are considered. Section 3 focuses on orthogonal and bi-orthogonal polynomials
determined by the global Arnoldi and nonsymmetric Lanczos methods, respec-
tively. These are block iterative methods introduced by Jbilou et al. [27, 28]
for the solution of matrix equations and linear systems of equations with mul-
tiple right-hand sides. Section 4 discusses the computation of orthogonal and
bi-orthogonal polynomials associated with the “standard” Arnoldi and nonsym-
metric Lanczos methods, respectively, and Section 5 presents a few numerical
examples. Concluding remarks can be found in Section 6.
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2 Expansion of functions in terms of orthogonal
polynomials

We review a few results from Trefethen [34]. Related results also can be found
in, e.g., [24, 35]. Let ρ > 1 and i =

√
−1. Following Trefethen [34, Chapter 8],

we refer to the open interior of the set{
1

2

(
ρ exp(iθ) + ρ−1 exp(−iθ)

)
: 0 ≤ θ < 2π

}
as a Bernstein ellipse, which we denote by Eρ. This ellipse has foci at ±1
and contains the real interval [−1, 1]. The closer the interval [−1, 1] is to the
boundary of Eρ, the closer ρ > 1 is to unity. Moreover, Eρ1 $ Eρ2 for 1 < ρ1 <
ρ2.

Proposition 1. ([34, Theorem 8.1]) Let a function f , analytic on [−1, 1],
be analytically continuable to the open Bernstein ellipse Eρ, where it satisfies
|f(x)| ≤ Mf for some constant Mf independent of x in Eρ. Consider the ex-
pansion of f in terms of orthogonal Chebyshev polynomials of the first kind,

Tj(x) = cos(j arccos(x)), −1 ≤ x ≤ 1, j = 0, 1, . . . , (2.1)

with regard to the inner product

(g, h) =
2

π

∫ 1

−1
g(x)h(x)

1√
1− x2

dx

for sufficiently smooth functions g and h on the interval [−1, 1]. Thus,

f(x) =

∞∑
j=0

cjTj(x), cj = (f, Tj). (2.2)

Then the expansion coefficients satisfy |c0| ≤Mf and

|cj | ≤ 2Mfρ
−j , j = 1, 2, . . . . (2.3)

Thus, the larger the Bernstein ellipse Eρ can be chosen, i.e., the larger ρ
can be chosen, the faster the bound for the coefficients cj decreases to zero
with increasing j. The following result can be shown by using the bounds of
Proposition 1.

Proposition 2. ([34, Theorem 8.2]) Let f satisfy the conditions of Proposition
1. Define the Chebyshev projection

fn(x) =

n∑
j=0

cjTj(x) (2.4)

with the coefficients cj given by (2.2). Then

max
−1≤x≤1

|f(x)− fn(x)| ≤ 2Mfρ
−n

ρ− 1
, n = 0, 1, 2, . . . . (2.5)
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Thus, the bound for the approximation error (2.5) decreases to zero at the
same rate as the bound (2.3) for the highest order coefficient in (2.4).

The converse of Proposition 2 also holds.

Proposition 3. ([34, Theorem 8.3]) Let the function f be defined on the real
interval [−1, 1]. Suppose that there is a sequence of polynomials q0, q1, q2, . . . ,
with qj of degree at most j, such that

max
−1≤x≤1

|f(x)− qn(x)| ≤ Cρ−n, n = 0, 1, 2, . . . ,

for some constants C > 0 and ρ > 1 independent of n. Then f can be analyti-
cally continued to an analytic function in the open Bernstein ellipse Eρ.

Example 2.1. Consider the Runge function

f(x) =
1

1 + 25x2
.

The power series expansion of f at the origin does not converge to f on the
interval [−1, 1]. However, the expansion (2.4) converges to f on [−1, 1] according
to (2.5) as n increases with ρ = 1.22. �

Example 2.2. We are particularly interested in the entire function f(x) =
exp(x). The expansion (2.4) of f converges to f on [−1, 1] faster than (2.5)
for any ρ > 1 as n increases. We therefore can expect the magnitude of the
coefficients cj to decrease to zero quite rapidly with increasing index j. �

The fact that the magnitude of the terms of an expansion of an analytic
function in terms of suitably scaled orthogonal polynomials decays at least ex-
ponentially with the degree of the polynomials holds for more general sets than
the interval [−1, 1]. Let S be a Jordan domain in the complex plane C, i.e., the
boundary of S is a Jordan curve. Let ψ denote the conformal mapping from the
exterior of the unit disc Dc = {w ∈ C : |w| > 1} to the exterior of S with a pole
at infinity. Then ψ(w) has an expansion of the form

z = ψ(w) = dw + d0 + d1w
−1 + d2w

−2 + . . . ,

with dj ∈ C for j = 0, 1, . . . , and d > 0 for |w| sufficiently large. Let Sρ for
some ρ > 1 denote the open set that is bounded by the curve

{z ∈ C : z = ψ(w), w = ρ exp(iθ), 0 ≤ θ < 2π}, i =
√
−1.

Introduce the orthogonal polynomials p0, p1, p2, . . . with respect to some inner
product on S, i.e., pi is of degree i and

〈pi, pj〉 =

∫
S
pi(x)pj(x)dω(x) =

{
1, i = j,
0, i 6= j,

(2.6)

where dω is a positive measure with support on S and the bar denotes complex
conjugation. Define the finite expansion

fn(z) =

n∑
j=0

cjpj(z), cj = 〈f, pj〉, j = 0, 1, . . . , n. (2.7)
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Then
lim sup
j→∞

|cj |1/j = ρ−1

and

lim sup
n→∞

(
max
z∈S
|f(z)− fn(z)|

)1/n

= ρ−1; (2.8)

see Gaier [24, Chapter 1] or Walsh [35, Chapter 6] for details. In particular,
when S = [−1, 1], we can choose

ψ(w) =
1

2
(w + w−1),

and the set Sρ for some ρ > 1 is the Bernstein ellipse Eρ.
We are concerned with the expansion of the matrix functions (1.1) and (1.2)

in terms of the orthogonal polynomials pk. Let A be the adjacency matrix
associated with the graph G, and consider the expansion

exp(γeA) =

∞∑
k=0

c
(γe)
k pk(A).

Since the polynomial pk(A) is a linear combination of the powers Aj , j =
0, 1, . . . , k, it only depends on walks of length at most k. The polynomials

pk are independent of the parameter γe, but the coefficients c
(γe)
k are functions

of this parameter.
Example 2.3. Let A ∈ Rn×n be an adjacency matrix that is associated with

an undirected graph, and assume that its spectrum is contained in the interval
[a, b], with −∞ < a < b <∞. The identity

exp(γx) = I0(γ) + 2

∞∑
j=1

Ij(γ)Tj(x), −1 ≤ x ≤ 1, (2.9)

where the

Ij(γ) =

∞∑
`=0

(γ2 )j+2`

`!(`+ j)!
, j = 0, 1, . . . , (2.10)

are modified Bessel functions of the first kind, the Tj are defined by (2.1), and
γ is a real constant, is a consequence of [1, Eq. (9.6.34)]. Since the spectrum
of A is in [a, b], it is appropriate to expand exp(γeA) in terms of Chebyshev
polynomials for the interval [a, b]. They are given by

T
[a,b]
j (z) = Tj(x(z)), x(z) =

2

b− a
z − b+ a

b− a
, j = 1, 2, . . . ,

for a ≤ z ≤ b. We obtain from (2.9) that

exp(γz) = exp(
γ

2
(b− a)x) exp(

γ

2
(b+ a)) (2.11)

= exp(
γ

2
(b+ a))

I0(
γ

2
(b− a)) + 2

∞∑
j=1

Ij(
γ

2
(b− a))T

[a,b]
j (z)

 .
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Introduce the spectral factorization

A = SΛS−1, Λ = diag[λ1, λ2, . . . , λn], (2.12)

where the matrix S can be chosen to be real and orthogonal. Then

exp(γeA) = S diag[exp(γeλ1), exp(γeλ2), . . . , exp(γeλn)]S−1

and, by (2.11),

exp(γeλk) = exp(
γe
2

(b+ a))

I0(
γe
2

(b− a)) + 2

∞∑
j=1

Ij(
γe
2

(b− a))T
[a,b]
j (λk)

 .

This yields the expansion

exp(γeA) =

∞∑
k=0

c
(γe)
k pk(A), (2.13)

where

pk(A) = T
[a,b]
k (A), k = 0, 1, . . . ,

c
(γe)
0 = exp(

γe
2

(b+ a))I0(
γe
2

(b− a)),

c
(γe)
k = 2 exp(

γe
2

(b+ a))Ik(
γe
2

(b− a)), k = 1, 2, . . . .

It is clear from (2.10) that the functions t→ Ij(t), j = 0, 1, . . . , are increasing

for t ≥ 0 and, therefore, the coefficients c
(γe)
k for, k = 0, 1, . . . , are increasing

functions of γe > 0, while the polynomials pk are independent of γe. The larger
γe is chosen, the more terms in the expansion (2.13) should be included in an
approximation of exp(γeA). �

Assume that the first `+1 terms c
(γe)
0 p0(A), c

(γe)
1 p1(A), . . . , c

(γe)
` p`(A) in the

expansion (2.13) are significant, and that the remaining terms are of compara-
tively small norm. Then this suggests that only walks of length smaller than or
equal to ` have to be considered when analyzing the network represented by the
matrix A. In particular, exp(γeA) may be approximated well by a polynomial in
A of degree at most `. We will say that ` is the effective diameter of the graph
G. The effective diameter depends on the parameter γe; the smaller γe > 0 is,
the fewer terms are required. Thus, if we know that in our network all walks of
length larger than j0 may be ignored, then γe can be chosen so that the terms

c
(γe)
j pj(A) for j > j0 are negligible. We will provide a more precise definition of

the effective diameter below. The parameter γr in the resolvent can be chosen
in a similar fashion.

Definition 1. Let the cj be coefficients in an expansion of a function of an
adjacency matrix in terms of orthogonal or bi-orthogonal polynomials. We refer
to the smallest integer k ≥ 1 such that

|ck+1|
max0≤j≤k |cj |

≤ δ
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as the δ-effective diameter of the graph.

The intuition is that the matrix function under consideration can be well
approximated, when evaluated at A, by a polynomial of degree k, and therefore
walks or multi-step connections of length greater than k are mostly irrelevant
for the communication within the network. The δ-effective diameter depends
on the matrix function and the expansion used.

The determination of the expansion (2.13) requires that estimates of the
largest and smallest eigenvalues of A be known, so that the interval [a, b] can
be chosen large enough to contain the spectrum of A. Then the polynomials
pk(A) in (2.13) are of about unit norm and the magnitude of each term in

the expansion depends primarily on the size of the coefficients c
(γe)
k . In this

paper, we will use expansions in terms of orthogonal matrix polynomials, whose
computation does not require a priori knowledge of the spectrum of A. When
the matrix A is symmetric, these orthogonal matrix polynomials are generated
with the symmetric Lanczos process equipped with the matrix inner product

〈M1,M2〉F = trace(MT
1 M2), (2.14)

where M1,M2 ∈ Rn×n. The associated matrix norm

‖M‖F =
√
〈M,M〉F (2.15)

is the Frobenius norm. For a nonsymmetric matrix A, orthogonal matrix poly-
nomials pk(A) of degree k, for k = 0, 1, 2, . . . , can be generated by the Arnoldi
process furnished with the inner product (2.14) and norm (2.15). Alterna-
tively, families of bi-orthogonal polynomials can be generated with the aid of
the nonsymmetric Lanczos process. Arnoldi and Lanczos processes using inner
products of the form (2.14) have been studied in the context of solving ma-
trix equations and linear systems of equations with several right-hand sides, see
Jbilou et al. [27, 28], who refer to the Arnoldi and Lanczos processes so defined
as global Arnoldi and Lanczos processes, respectively. The approximation of
matrix functions using this kind of inner product has recently been discussed
by Bellalij et al. [7], Bentbib et al. [8], and Frommer et al. [23].

The approximation of the matrix functions (1.1) and (1.2) in terms of or-
thogonal matrix polynomials that are determined by global Lanczos or Arnoldi
processes is described in Section 3. These expansions can be applied to deter-
mine suitable values of the parameters γe or γr. The computation of this kind of
polynomial expansions requires the explicit evaluation of the matrix exponential
or resolvent and, therefore, can be applied to adjacency matrices A of small to
moderate size. However, they cannot be used when the matrix A is large. This
situation is considered in Section 4, where we discuss expansions of the form

exp(γeA)v =

∞∑
k=0

c
(γe)
k pk(A)v, (I − γrA)−1v =

∞∑
k=0

c
(γr)
k pk(A)v, (2.16)

for some vector v ∈ Rn. These kinds of matrix functions have been discussed
in, e.g., [10, 15, 30]. In the computed examples, we let v = [1, 1, . . . , 1]T , but
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other choices of v also are possible. The expansions (2.16) can be computed
with the “standard” symmetric or nonsymmetric Lanczos processes, or with
the “standard” Arnoldi process. The computation of these expansions does not
require the evaluation of the matrix exponential or resolvent. We note that the
expansions (2.16) also are of interest when A is replaced by AT ; see, e.g., [15].

3 The computation of orthogonal and bi-orthogonal
matrix polynomials

The algorithms of this section determine expansions of a matrix function in
terms of orthogonal and bi-orthogonal matrix polynomials. This allows for the
computation of the δ-effective diameter of a graph without having to explicitly
define a measure dω, like in (2.6). The computation of the effective diameter in
this manner provides insight into properties of the graph, but is expensive when
the adjacency matrix A is large. A cheaper approach is described in Section 4.

Let A ∈ Rn×n be the adjacency matrix for a graph G, and let f be a function
such that f(A) is defined. It suffices that f is analytic in a simply connected
region in the complex plane that contains the spectrum of A in its interior; see,
e.g., [25, 26] for details. Let Pk denote the set of polynomials of degree at most
k, and consider the approximation of f(A) by a polynomial p ∈ Pk using the
Frobenius norm (2.15). Thus, we would like to solve

min
p∈Pk

‖f(A)− p(A)‖F . (3.1)

The meaning of this norm is most transparent when the matrix A is normal,
such as symmetric or skew-symmetric. Then the eigenvector matrix S in (2.12)
can be chosen to be orthogonal or unitary. Substituting (2.12) into (3.1) gives
the equivalent minimization problem

min
p∈Pk

n∑
j=1

|f(λj)− p(λj)|2. (3.2)

Thus, the minimization problem (3.1) is a polynomial least-squares approxima-
tion problem in the complex plane. We assume that the number of distinct
eigenvalues λj is strictly larger than the degree k. Then the problem (3.1) has
a unique solution. For adjacency matrices for “real” networks, this requirement
on k generally is satisfied. In the rare events when it is not, we can reduce k
suitably.

The polynomial least squares problem (2.6)-(2.8) differs from the least-
squares problem (3.2) in that the integral in (2.6) is replaced by a sum over
the n eigenvalues of A. If n is much larger than the degree k of the polynomial
approximant and the eigenvalues λj are distributed fairly uniformly over a set
S, then we can expect the solution of the discrete approximation problem (3.2)
to behave similarly as the solution of the approximation problem (2.6)-(2.8). In

10



particular, the solutions p of (3.2) typically converge quite rapidly to f as the
degree k of the solutions increases. This is illustrated in Section 5.

When the graph G is directed, the associated adjacency matrix A ∈ Rn×n
is nonsymmetric. Assume for the moment that A has a spectral factorization
(2.12) with a nonsingular matrix S made up of unit eigenvectors. We then
obtain the bound

min
p∈Pk

‖f(A)− p(A)‖F ≤ ‖S‖2‖S−1‖2

min
p∈Pk

n∑
j=1

|f(λj)− p(λj)|2
1/2

, (3.3)

where ‖·‖2 denotes the spectral matrix norm. The derivation of the above bound
uses the fact that ‖M1M2‖F ≤ ‖M1‖2‖M2‖F for any pair of compatible matrices
M1 and M2. The sum in (3.3) is analogous to (3.2). We therefore expect
fast reduction of the approximation error when the degree k of the polynomial
p increases and ‖S‖2‖S−1‖2 is not very large. In any case, the polynomial
expansion computed minimizes the left-hand side of (3.3). Computed examples
that illustrate the convergence of the left-hand side can be found in Section
5. We remark that in the rare event that a spectral factorization of the form
(2.12) does not exist, the Jordan normal form can be used; see [26]. The sum
in the right-hand side of (3.3) then also contains terms with the magnitude of
differences of derivative values of f and p at eigenvalues of A associated with
nontrivial Jordan blocks; see [26] for details.

Algorithm 1 The global Arnoldi process for approximating exp(γeA), A ∈
Rn×n.

1. Let V1 = I/
√
n, where I denotes the identity matrix of order n. Then

||V1||F = 1. Let m denote the number of steps of the algorithm.
2. For j = 1, 2, . . . ,m Do:
3. cj−1 = 〈exp(γeA), Vj〉F
4. W = AVj
5. For i = 1, 2, . . . , j Do:
6. hij = 〈W,Vi〉F
7. W = W − hijVi
8. EndDo
9. hj+1,j = ||W ||F . If hj+1,j = 0 Then Stop
10. Vj+1 = W/hj+1,j

11. EndDo

We turn to the computation of orthogonal matrix polynomials with respect
to the inner product (2.14) and associated norm (2.15). When A is nonsymmet-
ric, such polynomials can be computed with the global Arnoldi process [27, 28],
described by Algorithm 1. The matrices V1, V2, . . . , Vm+1 generated by the al-
gorithm satisfy

〈Vj , Vk〉F =

{
1, j = k,
0, j 6= k,
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and it follows from the recursion formulas of the algorithm that Vj = pj−1(A)
for some polynomial pj−1 ∈ Pj−1 for j = 1, 2, . . . ,m+ 1. Hence,

〈pj(A), pk(A)〉F =

{
1, j = k,
0, j 6= k.

Thus, the pj are the desired orthogonal polynomials. The scalars cj determined
in line 3 of Algorithm 1 are the expansion coefficients for

exp(γeA) ≈
m−1∑
j=0

cjpj(A). (3.4)

The polynomial in the right-hand side solves the minimization problem in the
left-hand side of (3.3) for k = m − 1 and f(A) = exp(γeA). The polynomials
pj(A) are independent of the parameter γe, but the coefficients cj−1 computed
in line 3 are not. The exponential function may be replaced by the resolvent.

The main computational cost of Algorithm 1 is the evaluation of the matrix
function exp(γeA) used in line 3 of the algorithm. The scalars hij determined
by Algorithm 1 yield the nontrivial entries of an upper Hessenberg matrix

Hm :=


h1,1 h1,2 h1,3 · · · h1,m
h2,1 h2,2 h2,3 · · · h2,m

. . .
. . .

. . .

hm−1,m−2 hm−1,m−1 hm−1,m
0 hm,m−1 hm,m

 ∈ Rm×m (3.5)

When the matrix A is symmetric, the recursion relations of Algorithm 1 sim-
plify to give the global symmetric Lanczos process for approximating exp(γeA).
In particular, the matrix (3.5) becomes symmetric and tridiagonal. We refer to
[27] for details on and properties of the global symmetric Lanczos process.

Algorithm 2 The global nonsymmetric Lanczos process for approximating
exp(γeA).

1. Let V1 = In,W1 = In/n. Choose number of steps m.
2. β1 = δ1 = 0 ∈ R, V0 = W0 = 0 ∈ Rn×n
3. For j = 1, 2, . . . ,m Do:
4. cj−1 = 〈exp(γeA),Wj〉F
5. αj = 〈AVj ,Wj〉F
6. V̂ = AVj − αjVj − βjVj−1
7. Ŵ = ATWj − αjWj − δjWj−1
8. δj+1 = |〈V̂ , Ŵ 〉F |1/2. If δj+1 = 0 Then Stop

9. βj+1 = 〈V̂ , Ŵ 〉F /δj+1

10. Wj+1 = Ŵ/βj+1

11. Vj+1 = V̂ /δj+1

12. EndDo

12



When the matrix A ∈ Rn×n is nonsymmetric, approximations of functions
of A also can be determined with the aid of the global nonsymmetric Lanc-
zos process described by Algorithm 2. We assume that m is small enough so
that the computations of the algorithm can be carried out without breakdown.
Algorithm 2 was first introduced by Jbilou et al. [28].

The recursion formulas of Algorithm 2 show that Vj = pj−1(A) and Wj =
qj−1(A) for some polynomials pj−1, qj−1 ∈ Pj−1 for j = 1, 2, . . . ,m + 1. The
matrices Vj and Wj are bi-orthogonal, i.e., they satisfy

〈Wj , Vk〉F =

{
1, j = k,
0, j 6= k.

It follows that the polynomials pj and qk are bi-orthogonal with respect to the
bilinear form (2.14), i.e.,

〈qj(A), pk(A)〉F =

{
1, j = k,
0, j 6= k.

Moreover, the polynomials pj and qj satisfy three-term recurrence relations.
This follows from the recursion relations of Algorithm 2.

4 The standard Arnoldi and Lanczos processes

This section discusses the approximation of exp(γeA)v for some vector v 6= 0
by application of the standard Arnoldi or Lanczos processes. In our computed
examples in Section 5, we let v = [1, 1, . . . , 1]T ∈ Rn, but other vectors also are
of interest in applications; see [15]. The methods described also can be applied
to the approximation of the matrix resolvent. As usual, we let A ∈ Rn×n be an
adjacency matrix.

We would like to approximate exp(γeA)v by p(γeA)v, where p is a polynomial
determined with the aid of the standard Arnoldi or Lanczos processes. The
former is described by Algorithm 3. The inner product used in the algorithm is
the standard inner product in Rn.

Algorithm 3 The standard Arnoldi process, A ∈ Rn×n.

1. Let v1 = v/||v||2. Let m denote the number of steps of the algorithm.
2. For j = 1, 2, . . . ,m Do:
3. w = Avj
4. For i = 1, 2, . . . , j Do:
5. hij = 〈w, vi〉
6. w = w − hijvi
7. EndDo
8. hj+1,j = ||w||2. If hj+1,j = 0 Then Stop
9. vj+1 = w/hj+1,j

10. EndDo
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Each iteration with Algorithm 3 generates a unit vector vj+1 that is or-
thogonal to the previously computed vectors v1, v2, . . . , vj . It follows from the
recursion formulas of the algorithm that vj+1 = pj(A)v, j = 0, 1, 2, . . . ,m, for
certain polynomials pj ∈ Pj . These polynomials are orthogonal with respect to
the inner product

〈pj , pk〉 = vT (pj(A))T pk(A)v.

We have

〈pj , pk〉 =

{
1, j = k,
0, j 6= k.

The scalars hij determined by Algorithm 3 define the nontrivial entries of an
upper Hessenberg matrix Hm ∈ Rm×m, which is analogous to the matrix (3.5).
The recursion formulas of Algorithm 3 can be expressed as

AVm = VmHm + hj+1,jvm+1e
T
m,

where ej denotes the jth axis vector of appropriate dimension and Vm =
[v1, v2, . . . , vm] ∈ Rn×m. It can be verified by induction that

p(A)v = ‖v‖p(Hm)e1

for any polynomial p ∈ Pm−1. This suggests the polynomial approximation

exp(γeA)v ≈ ‖v‖Vm exp(γeHm)e1; (4.1)

see, e.g., [6] for error bounds. Note that the right-hand side is a linear com-
bination of p0(A)v, p1(A)v, . . . , pm−1(A)v. This leads us to expect that for a
general vector v, the convergence behavior of the right-hand side (4.1) towards
the left-hand side as m increases is similar to the convergence for the problems
considered in Section 2. In particular, we expect the coefficients of these poly-
nomials, i.e., the coefficients of the columns vj in the right-hand side of (4.1) to
decrease in magnitude quite rapidly with increasing index number.

Similarly, as in Section 3, Algorithm 3 can be simplified to the standard
Lanczos process when the matrix A is symmetric. In this case, the Hessenberg
matrix Hm in (4.1) is symmetric and tridiagonal. Moreover, a more accurate
approximation of exp(γeA)v can be computed by using the subdiagonal element
hm+1,m of Hm+1 generated by Algorithm 3 as described in [18].
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Algorithm 4 The standard nonsymmetric Lanczos process, A ∈ Rn×n.

1. Let v1 = w1 = v/||v||2. Choose number of steps m.
2. β1 = δ1 = 0 ∈ R, v0 = w0 = 0 ∈ Rn×n
3. For j = 1, 2, . . . ,m Do:
4. αj = 〈Avj , wj〉
5. v̂ = Avj − αjvj − βjvj−1
6. ŵ = ATwj − αjwj − δjwj−1
7. δj+1 = |〈v̂, ŵ〉|1/2. If δj+1 = 0 Then Stop
8. βj+1 = 〈v̂, ŵ〉/δj+1

9. wj+1 = ŵ/βj+1

10. vj+1 = v̂/δj+1

11. EndDo

A nonsymmetric matrix A can be reduced to a small nonsymmetric tridiag-
onal matrix

Tm :=


α1 β2 0
δ2 α2 β3

. . .
. . .

. . .

δm−1 αm−1 βm
0 δm αm

 ∈ Rm×m, (4.2)

whose entries are determined by Algorithm 4. It follows from the recursion
formulas of Algorithm 4 that vj = pj−1(A)v1 and wj = qj−1(A)w1 for some
polynomials pj−1, qj−1 ∈ Pj−1. The vectors vj are bi-orthogonal to the vectors
wj , i.e.,

〈vj , wk〉 =

{
1, j = k,
0, j 6= k.

and therefore the polynomials pj and qk are bi-orthogonal. We have

〈qj(A), pk(A)〉 =

{
1, j = k,
0, j 6= k.

We assume for simplicity that the computations with Algorithm 4 can be carried
out without breakdown. A recent discussion of breakdowns is provided by Pozza
et al. [32].

The matrix (4.2) furnishes the following polynomial approximation

exp(γeA)v ≈ exp(γeTm)e1‖v‖.

5 Computed examples

This section shows expansions of the functions (1.1) and (1.2) for several net-
works and values of the parameters γe and γr.
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5.1 Expanding exp(γeA) for a protein-protein interaction
network

We illustrate the convergence of the coefficients of the expansions (3.4) and

exp(γeA) = I + γe‖A‖F
A

‖A‖F
+
γ2e‖A‖2F

2!

A2

‖A‖2F
+ · · · , (5.1)

when applied to an undirected network that models protein-protein interaction
in yeast. Specifically, we use part of the NDyeast network. Each edge represents
an interaction between two proteins [29]. The data set is available at [5] and
has 2114 nodes. There are 74 self-loops (nodes connected only to themselves)
and 268 isolated nodes. The adjacency matrix obtained by removing the self-
loops and isolated nodes is of order n = 1846. It has 149 connected components,
which can be identified with the MATLAB function getconcomp from the PQser
toolbox [13]. Most of the connected components have very few nodes. We will
use the only connected component with more than 10 nodes. It has 1458 nodes
and yields a symmetric adjacency matrix A ∈ R1458×1458. Since the adjacency
matrix is not very large, exp(γeA) easily can be evaluated by using the MATLAB
function expm.

We use the normalization of (5.1) because the normalized matrix A/‖A‖F
is of unit norm, and each coefficient γje‖A‖

j
F /j! provides the norm of the corre-

sponding term. Note that the coefficients γje‖A‖
j
F /j! might not depend mono-

tonically on j; this is illustrated below.
Figure 1(a) displays for γe = 1 the magnitude of the coefficients in the

expansion (3.4) of the exponential function exp(γeA) in terms of orthogonal
polynomials in A determined by the global Lanczos method (blue dashed curve),
as well as the coefficients γke ‖A‖kF /(k!), k = 0, 1, 2, . . . in (5.1) (black continuous
curve). The coefficients in the expansion of orthogonal polynomials are seen to
converge to zero much faster with increasing index than the coefficients in the
power series expansion. Figure 1(b) is analogous to Figure 1(a) for γe = 0.5.
The coefficients in Figure 1(b) converge to zero faster than the corresponding
coefficients in Figure 1(a).

Figure 1(c) depicts for γe = 1 the norm of the approximation errors in terms
of the degree of the approximating polynomials for expansions of orthogonal
polynomials (blue dashed curve) and for the power series expansion (black con-
tinuous curve). The error, measured with the Frobenius norm (3.1), in the
orthogonal polynomial expansion is seen to converge to zero much faster with
increasing degree than the error in the power series expansion. Thus, the poly-
nomial p in (3.1) is either the right-hand side of (3.4) for increasing degree, or
the first terms in the power series expansion in the right-hand side of (5.1).
Figure 1(d) is analogous to Figure 1(c) for γe = 0.5.

Let cj , j = 0, 1, 2, . . . denote the expansion coefficients in (3.4). Table 1(a)
shows the ratio of |ck| and max0≤j≤k |cj | for k = 5 and several values of γe.
The ratio is seen to decrease quite rapidly when γe decreases. Table 1(b) is
analogous to Table 1(a) for k = 10. Table 1 and Figure 1 suggest that one can
approximate exp(γeA) quite accurately with fairly few terms in the expansion
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Figure 1: Yeast: (a) The magnitude of the coefficients in expansions of exp(γeA)
in terms of orthogonal polynomials (blue dashed curve) and in a power series
expansion (black continuous curve) for γe = 1, (b) Curves are analogous to those
in (a) for γe = 0.5, (c) Norm of approximation error furnished by expansion
in terms of orthogonal polynomials (blue dashed curve) and by power series
expansion as a function of the degree of the approximating polynomial for γe =
1, (d) The curves are analogous to those in (c) for γe = 0.5. ‖A‖F = 62.42

(3.4). The number of large terms in the expansion increases with γe. The
parameter γe > 0 can be chosen so that a given graph has a desired δ-effective
diameter.

5.2 Expanding (I − γrA)−1 for a neural network

The neural network of the worm Caenorhabditis elegans has 306 individual neu-
rons (vertices) and 2345 edges. The edges are directed and most of them are
unweighted: 14 edges have weight 2 and the remaining edges have weight 1; see
[2, 4, 22]. Thus, the adjacency matrix associated with this graph is nonsymmet-
ric. This example illustrates the role of the parameter γr in expansions of the
resolvent. If longer walks are important, then we should choose a larger value of
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γe |ck|/max0≤j≤k |cj |
1.0 7.7e-01

0.9 7.0e-01

0.8 6.0e-01

0.7 5.0e-01

0.6 4.0e-01

0.5 2.6e-01

0.4 1.1e-01

0.3 3.4e-02

0.2 6.5e-03

0.1 4.0e-04

(a) k = 5

γe |ck|/max0≤j≤k |cj |
1.0 1.9e-02

0.9 1.2e-02

0.8 6.2e-03

0.7 2.9e-03

0.6 1.2e-03

0.5 3.3e-04

0.4 5.1e-05

0.3 3.4e-06

0.2 1.0e-07

0.1 1.9e-10

(b) k = 10

Table 1: Yeast: The ratio of the orthogonal expansion coefficient |ck| and the
largest of the k + 1 first coefficients for k = 5 and k = 10 for several values of
γe.

Arnoldi Nonsymmetric Lanczos

γr |c5|/max0≤j≤5 |cj | |c5|/max0≤j≤5 |cj |
0.10 4.3e-01 9.3e-02

0.09 1.6e-01 2.7e-02

0.08 6.4e-02 1.0e-02

0.07 2.7e-02 4.1e-03

0.06 1.1e-02 1.6e-03

0.05 4.3e-03 6.2e-04

0.04 1.5e-03 2.0e-04

0.03 3.9e-04 5.3e-05

0.02 6.6e-05 8.9e-06

0.01 3.6e-06 4.8e-07

Table 2: Celegans: The ratio of the orthogonal expansion coefficient |c5| and
the largest of the 6 first coefficients for several values of γe.

γr. For example, if walks of length 5 and shorter are important, then we should
choose γr large enough to make the coefficients c0, c1, . . . , c5 in the expansion in
terms of orthogonal polynomials

(I − γrA)−1 ≈
m−1∑
j=0

cjpj(A) (5.2)
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Figure 2: Celegans: (a) The magnitude of the coefficients in expansions of
(I − γrA)−1 in terms of orthogonal and bi-orthogonal polynomials determined
by the global Arnoldi method (blue dashed curve) and the global nonsymmetric
Lanczos method (orange dash-dotted curve), as well as in a power series ex-
pansion (black continuous curve) for γr = 0.1, (b) The curves are analogous to
those in (a) for γr = 0.05, (c) Norm of approximation error furnished by expan-
sions in terms of orthogonal and bi-orthogonal polynomials determined by the
global Arnoldi method (blue dashed curve) and the global nonsymmetric Lanc-
zos method (orange dash-dotted curve), respectively, and by power series ex-
pansion as functions of the degree of the approximating polynomial for γr = 0.1,
(d) The curves are analogous to those in (c) for γr = 0.05. ‖A‖F = 48.86

significant. We require 0 < γr < 1/ρ(A); see the discussion following (1.2).
For the present network, ρ(A) = 9.15. As γr decreases, the coefficients in the
expansion (5.2) decrease faster in magnitude with increasing index j.

Figure 2 compares the coefficients in the expansion (5.2) with the coefficients
in the power series expansion

(I−γrA)−1 = I+γr‖A‖F
A

‖A‖F
+γ2r‖A‖2F

A2

‖A‖2F
+γ3r‖A‖3F

A3

‖A‖3F
+ · · · . (5.3)
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Arnoldi Nonsymmetric Lanczos

γr |c10|/max0≤j≤10 |cj | |c10|/max0≤j≤10 |cj |
0.10 3.4e-03 2.3e-04

0.09 6.9e-04 3.8e-05

0.08 1.3e-04 7.7e-06

0.07 2.6e-05 1.5e-06

0.06 4.6e-06 2.8e-07

0.05 6.7e-07 4.0e-08

0.04 7.0e-08 4.2e-09

0.03 4.1e-09 2.6e-10

0.02 8.9e-11 5.3e-12

0.01 1.4e-13 9.7e-14

Table 3: Celegans: The ratio of the orthogonal expansion coefficient |c10| and
the largest of the 11 first coefficients for several values of γe.

This expansion is analogous to the expansion (5.1). Clearly, the coefficients
γjr‖A‖

j
F converge to zero faster as j increases, the smaller γr > 0 is.

Table 2 shows for the global Arnoldi and global Lanczos methods, the ratio
of the magnitude of the coefficient c5 in the expansions (5.2) and max0≤j≤5 |cj |
as a function of γr. The ratio is seen to decrease quite rapidly when γr decreases.
Table 3 is analogous to Table 2 for the 10th coefficients. Based on the tables and
Figure 2, we may approximate (I−γrA)−1 with fairly few terms in the expansion
(5.2). The number of terms depends on the size of γr. We remark that since
the matrix A in this example is fairly small, the evaluation of (I − γrA)−1 can
easily be carried out with the MATLAB function inv.

5.3 Expanding exp(γeA)v for an air traffic network

Air500 is a directed network with 500 nodes and 24009 edges [22, 33]. This
example illustrates the convergence of the expansions on the left-hand side of
(2.16) and of

exp(γeA)v = v + γe‖A‖F
A

‖A‖F
v +

γ2e‖A‖2F
2!

A2

‖A‖2F
v + · · · .

We let v = [1, 1, . . . , 1]T , but other choices of v also are possible. Figure 3(a)
compares for γe = 1 the magnitude of the coefficients in the left-hand side expan-
sion (2.16) of the exponential function exp(γeA) in terms of orthogonal and bi-
orthogonal polynomials in A determined by the standard Arnoldi method (blue
dashed curve) and the standard nonsymmetric Lanczos method (orange dash-
dotted curve), respectively. The magnitude of the coefficients γke ‖A‖kF /(k!), for
k = 0, 1, 2, . . . , in the power series expansion also is shown (black continuous
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Figure 3: Air500: (a) The magnitude of the coefficients in expansions of
exp(γeA) in terms of orthogonal polynomials determined by the standard
Arnoldi method (blue dashed curve), the standard nonsymmetric Lanczos
method (orange dash-dotted curve), and in a power series expansion (black
continuous curve) for γe = 1, (b) The curves are analogous to those in (a)
for γe = 0.1, (c) Norms of the approximation errors in expansions in terms
of orthogonal polynomials determined by the standard Arnoldi method (blue
dashed curve) and the standard nonsymmetric Lanczos method (orange dash-
dotted curve), respectively, as well as by the power series expansion as functions
of the degree of the approximating polynomial for γe = 1, (d) The curves are
analogous to those in (c) for γe = 0.1. ‖A‖F = 154.95

curve). The coefficients in the expansions of orthogonal and bi-orthogonal poly-
nomials converge to zero much faster than the coefficients in the power series
expansion. Figure 3(b) is analogous to Figure 3(a) for γe = 0.1. The coeffi-
cients in Figure 3(b) converge to zero faster than the corresponding coefficients
in Figure 3(a).

Figure 3(c) displays for γe = 1 the relative error when approximating the
matrix function exp(γeA)v by orthogonal and bi-orthogonal polynomial expan-
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Arnoldi Nonsymmetric Lanczos

k |ck|/max0≤j≤k |cj | |ck|/max0≤j≤k |cj |
1 1.0 1.0

2 8.8e-01 8.7e-01

3 3.8e-01 3.7e-01

4 2.4e-01 2.3e-01

5 9.5e-02 9.3e-02

6 2.4e-02 2.3e-02

7 4.3e-03 4.0e-03

8 7.0e-04 6.4e-04

9 1.1e-04 9.7e-05

10 1.5e-05 1.2e-05

Table 4: Air500: The ratio of the orthogonal expansion coefficients |ck| and
max0≤j≤k |cj | for several values of k and γe = 1.

Arnoldi Nonsymmetric Lanczos

k |ck|/max0≤j≤k |cj | |ck|/max0≤j≤k |cj |
1 1.0 1.0

2 8.7e-01 8.6e-01

3 3.4e-01 3.3e-01

4 1.9e-01 1.8e-01

5 6.1e-02 6.0e-02

6 1.3e-02 1.3e-02

7 1.8e-03 1.7e-03

8 2.2e-04 2.0e-04

9 2.4e-05 2.1e-05

10 2.3e-06 1.9e-06

Table 5: Air500: The ratio of the orthogonal expansion coefficients |ck| and
max0≤j≤k |cj | for several values of k and γe = 0.1.

sions determined by the standard Arnoldi method (blue dashed curve) and the
standard nonsymmetric Lanczos method (orange dash-dotted curve), respec-
tively. The relative error of the power series expansion also is displayed (black
continuous curve). The errors in the orthogonal and bi-orthogonal polynomial
expansions are seen to converge to zero much faster than the error in the power
series expansion. Figure 3(d) is analogous to Figure 3 for γe = 0.1.

Table 4 displays the ratio of the kth to largest coefficients in magnitude for

22



k = 1, 2, . . . , 10 and γe = 1. The ratio is seen to decrease rapidly as k increases.
Table 5 is analogous for γe = 0.1. Since k represents the maximum length of
walks in the network, we can determine the length of the longest significant
walks, and based on that, we can decide how many terms are needed in our
orthogonal and bi-orthogonal polynomial expansions to approximate exp(γeAv)
sufficiently accurately for some γe > 0. Conversely, we may adjust γe to obtain
a network with significant walks of desired lengths.

5.4 Expanding (I − γrA)−1v (Airlines)
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Figure 4: Airlines: (a) The magnitude of the coefficients in expansions of
(I − γrA)−1 in terms of orthogonal and bi-orthogonal polynomials determined
by the global Arnoldi method (blue dashed curve) and the global nonsymmetric
Lanczos method (orange dash-dotted curve), respectively, as well as in a power
series expansion (black continuous curve) for γr = 0.03, (b) Norms of approxi-
mation errors in expansions in terms of orthogonal polynomials determined by
the global Arnoldi method (blue dashed curve) and the global nonsymmetric
Lanczos method (orange dash-dotted curve), respectively, and by the power se-
ries expansion as a function of the degree of the approximating polynomial for
γr = 0.03. ‖A‖F = 45.84

The network Airlines represents air traffic. It has 235 airports (vertices)
and 2101 directed flights (edges) between them; see [22, 33]. This example
illustrates the relationship between the parameter γr in the expansions of the
resolvent and the length of the longest significant walks. As γr gets larger, the
importance of longer walks increases. We require |γr| < 1/ρ(A) to make sure
that the resolvent exists. In this example, ρ(A) = 26.54. Therefore, we should
choose 0 < γr < 0.0377

Figure 4 compares the coefficients in the expansion in the right-hand side of
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Arnoldi Nonsymmetric Lanczos

k |ck|/max0≤j≤k |cj | |ck|/max0≤j≤k |cj |
1 1.0 1.0

2 1.8e-01 1.8e-01

3 1.9e-02 1.8e-02

4 8.4e-04 8.0e-04

5 4.5e-05 4.1e-05

6 2.2e-06 1.9e-06

7 1.1e-07 9.7e-08

8 5.3e-09 4.2e-09

9 2.2e-10 1.5e-10

10 8.2e-12 4.6e-12

Table 6: Airlines: The ratio of the orthogonal expansion coefficients |ck| and
max0≤j≤k |cj | for several values of k and γe = 0.03.

(2.16) with the coefficients in the power series expansion

(I − γrA)−1v = v + γr‖A‖F
A

‖A‖F
v + γ2r‖A‖2F

A2

‖A‖2F
v + γ3r‖A‖3F

A3

‖A‖3F
v + · · · .

Figure 4(a) shows the magnitude of the coefficients in the expansions (2.16) for
γr = 0.03. The coefficients are determined by the standard Arnoldi method
(blue dashed curve) and the standard nonsymmetric Lanczos method (orange
dash-dotted curve). We also display the coefficients γkr ‖A‖kF for k = 0, 1, 2, . . .
(black continuous curve). The coefficients in the expansions in terms of orthog-
onal and bi-orthogonal polynomials are seen to converge to zero faster than the
coefficients in the power series expansion. Figure 4(b) depicts the relative error
when approximating the resolvent by orthogonal and bi-orthogonal polynomials
determined by the standard Arnoldi method (blue dashed curve) and the stan-
dard nonsymmetric Lanczos method (orange dash-dotted curve), respectively.
Also the relative error when approximating the resolvent by a finite power series
is shown (black continuous curve).

Table 6 illustrates the decrease in magnitude of the coefficients in the expan-
sions considered for γr = 0.03. The magnitude is seen to decrease rapidly as k
increases. Figure 4 and the table suggest that we can approximate the resolvent
(I − γrA)−1 with fairly few terms in the right-hand side expansion (2.16). The
number of terms depends on the size of γr.
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6 Conclusion

This paper illustrates the fast convergence to zero of the magnitude of the
coefficients of expansions of matrix functions in terms of orthogonal and bi-
orthogonal polynomials; the convergence is much faster than the convergence
to zero of the coefficients of the power series that defines the function. The fast
convergence has important implications for the understanding of the structure
of the network. Fast decay indicates that a polynomial expansion of low degree
suffices to approximate the desired matrix function of the adjacency matrix,
suggesting that the important interactions in the network are only those of
fairly short length. This insight can be used in at least two ways.

First, if we know a priori the value of γe in (1.1) or γr in (1.2) (through previ-
ous theoretical or empirical work), the orthogonal and bi-orthogonal polynomial
expansions described in this article can be used to determine the δ-effective di-
ameter of the network, at the scale implied by γe, for a suitably small δ > 0,
and conclude that multi-step connections of length greater than the δ-effective
diameter are essentially irrelevant for the global structure of the network.

Second, and perhaps more interestingly, the effective diameter of the network
might be known through previous theoretical or empirical work (for example, a
modeler might put an upper limit on the number of connections in each itinerary
for the air traffic network example). In this case, one can use the orthogonal
and bi-orthogonal polynomial expansions in this paper to find the value of γe
and γr that yields that effective diameter. This provides an objective criterion
for the choices of γe and γr, an issue that is often overlooked in the discussion
of matrix function methods for network analysis.

In any case, the observation that most important interactions in many net-
works have fairly short length makes it possible to approximate functions of
the adjacency matrix, such as the exponential and the resolvent, accurately by
polynomials of fairly low degree.
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