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Network analysis with the aid of the path length matrix

Silvia Noschese · Lothar Reichel

Abstract Let a network be represented by a simple graph G with n vertices. A common approach to

investigate properties of a network is to use the adjacency matrix A = [aij ]
n
i,j=1 ∈ Rn×n associated

with the graph G, where aij > 0 if there is an edge pointing from vertex vi to vertex vj , and aij = 0

otherwise. Both A and its positive integer powers reveal important properties of the graph. This paper

proposes to study properties of a graph G by also using the path length matrix for the graph. The (ij)th

entry of the path length matrix is the length of the shortest path from vertex vi to vertex vj ; if there

is no path between these vertices, then the value of the entry is ∞. Powers of the path length matrix

are formed by using min-plus matrix multiplication and are important for exhibiting properties of G. We

show how several known measures of communication such as closeness centrality, harmonic centrality, and

eccentricity are related to the path length matrix, and we introduce new measures of communication,

such as the harmonic K-centrality and global K-efficiency, where only (short) paths made up of at most

K edges are taken into account. The sensitivity of the global K-efficiency to changes of the entries of the

adjacency matrix also is considered.
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1 Introduction

An important characteristic of a network is how well communication can flow in it, i.e., how easy or

difficult it is to reach one part of the network from another part by following edges. How well information

flows through the whole network can be measured by the diameter of the graph that represents the

network or by its global efficiency. Both these measures can be determined with the aid of the path length

matrix associated with the network. We will discuss these connections and introduce new measures of

communication based on the path length matrix.

Let us introduce some notation and definitions that will be used throughout this paper. A network

is represented by a graph. A weighted graph G = 〈V, E ,W〉 consists of a set of nodes or vertices V =

{v1, v2, . . . , vn}, a set of edges E = {e1, e2, . . . , em} that connect the vertices, and a set of weights W =
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{aij}ni,j=1; the weights aij are the entries of the adjacency matrix A = [aij ]
n
i,j=1 associated with the graph

G; see below. An edge is said to be directed if it starts at a vertex vi and ends at a vertex vj , and is denoted

by e(vi → vj). An edge between the vertices vi and vj is said to be undirected when the pair of vertices is

unordered and the weights aij and aji are positive and equal. An undirected egde between the vertices vi

and vj is denoted by e(vi ↔ vj). A graph with only undirected edges is said to be undirected ; otherwise

the graph is directed. A simple graph is a graph without multiple edges or self-loops. In particular, this

implies that the diagonal entries of the adjacency matrix for the graph vanish. This work considers simple

graphs.

The adjacency matrix A = [aij ]
n
i,j=1 ∈ Rn×n for a weighted graph G is determined by the weights aij of

the graph with aij > 0 if there is an edge e(vi → vj) in G. If there is no edge e(vi → vj) in G, then aij = 0.

For an unweighted graph, all positive entries aij of A equal one. A sequence of k edges (not necessarily

distinct) such that {e(v1 → v2), e(v2 → v3), . . . , e(vk → vk+1)} form a walk. If vk+1 = v1, then the walk

is said to be closed. A sequence of distinct edges such that {e(v1 → v2), e(v2 → v3), . . . , e(vk → vk+1)}
form a path. The length of a path is given by the sum of all weights of the edges in the path. (In the

unweighted case, the sum of all weights of the edges in a path of length k is k.) For further discussions

on networks and graphs; see [8,14].

To construct the path length matrix associated with the network, we will make use of min-plus matrix

multiplication, i.e., matrix multiplication in the tropical algebra [12]:

C = [cij ]
n
i,j=1 = A ? B : cij = min

h=1,2,...,n
{aih + bhj}, 1 ≤ i, j ≤ n,

where A,B,C ∈ Rn×n. We denote by A1,? = [a
(1,?)
ij ]ni,j=1 ∈ Rn×n the matrix obtained by setting to∞ the

vanishing off-diagonal entries of the adjacency matrix A associated with the graph G under consideration.

For k > 1, the kth min-plus power of A1,? is given by

Ak,? = [a
(k,?)
ij ]ni,j=1 ∈ Rn×n : a

(k,?)
ij = min

h=1,2,...,n
{a(k−1,?)ih + a

(1,?)
hj }.

Notice that the matrix Ak,? gives vertex distances using paths of at most k edges. In detail, the entry

a
(k,?)
ij , with i 6= j, represents the length of the shortest path from vi to vj made up of at most k edges.

The diagonal entries of Ak,? are zero by definition. One has a
(k,?)
ij = ∞ if every path from vi to vj is

made up of more than k edges, or if there is no path from vi to vj .

The diameter of a graph G is the maximal length dG of the shortest path between any distinct vertices

of the graph and provides a measure of how easy it is for the vertices of the graph to communicate. One

has

dG = max
1≤i,j≤n

a
(n−1,?)
ij . (1)

Indeed, the entry a
(n−1,?)
ij of the matrix An−1,? = [a

(n−1,?)
ij ]ni,j=1 yields the length of the shortest path

from vi to vj . We will refer to An−1,? as the path length matrix. Note that the triangle inequality holds

for the entries of a path length matrix. Specifically,

a
(n−1,?)
ij ≤ a(n−1,?)ih + a

(n−1,?)
hj , 1 ≤ i, j ≤ n.

Consider an unweighted connected graph G with associated adjacency matrix A ∈ Rn×n. Recall that

the diameter of G is the maximal number of edges in the shortest path between all pairs of distinct

vertices of the graph. Given the vertices vi and vj , there is an integer k̂, 1 ≤ k̂ < n, such that

a
(n−1,?)
ij = · · · = a

(k̂+1,?)
ij = a

(k̂,?)
ij = k̂

since the graph is connected, whereas for 1 ≤ h < k̂, one has a
(h,?)
ij =∞. Thus, information provided by

the path length matrix An−1,? includes information about all powers Ak,? for 1 ≤ k < n− 1.
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Let vi and vj be distinct vertices in a weighted graph. Then there is an integer k̂, 1 ≤ k̂ < n− 1, such

that

a
(n−1,?)
ij ≤ · · · ≤ a(k̂+1,?)

ij ≤ a(k̂,?)ij <∞

and, for 1 ≤ h < k̂, a
(h,?)
ij =∞. Thus, as in the unweighted case, information provided by the path length

matrix An−1,? refines information given by the powers Ak,? for 1 ≤ k < n− 1. However, the information

of the minimal number of steps required to reach vertex vj from vertex vi is lost.

As mentioned above, the path length matrix may be constructed by evaluating the min-plus powers of

A1,? n−2 times; here A1,? is obtained from the adjacency matrix A by setting all zero off-diagonal entries

to∞. The following MATLAB function, with the adjacency matrix A for a graph and the level = n−1 as

input arguments, returns the path length matrix associated with the adjacency matrix A. The function

implements the dynamic programming Bellmann-Ford algorithm for solving the well-known “all-pairs

shortest path problem”. The algorithm requires O(n2m) arithmetic floating point operations (flops),

where n is the number of vertices and m is the number of edges of the graph; if the graph is undirected,

then the cost of the algorithm is halved. Notice that the function can be applied to determine shortest

paths in a weighted graph having positive or negative weights.

1: function pathlength matrix(A, level)

2: n = size(A, 1);

3: for i = 1 : n do

4: for j = 1 : n do

5: if A(i, j) = 0 and i 6= j then

6: A(i, j) = inf;

7: end if

8: end for

9: end for

10: B = A;

11: C = inf(n);

12: for count = 1 : level− 1 do

13: for i = 1 : n do

14: for j = 1 : n do

15: if j 6= i then

16: for k = 1 : n do

17: if B(k, j) 6= inf and k 6= j then

18: C(i, j) = min(C(i, j), A(i, k) +B(k, j));

19: end if

20: end for

21: end if

22: end for

23: end for

24: A = C;

25: for i = 1 : n do

26: A(i, i) = 0;

27: end for

28: end for

29: return Path length matrix;

30: end function

In line 2 of the function Pathlength matrix, the function call size(A, 1) yields the order of the matrix

A ∈ Rn×n; in line 6, the matrix entry A(i, j) is set to ∞. Similarly, in line 11, C is defined as an n × n
matrix with all entries equal to ∞. If the graph is unweighted and connected, then the above MATLAB

function can be modified by introducing a break before the last end for when there is no entry ∞. The

diameter of the graph then is count+1.

For both weighted and unweighted graphs, also when the graph is not connected, the above MATLAB

function with argument level = K, where 1 < K < n, computes AK,?, i.e., the matrix of the distances
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between any distinct vertices of the graph using paths with at most K edges. We note that the triangle

inequality might not hold for the entries of AK,? and some entries of this matrix may have the value ∞.

We will see how the matrix An−1,? associated with a connected graph G sheds light on the communi-

cation within the network determined by the graph. In fact, as a measure of the ease of communication in

the graph, we like to use the average inverse geodesic length of G (i.e., its global efficiency, cf. Section 3)

instead of the maximum geodesic length of G (i.e., its diameter). To this end, we introduce the reciprocal

path length matrix An−1,?,−1 = [a
(n−1,?,−1)
ij ]ni,j=1 obtained by replacing the off-diagonal entries of the path

length matrix by their reciprocals, i.e.,

a
(n−1,?,−1)
ij = 1/a

(n−1,?)
ij , 1 ≤ i, j ≤ n,

where 1/∞ is identified with 0.

We are interested in determining the shortest paths that use at most K edges. We therefore also

consider the reciprocal K-path length matrix AK,?,−1 = [a
(K,?,−1)
ij ]ni,j=1, with a

(K,?,−1)
ij = 1/a

(K,?)
ij . Thus,

the entry a
(K,?,−1)
ij vanishes if a

(K,?)
ij = ∞. Note that the same would happen if K = n − 1, in case the

graph G that determines the adjacency matrix A is not connected. The matrix AK,?,−1 allows us to define

the global K-efficiency of G; cf. Section 3.

In order to enhance communication using paths with at most K edges, with 1 < K < n, i.e., to

increase the global K-efficiency of the graph associated with the adjacency matrix A, we select edge

weights by analyzing centrality properties of the vertices of the graph and, if computationally feasible,

the spectral properties of the reciprocal K-path length matrix AK,?,−1. In detail, if K � n and the

(sparse) non-negative reciprocal K-path length matrix AK,?,−1 is irreducible, then we apply the Perron-

Frobenius theory by following the approach in [4,7]. In our context, the choice of weights is dictated by

the analysis of the sensitivity to perturbations in A.

Applications of our approach include city planning and information transmission. As for disease prop-

agation, a recent research study of the Zhejiang City Planning Center (China) pointed out a strong

connection between the spread of the Covid-19 epidemic and the shape of the city. Cities with a radial

structure (such as Milan) have good internal connections due to the capillarity of the public transporta-

tion system - buses, trams, subways, and trains. This dynamic made citizens of such cities more vulnerable

to the arrival of the Covid-19 virus: the incidence of infections compared to the number of inhabitants

was generally larger in cities with a radial urban structure than in cities without this structure, due to

the good communication of the people in cities with radial urban structure.

This paper is organized as follows: Section 2 analyzes differences and similarities of powers and tropical

powers of the adjacency matrix for undirected and unweighted graphs. Section 3 reviews well-known

measures that can be easily computed by means of the path length matrix and introduces novel ones.

In Section 4 we present two algorithms that determine which edge-weight should be changed in order to

boost global efficiency. Changing the edge weights may entail widening streets or increasing the number

of trams on a route, decreasing travel times on a highway by increasing the travel speed, or decreasing

the waiting time for trams on a route. Finally, numerical tests are reported in Section 5 and concluding

remarks can be found in Section 6.

2 Powers versus tropical powers

Consider an undirected and unweighted simple graph G with adjacency matrix A ∈ Rn×n. Then the

entry a
(k)
ij of the matrix Ak = [a

(k)
ij ]ni,j=1 ∈ Rn×n counts the number of walks of length k between the

vertices vi and vj . A matrix function based on the powers Ak that is analytic at the origin, and vanishes

there, can be defined by a formal Maclaurin series

f(A) =

∞∑
k=1

ckA
k, (2)
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where we for the moment ignore the convergence properties of this series. Usually long walks are considered

less important than short walks, because information flows more easily through short walks than through

long ones. Therefore matrix functions applied in network analysis generally have the property that 0 ≤
ck+1 ≤ ck for all k ≥ 1. The most common matrix function used in network analysis is the matrix

exponential; see [5,6,8–10] for discussions and illustrations. We prefer to use the the modified matrix

exponential

exp0(A) := exp(A)− I,

where I denotes the identity matrix, because the first term in the Maclaurin series of exp(A) has no

natural interpretation in the context of network modeling. For the modified matrix exponential, we have

ck = 1/k!, and the series (2) converges for any adjacency matrix A.

The communicability between distinct vertices vi and vj , i 6= j, is defined by

[exp0(A)]ij =

∞∑
k=1

a
(k)
ij

k!
;

see [8] for the analogous definition based on exp(A). The communicability accounts for all possible routes

of communication between the vertices vi and vj in the network defined by the adjacency matrix A, and

assigns a larger weight to shorter walks than to longer ones. The larger the value of [exp0(A)]ij , the better

is the communicability between the vertices vi and vj .

Remark 1 Notice that even if there exists an integer k̂, 1 ≤ k̂ < n − 1, such that a
(k̂)
ij > 0, one may

have a
(k̂+1)
ij = 0. Information provided by An−1 does not include information provided by all Ah for

1 ≤ h < n− 1. This is one of the reasons for the interest in the matrix functions exp0(A) and exp(A).

It is straightforward to show the following result.

Proposition 1 Let k̂, 1 ≤ k̂ < n, be the smallest integer power such that a
(k̂)
ij = p > 0, that is to say,

a
(h)
ij = 0, ∀h < k̂, a

(k̂)
ij = p.

Then k̂ is the length of the shortest path that connects vi and vj, i.e.,

a
(h,?)
ij =∞, ∀h < k̂, a

(h,?)
ij = k̂, ∀h ≥ k̂,

and p is the number of shortest paths that connect vi and vj.

Example 1 In view of Proposition 1, the information provided by both the path length matrix and a

suitable power of the adjacency matrix is of interest. Consider the undirected and unweighted graphs G1
and G2 depicted in Figures 1-2. The adjacency matrices of these graphs are

A1 =


0 0 1 1 1

0 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

 , A2 =

0 0 1

0 0 1

1 1 0

 .
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v1 v3 v2

v4

v5

Fig. 1 Graph G1 in Example 1.

v1 v3 v2

Fig. 2 Graph G2 in Example 1.

For both graphs, the shortest path between the vertices v1 and v2 has length 2. However, in G1 there

are three shortest paths that connect v1 and v2, while there is only one in G2. Thus, there is surely better

communication between these vertices in G1 than in G2, even though this information is not provided by

the path length matrices for these graphs. The path length matrices are

A4,?
1 =


0 2 1 1 1

2 0 1 1 1

1 1 0 2 2

1 1 2 0 2

1 1 2 2 0

 , A2,?
2 =

0 2 1

2 0 1

1 1 0

 . (3)

On the other hand, the second powers of the above adjacency matrices are

A2
1 =


3 3 0 0 0

3 3 0 0 0

0 0 2 2 2

0 0 2 2 2

0 0 2 2 2

 , A2
2 =

1 1 0

1 1 0

0 0 2

 .

Remark 2 For weighted graphs, the interpretation of the entry a
(k)
ij of the matrix Ak has to be modified.

Indeed, a
(k)
ij yields the sum of all products of all weights of the edges in the walks of length k between

the vertices vi and vj . (In the unweighted case, any product of all weights of the edges in a walk is 1.)

Remark 1 holds true, while Proposition 1 does not.

3 Measures that depend on the path length matrix

Let for now the graph G be undirected.
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3.1 Closeness centrality

Let the graph G be connected. Then the reciprocal of the sum of all lengths of the shortest paths

starting from vertex vi,

ci =
1∑

j 6=i a
(n−1,?)
ij

= [An−1,?1i]
−1,

where 1i ∈ Rn denotes the vector with all zero entries except for the ith entry, which is one, is referred to

as the closeness centrality of vi in G; see, e.g., [2]. This measure gives a large value to vertices that have

small shortest path distances to the other vertices of the graph.

3.2 The radius and center of a network

The maximum length over all shortest paths starting from vertex vi in a weighted or unweighted

connected graph G, that is to say,

ei = max
j 6=i

a
(n−1,?)
ij ,

is commonly referred to as the eccentricity of the vertex vi. The diameter may be seen as the maximum

eccentricity among the vertices of the network. The radius rG of G is the minimum eccentricity of a vertex.

One has

rG = min
i

max
j 6=i

a
(n−1,?)
ij .

It is shown in [3] that

rG ≤ dG ≤ 2rG .

A vertex is said to be central if its eccentricity is equal to the radius of the graph. The center of the

graph is the set of all central vertices; see, e.g., [8].

3.3 Average shortest path length

The average shortest path length of a weighted or unweighted connected graph G computed over all

possible pairs of vertices in the network [2] is given by

aG =
1

n(n− 1)

∑
i,j 6=i

a
(n−1,?)
ij =

1

n(n− 1)
1TAn−1,?1,

where 1 ∈ Rn denotes the vector with all entries one. Let the graph G be unweighted and be formed

by a path of n vertices. Then the largest average shortest path length is aG = (n + 1)/3. If aG scales

logarithmically with n, then G displays the “small-world phenomenon”; see, e.g., [8].

3.4 Harmonic centrality and global efficiency

The efficiency of a path between any two vertices of a weighted or unweighted graph G is defined as

the inverse of the length of the path. The sum of the inverses of the length of all shortest paths starting

from vertex vi, i.e., the sum of the efficiencies of all shortest paths starting from vi,

hi =
∑
j 6=i

[a
(n−1,?)
ij ]−1, (4)

is referred to as the harmonic centrality of vi; see, e.g., [2]. The latter measure gives a large centrality to

vertices vi that have small shortest path distances to the other vertices of the graph. Harmonic centrality

will play a central role in our analysis. We define the h-center of a graph as the set of all vertices with

the largest harmonic centrality.
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G dG rG aG eG

G1 2 2 1.40 0.80

G2 2 1 1.33 0.83

Table 1 Example 2. Diameter, radius, average shortest path length, and global efficiency of the graphs G1 and G2 depicted

in Figures 1-2. Note that the average shortest path length of G2 is maximal; indeed, (n+ 1)/3 = 1.33.

If the graph is connected, then the average shortest path efficiency over all possible pairs of vertices,

also known as the average inverse geodesic length, is referred to as the global efficiency of the graph [2]:

eG =
1

n(n− 1)

∑
i,j 6=i

[a
(n−1,?)
ij ]−1. (5)

Finally, we remark that in the context of molecular chemistry, the sum of reciprocals of distances

between all pairs of vertices of an undirected and unweighted connected graph is known as the Harary

index and the reciprocal path length matrix An−1,?,−1 is referred to as the Harary matrix [17].

Remark 3 The measures (4) and (5) can be especially useful when the network has more than one

connected component, because infinite distances do not contribute to these “harmonic” averages.

Example 2 As an illustration of the above measures, consider again the graphs G1 and G2 of Example 1.

Table 1 reports the diameter, radius, average shortest path length, and global efficiency of these graphs.

Notice that the center of G1 is given by the set of all vertices and the center of G2 is made up of the

vertex v3, only. The h-center of G1 is formed by the vertices v1 and v2, and the h-center of G2 is given by

the vertex v3, only. Table 2 shows the eccentricity, harmonic centrality, and closeness centrality of all the

vertices of G1 and G2. All the measures in this example are computed by using the path length matrices

(3).

vi(G1) ei hi ci

1 2 3.50 0.20

2 2 3.50 0.20

3 2 3.00 0.17

4 2 3.00 0.17

5 2 3.00 0.17

vi(G2) ei hi ci

1 2 1.50 0.33

2 2 1.50 0.33

3 1 2.00 0.50

Table 2 Example 2. Eccentricity, harmonic centrality, and closeness centrality of the vertices of G1 (left table) and of G2
(right table).

3.5 Harmonic K-centrality and global K-efficiency

When one considers shortest paths that are made up of at most K edges, the matrix AK,?,−1 takes

the role of the reciprocal path length matrix An−1,?,−1. We are in a position to introduce the harmonic

K-centrality of the vertex vi. It is given by

hKi =
∑
j 6=i

[a
(K,?)
ij ]−1.

The global K-efficiency of a graph G is defined by

eKG =
1

n(n− 1)

∑
i,j 6=i

[a
(K,?)
ij ]−1.

The set of all vertices of a graph G with the largest harmonic K-centrality is referred to as the hK-center

of the graph.
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vi(G̃2) ei hi ci

1 1.50 1.67 0.40

2 1.50 2.67 0.50

3 1.00 3.00 0.67

Table 3 Example 3. Eccentricity, harmonic centrality, and closeness centrality of the vertices of G̃2.

3.6 Out-centrality versus in-centrality

Let the graph G be directed. Then the above centrality measures (closeness, eccentricity, harmonic

centrality, and harmonic K-centrality) determine the importance of a vertex vj by taking into account the

paths that start at vj . These measures therefore may be considered measures of out-centrality. One also

may be interested in measuring the importance of a vertex vj by considering the paths that end at it, that

is to say by measuring the in-centrality of vj . This can be achieved by replacing the path length matrix

An−1,? in the measures mentioned by its transpose. This allows us to introduce the measures closeness

in-centrality, in-eccentricity, harmonic in-centrality, and harmonic Kin-centrality. These measures are

defined as

cinj =
1∑

i 6=j a
(n−1,?)
ij

, einj = max
i 6=j

a
(n−1,?)
ij , hinj =

∑
i 6=j

[a
(n−1,?)
ij ]−1 , hKin

j =
∑
i 6=j

[a
(K,?)
ij ]−1.

We also define the in-radius of G,

rinG = min
j

max
i6=j

a
(n−1,?)
ij .

Finally, the vertex vj is said to be in-central if its in-eccentricity equals the in-radius of the graph. The

hKin-center of a graph G is the set of all vertices with the largest harmonic Kin-centrality. The notions

of hKin-center and hKout-center will be of interest in the sequel.

4 Enhancing network communication

The diameter of a weighted or unweighted graph provides a measure of how easy it is for the vertices

of the graph to communicate. When graphs are used as models for communication networks, the diameter

plays an important role in the performance analysis and cost optimization. A simple way to decrease the

diameter of a graph so that information can be transmitted more easily between vertices of the graph [4]

is to decrease the weight of an edge that belongs to all maximal shortest paths, if feasible.

Example 3 Consider the graph G2 in Example 1. The edge e(v2 ↔ v3) belongs to the maximal shortest

path and is a bridge, that is its removal would make the vertex v2 unreachable and the perturbed graph

G̃2 so-obtained disconnected. In detail, the edge e(v2 ↔ v3) belongs to the shortest path between the

vertices v1 and v2, which is the only shortest path of length dG . Thus, decreasing the weight of the edge

e(v2 ↔ v3) decreases both the average shortest path length and the diameter of the graph. Specifically,

if one decreases the weights a23 and a32 from 1 to 0.5, one obtains the matrices

Ã2 =

0 0 1

0 0 0.5

1 0.5 0

 , Ã2,?
2 =

 0 1.5 1

1.5 0 0.5

1 0.5 0

 .
The perturbed graph G̃2 has diameter dG̃2 = 1.5, radius rG̃2 = 1, average shortest path length aG̃2 = 1,

and global efficiency eG̃2 = 1.22. The eccentricity, harmonic centrality, and closeness centrality of the

vertices of the graph G̃2 are reported in Table 3.

4.1 Increasing the global K-efficiency

We propose two approaches to increase the global efficiency of a network.
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4.1.1 The function eKG1

Let for now the graph G be directed. The first approach is based on the observation that the most

important vertices with respect to the global K-efficiency live in the vertex subsets hKout-center and hKin -

center of the graph. These vertices may be interpreted as important intermediaries, that quickly collect

information from many vertices and quickly broadcast it to many others vertices. Indeed, strengthen-

ing an existing connection from a vertex of the hKin-center to a vertex of the hKout-center is likely to

strengthen their communicability by having new shorter paths with at most K steps that exploit these

connections. This is likely to increase the global K-efficiency more than strengthening an existing con-

nection between vertices with lower harmonic Kin- and Kout-centrality. Here we consider graphs whose

edge weights represent travel times or waiting times. Hence, strengthening is achieved by decreasing

appropriate weights.

We construct the perturbed adjacency matrix

Ã = A+ γh1,h21h11
T
h2
, with γh1,h2 = −ah1,h2/2, (6)

If the graph is undirected, the above approach simplifies, because the hKout - and hKin-centers coincide.

Hence, the idea is to strengthen the connection between vertices with the largest harmonic K-centrality.

The perturbed adjacency matrix Ã will be

Ã = A+ γh1,h2
(1h1

1T
h2

+ 1h2
1T
h1

). (7)

The MATLAB function eKG1 describes the necessary computations. The operator == in line 5 of the

function eKG1 stands for logical equal to, and the symbol ./ in line 6 denotes element-wise division. The

function call sum(M) for a matrix M ∈ Rn×n computes a row vector m ∈ Rn, whose jth component is

the sum of the entries of the jth column; the function call sum(M, 2) for a matrix M ∈ Rn×n computes

a column vector, whose ith entry is the sum of the elements of row i of M . The blip in line 8 denotes

transposition, and the operator .∗ in line 11 stands for vector-vector element-wise product.

1: function eKG1(A,flagsym,K);

2: n = size(A, 1);

3: P = pathlength matrix(A,K);

4: Pr = P ;

5: Pr(Pr == inf) = 0;

6: Pr(Pr > 0) = 1./Pr(Pr > 0);

7: Hin = sum(Pr);

8: H = sum(Pr, 2)′;

9: eKG = 1/(n(n− 1)) sum(H);

10: [∼, h] = max(Hin);

11: [∼, k] = max(H. ∗A(h, :));

12: A(h, k) = A(h, k)/2;

13: if flagsym then

14: A(k, h) = A(h, k);

15: end if

16: return A, eKG;

17: end function

4.1.2 The function eKG2

Assume for now that the graph G is directed. If computing the Perron root ρK and the unique

positive left and right eigenvectors of unit norm (the Perron vectors) of the reciprocal K-path length

matrix AK,?,−1 is not computationally feasible or if this matrix is not irreducible, then one can use the

function eKG1. However, if AK,?,−1 is irreducible and its left and right Perron vectors xK = (xK,i) and
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yK = (yK,i) can be computed, then these vectors determine the Wilkinson perturbation WK = yKxT
K ;

see [20, Section 2]. Following [7], to induce the maximal perturbation in ρK , one chooses the indices

(h1, h2) such that WK(h1, h2) is the largest entry of WK and A(h1, h2) > 0, i.e., the indices of the largest

entry of the Wilkinson perturbation “projected” onto the zero-structure of A; see, e.g. [15]. Thus,

(h1, h2) : xK,h2 yK,h1 = (yKxT
K)h1,h2 = max

i,j:A(i,j)>0
(WK)i,j .

As in function eKG1, one strengthens the edge e(vh1
→ vh2

) by halving its weight. The perturbed

adjacency matrix then is given by (6).

When the graph G is undirected, the left and right Perron vectors coincide and the perturbed adjacency

matrix is constructed as in (7). The outlined approach is implemented by the MATLAB function eKG2.

We recall that the function abs(v) of a vector v, used in the function eKG2, returns a vector, whose

components are the absolute value of the components of v. The expression sum(sum(Pr)) on line 7 sums

all entries of the matrix Pr. The operator .∗ on line 20 denotes the Hadamard product of two matrices;

the entries of the matrix A > 0 are one if the corresponding entry of A is positive; they are zero otherwise.

The function ind2sub determines the equivalent subscript values corresponding to a given single index in

an array.

1: function eKG2(A,flagsym,K)

2: n = size(A, 1);

3: P = pathlength matrix(A,K);

4: Pr = P ;

5: Pr(Pr == inf) = 0;

6: Pr(Pr > 0) = 1./Pr(Pr > 0);

7: eKG = 1/(n(n− 1)) sum(sum(Pr));

8: if not flagsym then

9: [X,D, Y ] = eig(Pr);

10: [ρ, ind] = max(abs(diag(D)));

11: x = X(:, ind);

12: y = Y (:, ind)

13: else

14: [X,D] = eig(Pr);

15: [ρ, ind] = max(abs(diag(D)));

16: x = X(:, ind);

17: y = x;

18: end if

19: W = yx′;

20: W = W. ∗ (A > 0);

21: [∼, lin] = max(W (:));

22: [h, k] = ind2sub([n, n], lin);

23: A(h, k) = A(h, k)/2;

24: if flagsym then

25: A(k, h) = A(h, k);

26: end if

27: return A, eKG

28: end function

We expect the global K-efficiency to increase the most when decreasing the edge-weight that makes

the Perron root ρK change the most. The perturbation of the Perron root generated by the function

eKG2 typically is larger than the perturbation determined by the function eKG1. The difference in these

perturbations is analogous to the difference between considering the most important vertex in a graph

the one with the largest degree and the one with maximal eigenvector centrality.

Remark 4 Both functions eKG1 and eKG2 maximize lower bounds for the global K-efficiency of the

network. Consider for the sake of clarity the undirected case. Let hK denote the vector of the harmonic
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K-centralities of the vertices of the graph. Its 1-norm is the sum in the numerator of the global K-

efficiency, and its ∞-norm is what function eKG1 is maximizing. Indeed, one has

n(n− 1) eKG = ‖hK‖1 ≥ ‖hK‖∞ = ‖AK,?,−1‖∞ ≥ ρK .

Remark 5 The Perron root is bounded from below and from above by the minimal and maximal entries

of hK , respectively. We have

min
i

∑
j 6=i

[a
(K,?)
ij ]−1 ≤ ρK ≤ max

i

∑
j 6=i

[a
(K,?)
ij ]−1 = ‖hK‖∞. (8)

Indeed, one has

1TAK,?,−1xK = 1T ρKxK = ρK‖xK‖1

and

1TAK,?,−1xK = xT
KA

K,?,−11 =

n∑
i=1

(xK,i

∑
j 6=i

[a
(K,?)
ij ]−1),

so that one obtains (8) by observing that

min
i

∑
j 6=i

[a
(K,?)
ij ]−1‖xK‖1 ≤ ρK‖xK‖1 ≤ max

i

∑
j 6=i

[a
(K,?)
ij ]−1‖xK‖1.

Example 4 We apply the functions eKG1 and eKG2 to the graphs of Example 1. For neither graph, there

is a unique “best choice” to report.

First consider the graph G1 in Example 1. Then A2,?
1 = A3,?

1 = A4,?
1 . We let K = 2 and obtain

A2,?,−1
1 =


0 0.5 1 1 1

0.5 0 1 1 1

1 1 0 0.5 0.5

1 1 0.5 0 0.5

1 1 0.5 0.5 0

 .

The vector h2 of harmonic 2-centralities is h2 = [3.5, 3.5, 3, 3, 3]T , while the Perron vector x2 is given by

x2 = [0.47, 0.47, 0.43, 0.43, 0.43]T . This tells us that the vertices v1 and v2 are the most important ones

in the sense of both harmonic centrality and eigenvector centrality. Indeed, these vertices are the only

ones that are connected by paths of minimal length with three vertices. Thus, they are well connected.

However, A1(1, 2) = 0.

Both functions eKG1 and eKG2 give (h1, h2) = (1, 3), and yield the matrix

Ã1 =


0 0 0.5 1 1

0 0 1 1 1

0.5 1 0 0 0

1 1 0 0 0

1 1 0 0 0

 ,

even though other choices of existing edges are equally valid. The global 2-efficiency e2G̃1
of Ã1 is 0.95;

compare with the global 2-efficiency e2G1 = 0.80 of A1. We remark that a perturbation of another existing

edge would have led to the same increase of the global 2-efficiency.

Consider the graph G2 in Example 1. One has

A2,?,−1
2 =

 0 0.5 1

0.5 0 1

1 1 0

 .
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The vector of harmonic 2-centralities is h2 = [1.5, 1.5, 2]T , while the Perron vector is given by x2 =

[0.54, 0.54, 0.64]T . Both functions eKG1 and eKG2 yield (h1, h2) = (3, 1), even though the choice (h1, h2) =

(3, 2) is equally valid and gives the matrix

Ã2 =

 0 0 0.5

0 0 1

0.5 1 0

 .
The global 2-efficiency of Ã2 is e2G̃2

= 1.22, while the global 2-efficiency of the matrix A2 is e2G2 = 0.83.

The diameter associated with the graph determined by Ã2 is only 1.5, while the diameter of the graph

associated with A2 is 2. The choice (h1, h2) = (3, 2), which was considered in Example 3, gives the same

results.

5 Numerical tests

The numerical tests reported in this section have been carried out using MATLAB R2022b on a

3.2 GHz Intel Core i7 6 core iMac. The Perron root and left and right Perron vectors for small to

moderately sized graphs can easily be evaluated by using the MATLAB function eig. For large-scale

graphs these quantities can be computed by the MATLAB function eigs or by the two-sided Arnoldi

algorithm, introduced by Ruhe [18] and improved by Zwaan and Hochstenbach [21].

Example 5 Consider the adjacency matrix for the network Air500 in [1]. This data set describes flight

connections for the top 500 airports worldwide based on total passenger volume. The flight connections

between airports are for the year from 1 July 2007 to 30 June 2008. The network is represented by a

directed unweighted connected graph with 500 vertices and 24009 directed edges. The vertices of the

network are the airports and the edges represent direct flight routes between two airports.

The path length matrix A5,? = A499,? yields the diameter and the radius of the graph 5 and 3,

respectively. The information provided by the vector of the harmonic centralities and the Perron vector

for the reciprocal path length matrix A5,?,−1 is the same as the one given by the vector of harmonic

K-centralities and the Perron vector for AK,?,−1 with K = 2; cf. Table 4. Therefore, the perturbation

that increases the global K-efficiency the most also will enhance the global efficiency the most. The

information provided by Table 4 suggests that the number of flights from the Frankfurt FRA Airport

(vertex v161) to the JFK Airport in New York (vertex v224) should be doubled in order to half the wait

time between these flights. Doubling the number of flights corresponds to halving the weight for the

corresponding edge.

K (h1, h2) eKG eK
G̃

5 (161, 224) 0.4839 0.4856

4 (161, 224) 0.4839 0.4855

3 (161, 224) 0.4791 0.4807

2 (161, 224) 0.3604 0.3606

Table 4 Example 5. Indices chosen by the functions eKG1 and eKG2 and the global K-efficiency of both the given graph,

G, and the perturbed graph, G̃, for K = 2, 3, 4, 5.

Example 6 This example considers an undirected unweighted connected graph G that represents the

German highway system network Autobahn. The graph is available at [1]. Its 1168 vertices are German

locations and its 1243 edges represent highway segments that connect them.

Let A be the adjacency matrix associated with G. The path length matrix A62,? = A1167,? shows

that the diameter and the radius of G are 62 and 34, respectively, whereas its global efficiency equals
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6.7175 · 10−2. One notices that there is only one shortest path of length 62, which connects the vertices

v116 and v1154. The diameter of the graph can be decreased by halving the weight of the edges a120,116

and a116,120 (since the graph is undirected), because this is the unique edge that connects the vertex v116

to the other vertices of the graph.

Let Â denote the perturbed adjacency matrix and Ĝ the corresponding graph. The global efficiency

of Ĝ is 6.7177 · 10−2 and the diameter is 61.5. We turn to the application of the functions eKG1 and

eKG2 to increasing the global efficiency. Table 5 reports the global K-efficiency (for several values of K)

of the graph G̃ associated with the adjacency matrix Ã obtained by halving both entries ah1,h2
and ah2,h2

of A, computed by the function eKG1. Table 6 shows the global K-efficiency (for several values of K)

of the graph G̃ associated with the adjacency matrix Ã, computed by the function eKG2. Also in this

example, the information provided by the vector of harmonic centralities and the Perron vector for the

reciprocal path length matrix A62,?,−1 is exactly the same information that is provided by the vector of

harmonic K-centralities and the Perron vector for AK,?,−1 with K ≥ 4. We note that the latter vectors

are less expensive to determine than the former. The information provided by both tables suggests that

one should double the width of the highway that connects the cities of Duisburg (vertex v219) and Krefeld

(vertex v565) to half the travel time. These cities are 10 miles apart. Doubling the width corresponds to

halving the weight associated with the corresponding edge.

K (h1, h2) eKG eK
G̃

62 (219, 565) 6.7175 · 10−2 6.7559 · 10−2

52 (219, 565) 6.7166 · 10−2 6.7550 · 10−2

42 (219, 565) 6.6965 · 10−2 6.7349 · 10−2

32 (219, 565) 6.5105 · 10−2 6.5485 · 10−2

22 (219, 565) 5.5674 · 10−2 5.6024 · 10−2

12 (219, 565) 2.8426 · 10−2 2.8621 · 10−2

5 (219, 565) 7.9991 · 10−3 8.0304 · 10−3

4 (219, 565) 6.1823 · 10−3 6.2019 · 10−3

3 (219, 217) 4.6017 · 10−3 4.6112 · 10−3

2 (219, 217) 3.2082 · 10−3 3.2124 · 10−3

Table 5 Example 6. Indices chosen by function eKG1 and global K-efficiency of both G and G̃, for K = 2, 3, 4, 5 and for

K = 12 : 10 : 62.

K (h1, h2) eKG eK
G̃

62 (565, 219) 6.7175 · 10−2 6.7559 · 10−2

52 (565, 219) 6.7166 · 10−2 6.7550 · 10−2

42 (565, 219) 6.6965 · 10−2 6.7349 · 10−2

32 (565, 219) 6.5105 · 10−2 6.5485 · 10−2

22 (565, 219) 5.5674 · 10−2 5.6024 · 10−2

12 (565, 219) 2.8426 · 10−2 2.8621 · 10−2

5 (565, 219) 7.9991 · 10−3 8.0304 · 10−3

4 (565, 219) 6.1823 · 10−3 6.2019 · 10−3

3 (267, 219) 4.6017 · 10−3 4.6111 · 10−3

2 (693, 543) 3.2082 · 10−3 3.2136 · 10−3

Table 6 Example 6. Indices chosen by function eKG2 and global K-efficiency of both G and G̃, for K = 2, 3, 4, 5 and for

K = 12 : 10 : 62.

6 Concluding remarks

The adjacency matrix of a graph is a well-known tool for studying properties of a network defined by

the graph. The path length matrix associated with a graph also sheds light on properties of the network,



Network analysis with the aid of the path length matrix 15

but so far has not received much attention. A review of measures that can be defined in terms of the path

length matrix is provided, and new such measures are introduced. The sensitivity of the transmission of

information to perturbations of the entries of the adjacency matrix is investigated.
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