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1 Introduction

In many areas of Science and Engineering, ranging from medical diagnostics
to natural sciences [17,29,34], we are faced with the solution of linear systems
of equations of the form

Ax+ η ≈ bδ, (1)

where A ∈ R
m×n is a large matrix whose singular values decrease to zero

with increasing index number without a significant gap. The matrix A then is
severely ill-conditioned and may be rank-deficient. In many applications, the
right-hand side bδ ∈ R

m represents available data that is contaminated by
error. The quantity η ∈ R

m collects measurement and discretization errors; it
is not explicitly known. The vector x ∈ R

n represents the signal that we would
like to determine. Problems of this kind often are referred to as linear discrete
ill-posed problems ; see, e.g., [19]. We remark that, in imaging applications, as
the ones considered here, the unknown x as well as the observed data bδ and
the additive noise η are vectorized forms of n1 × n2 and m1 ×m2 2D signals,
respectively, with n = n1n2 and m = m1m2.

Let b = bδ − η denote the unknown error-free vector associated with bδ.
We are interested in determining the solution x† of the least squares problem
minx∈Rn ‖Ax−b‖2 of minimal Euclidean norm. This solution can be expressed
as x† = A†b, where A† denotes the Moore-Penrose pseudo-inverse of A. Since
the vector b is not available, it is natural to try to determine the vector
x = A†bδ. However, due to the ill-conditioning of A and the error η in bδ, the
latter vector often is a meaningless approximation of the desired vector x†.

To compute a meaningful approximation of x† one may resort to regular-
ization methods. These methods replace the ill-posed problem (1) by a nearby
well-posed one that is less sensitive to the perturbation in bδ and whose so-
lution is an accurate approximation of x†. Among the various regularization
methods described in the literature, the ℓp-ℓq minimization method has at-
tracted considerable attention in recent years; see, e.g., [4, 12, 21, 23]. This
method computes a regularized solution of (1) by solving the minimization
problem

arg min
x∈Rn

1

p

∥∥Ax− bδ
∥∥p
p
+

µ

q
‖Lx‖qq , (2)

where 0 < p, q ≤ 2, µ > 0 is a regularization parameter, and the matrix
L ∈ R

s×n is chosen so that N (A) ∩N (L) = {0}; here N (M) denotes the null
space of the matrix M and

‖z‖s =




n∑

j=1

|zj |s



1/s

, z = [z1, z2, . . . , zn]
T ∈ R

n, s > 0.

Note that z → ‖z‖s is not a norm for 0 < s < 1, but for convenience, we
nevertheless will refer to this function as a norm also for these values of s.

The first term in (2) ensures that the reconstructed signal fits the mea-
sured data, while the second term enforces some a priori information on the
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reconstruction. The parameter µ balances the two terms and determines the
sensitivity of the solution of (2) to the noise in bδ. An ill-suited choice of µ
leads to a solution of (2) that is a poor approximation of x†. It therefore is of
vital importance to determining a suitable value of µ.

It is the purpose of this paper to review and compare a few popular pa-
rameter choice rules that already have been proposed for ℓp-ℓq minimization,
and to apply, for the first time, a whiteness-based criterion described by Lanza
et al. [27].

We briefly comment on the choices of p and q, for which several automatic
selection strategies have been developed; see, e.g., [28] and references therein.
However, since the focus of this work is the selection of the regularization
parameter µ, the parameters p and q are considered to be fixed a priori ; we
assume that they have been set to suitable values.

The choice of p should be informed by the statistical properties of the
noise. We consider two types of noise, namely noise that can be described by
the Generalized Error Distribution (GED) and impulse noise. In the first case
the entries of η are independent realization of a random variable with density
function

ξθ,ν σ(t) = cθ,σexp

(
−|t− ν|θ

θσθ

)
, (3)

where cθ,σ is a constant such that
∫
R
ξθ,ν σ(t)dt = 1, ν ∈ R, and θ, σ > 0.

For θ = 2, (3) reduces to the Gaussian density function, while for θ = 1 we
obtain the Laplace distribution. It is shown in [6] that, for this kind of noise,
the maximum a posteriori principle prescribes that p = θ.

The data bδ are said to be affected by impulse noise of level σ if

bδ
j =

{
rj with probability σ,
bj with probability 1− σ,

where rj is a uniformly distributed random variable in the dynamic range of
b. Numerical experience indicates that it is beneficial to let p < 1 when bδ is
contaminated by impulse noise; see, e.g., [6, 21, 23] for illustrations.

The choice of the parameter q is determined by a priori knowledge of the
desired solution that we would like to impose on the computed solution. In
particular, it is often known that Lx is sparse, i.e., Lx has few nonvanishing
entries. This is true, for instance, if L is a discretization of a differential op-
erator or a framelet/wavelet operator. In this case, one ideally would want to
let q = 0, where the ℓ0-norm of a vector x measures the number of nonzero
entries.

However, minimizing the ℓ0-norm is an NP-hard problem. Therefore, it is
prudent to approximate the ℓ0-norm by an ℓq-norm with 0 < q ≤ 1. For smaller
values of q > 0, the ℓq-norm approximates the ℓ0-norm better, however, the
minimizing algorithm requires more iterations the smaller q > 0 is, and may
suffer from numerical instability for “tiny” q > 0. Therefore, it is usually a
good practice to set q small enough, but not too small. We remark that the
ℓq-norm does not satisfy all properties of a norm for 0 < q < 1.
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This paper is organized as follows: Section 2 outlines two algorithms for
computing an approximate solution of (2). In Section 3 we describe the meth-
ods for determining µ that are compared in this paper. We report some nu-
merical results in Section 4 and draw conclusions in Section 5.

2 Majorization-minimization in generalized Krylov subspaces

In [21] the authors proposed an effective iterative method for the solution of
(2). At each iteration, a smoothed version of the ℓp-ℓq functional, denoted by
Jε, is majorized by a quadratic functional that is tangent to Jε at the cur-
rent iterate x(k). Then, the quadratic tangent majorant is minimized and the
minimizer x(k+1) is the new iterate; see below. Two approaches to determine
quadratic majorants are described in [21]. We will outline both.

Majorization step. Consider the functional

J (x) =
1

p

∥∥Ax− bδ
∥∥p
p
+

µ

q
‖Lx‖qq , (4)

that is minimized in (2). It is shown in [8] that this functional has a global
minimizer. When 0 < min{p, q} < 1, the functional (4) is neither convex nor
differentiable. To construct a quadratic majorant, the functional has to be
continuously differentiable. We, therefore, introduce a smoothed version

Jε(x) =
1

p

m∑

j=1

Φp,ε

(
(Ax− bδ)j

)
+

µ

q

s∑

j=1

Φq,ε ((Lx)j)

for some ε > 0, where

Φs,ε(t) =

{
|t|s for s > 1,

(
t2 + ε2

)s/2
for 0 < s ≤ 1.

Since Φs,ε is a differentiable function of t, Jε(x) is everywhere differentiable.
We will comment on the choice of ε in Section 4.

We would like to compute

x∗ = arg min
x∈Rn

Jε(x). (5)

When min{p, q} > 1, the functional Jε(x) is strictly convex and therefore
the minimization problem (5) has a unique minimum. On the other hand, if
min{p, q} < 1, which is the situation of interest to us, then the functional (5)
generally is not convex. The methods we describe here therefore determine a
stationary point.

Let x(k) be the currently available approximation of x∗ in (5). We first
describe the majorant referred to as “adaptive” in [21]. This majorant is such
that the quadratic approximation of each component of Jε(x) at x

(k) has an as
large as possible positive second order derivative. In general, each component
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is approximated by a different quadratic polynomial. We denote the adaptive
quadratic tangent majorant of Jε(x) at x

(k) by QA(x,x(k)). It is characterized
by

QA(x(k),x(k)) = Jε(x
(k)),

∇xQA(x(k),x(k)) = ∇xJε(x
(k)),

QA(x,x(k)) ≥ Jε(x) ∀x ∈ R
n,

x → QA(x,x(k)) is a quadratic functional,

(6)

where ∇x denotes the gradient with respect to x.
The functional QA(x,x(k)) can be constructed as follows: Evaluate the

residual vectors

v(k) = Ax(k) − bδ, u(k) = Lx(k)

and compute the weight vectors

ω
A,(k)
fid =

((
v(k)

)2
+ ε2

)p/2−1

, ωA,(k)
reg =

((
u(k)

)2
+ ε2

)q/2−1

,

where all the operations are meant element-wise. The weight vectors determine
the diagonal matrices

W
(k)
fid = diag

(
ω

A,(k)
fid

)
and W (k)

reg = diag
(
ωA,(k)

reg

)
.

Then

QA(x,x(k)) =
1

2

∥∥∥∥
(
W

(k)
fid

)1/2 (
Ax− bδ

)∥∥∥∥
2

2

+
µ

2

∥∥∥∥
(
W (k)

reg

)1/2
Lx

∥∥∥∥
2

2

+ c,

where c ∈ R is a constant that is independent of x; see [21] for details. The
new approximation of x∗ is given by the minimizer x(k+1) of QA(x,x(k)). We
discuss the computation of an approximation or this minimizer below.

The second type of majorant considered in [21] is referred to as “fixed.”
This majorant is constructed so that each component of the quadratic poly-
nomial majorants have the same leading coefficient. As shown below, the eval-
uation of the fixed majorant at x requires less computational work than the
computation of the adaptive majorant. However, in general, the method de-
fined by fixed majorants requires more iterations than the method defined by
adaptive majorants to reach numerical convergence.

For the fixed case the weight vectors are given by

ω
F,(k)
fid = v(k)

(
1−

(
(v(k))

2
+ε2

ε2

)p/2−1
)
,

ω
F,(k)
reg = u(k)

(
1−

(
(u(k))

2
+ε2

ε2

)q/2−1
)
,

(7)
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and determine the fixed quadratic tangent majorant

QF (x,x(k)) = 1
2

(∥∥Ax− bδ
∥∥2
2
− 2

〈
ω

F,(k)
fid , Ax

〉)

+ µ
2 ε

q−p
(
‖Lx‖22 − 2

〈
ω

F,(k)
reg , Lx

〉)
+ c,

of Jε at x(k). Here 〈·, ·〉 denotes the standard inner product and the constant
c ∈ R is independent of x. The functional QF (x,x(k)) satisfies the properties
(6) with QA(x,x(k)) replaced by QF (x,x(k)); see [21] for details.

Minimization step. We describe how to compute minimizers of QA and QF

when the matrix A ∈ R
m×n is large. To reduce the computational effort, we

compute an approximate solution in a subspace Vk of fairly small dimension

k̂ ≪ min{m,n}. Let the columns of the matrix Vk ∈ R
n×k̂ form an orthonor-

mal basis for Vk. We determine approximations of the minima of QA and QF

of the form

x(k+1) = Vky
(k+1), (8)

where y(k+1) ∈ R
k̂.

We first discuss the adaptive case. We would like to solve

min
x∈Vk

1

2

∥∥∥∥
(
W

(k)
fid

)1/2
(Ax− bδ)

∥∥∥∥
2

2

+
µ

2

∥∥∥∥
(
W (k)

reg

)1/2
Lx

∥∥∥∥
2

2

, (9)

and denote the solution by x(k+1). This minimization problem is equivalent to

min
y∈Rk̂

1

2

∥∥∥∥
(
W

(k)
fid

)1/2
(AVky − bδ)

∥∥∥∥
2

2

+
µ

2

∥∥∥∥
(
W (k)

reg

)1/2
LVky

∥∥∥∥
2

2

. (10)

Introduce the economic QR factorizations

(
W

(k)
fid

)1/2
AVk = QARA, QA ∈ R

m×k̂, RA ∈ R
k̂×k̂,

(
W

(k)
reg

)1/2
LVk = QLRL, QL ∈ R

s×k̂, RL ∈ R
k̂×k̂,

(11)

and compute

y(k+1) = arg min
y∈Rk̂

1

2

∥∥∥∥RAy −QT
A

(
W

(k)
fid

)1/2
bδ

∥∥∥∥
2

2

+
µ

2
‖RLy‖22 , (12)

where the superscript T denotes transposition. Assume that

N
((

W
(k)
fid

)1/2
AVk

)
∩ N

((
W (k)

reg

)1/2
LVk

)
= {0}.

This condition typically holds in applications of interest to us. The solution
y(k+1) of (12) then is unique, and the approximate minimizer of QA(x,x(k))
is given by (8).
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We now enlarge the solution subspace Vk by including the normalized resid-
ual of the normal equations associated with (9). The residual is given by

r(k+1) = ATW
(k)
fid

(
Ax(k+1) − bδ

)
+ µLTW (k)

regLx
(k+1),

and the columns of the matrix

Vk+1 =
[
Vk, r

(k+1)/‖r(k+1)‖2
]

form an orthonormal basis for the new solution subspace Vk+1. We would like
to point out that the vector r(k+1) is proportional to the gradient ofQA(x,x(k))
restricted to Vk at x = x(k+1). We refer to the solution subspace Vk+1 =
range(Vk+1) as a generalized Krylov subspace. Note that the computation of
r(k+1) requires only one matrix-vector product with AT and LT , since we can
exploit the QR factorizations (11) and the relation (8) to avoid computing
any other matrix-vector products with the matrices A and L. Moreover, we
store and update the “skinny” matrices AVk and LVk at each iteration to
reduce the computational cost. The initial space V1 is usually chosen to contain
a few selected vectors and to be of small dimension. A common choice is
V1 = span{ATbδ}, which implies that k̂ = k. We will use this choice in the
computed examples reported in Section 4.

Summarizing, each iteration of the adaptive approach requires one matrix-
vector product evaluation with each one of the matrices A, L, AT , and LT , as
well as the computation of economic QR factorizations of two tall and skinny
matrices, whose column numbers increase by one with each iteration. The
latter computations can be quite demanding if the matrices A and L are large
and many iterations are required. The algorithm requires the storage of the
three matrices Vk, AVk, and LVk. In addition, storage of some representations
of the matrices A and L is needed.

We turn to the fixed approach. The weight vectors are now given by (7),
and we would like to solve the minimization problem

min
x∈Vk

1

2

(∥∥Ax− bδ
∥∥2
2
− 2

〈
ω

F,(k)
fid , Ax

〉)
+

η

2

(
‖Lx‖22 − 2

〈
ωF,(k)

reg , Lx
〉)

(13)

for x(k+1), where η = µεq−p. This problem can be expressed as

min
y∈Rk̂

∥∥∥AVky − bδ − ω
F,(k)
fid

∥∥∥
2

2
+ η

∥∥∥LVky − ωF,(k)
reg

∥∥∥
2

2
. (14)

The solution y(k+1) of (14) yields the solution x(k+1) = Vky
(k+1) of (13).

Introduce the economic QR factorizations

AVk = QARA, QA ∈ R
m×k̂, RA ∈ R

k̂×k̂

LVk = QLRL, QL ∈ R
s×k̂, RL ∈ R

k̂×k̂.
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Substituting these factorizations into (14), we obtain

y(k+1) = arg min
y∈Rk̂

∥∥∥∥∥

[
RA√
ηRL

]
y −

[
QT

A

(
bδ + ω

F,(k)
fid

)

√
ηQT

Lω
F,(k)
reg

]∥∥∥∥∥

2

2

.

Once we have computed y(k+1) and x(k+1), we enlarge the solution subspace
by including the residual

r(k+1) = AT
(
Ax(k+1) −

(
bδ + ω

F,(k)
fid

))
+ ηLT

(
Lx(k+1) − ωF,(k)

reg

)

of the normal equations associated with (13). Thus, let vnew = r(k+1)/
∥∥r(k+1)

∥∥
2
.

Then the columns of the matrix Vk+1 = [Vk,vnew] form an orthonormal basis
for the solution subspace Vk+1. We remark that the residual is proportional
to the gradient of QF (x,x(k)) restricted to Vk at x = x(k+1).

Note that differently from (10), the least-squares problem (14) does not
have a diagonal scaling matrix. We therefore may compute the QR factoriza-
tions of AVk+1 and LVk+1 by updating the QR factorizations of AVk and LVk,
respectively. This reduces the computational work and leads to that each new
iteration with the fixed approach is cheaper than with the adaptive approach.
Updating formulas for the QR factorization can be found in [13,21].

Each iteration with the fixed approach requires one matrix-vector product
evaluation with each one of the matrices A, L, AT , and LT , similarly as for
the adaptive approach. Moreover the memory requirements of the fixed and
adaptive approaches are essentially the same.

The memory requirement of both the adaptive and fixed approaches out-
lined grows linearly with the number of iterations. It follows that when the
matrix A is large, the memory requirement may be substantial when many
iterations are required to satisfy the stopping criterion. This could be a dif-
ficulty on computers with fairly little fast memory. Moreover, the arithmetic
cost for computing QR factorizations in the adaptive approach and for updat-
ing QR factorizations in the fixed approach grows quadratically and linearly,
respectively, with the number of iterations.

3 Parameter choice rules

This section discusses several approaches to determine a suitable value of the
regularization parameter µ in (2). The strategies considered in the literature for
the choice of the regularization parameter when variational models, including
Tikhonov regularization, are employed can be divided into three main classes:

(i) Methods relying on the noise level, that either may be known or accu-
rately estimated. A very popular approach belonging to this class is the
Discrepancy Principle (DP).

(ii) Methods that rely on different statistical and non-deterministic proper-
ties of the noise, such as its whiteness.
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(iii) Heuristic methods, which are typically only based on the knowledge of the
data bδ, among which we mention Generalized Cross Validation (GCV)
and the L-curve criterion.

A general discussion on heuristic methods is provided by Kindermann [22].
Further references are provided below. In what follows, we are going to review
some of the approaches mentioned and their modifications when applied to the
solution of (2). Specifically, we are considering stationary and non-stationary
scenarios: in the former, the methods are employed a posteriori, i.e., the mini-
mization problem in (2) is solved for different µ-values, and the optimal value,
µ∗, is selected based on a chosen strategy. In the latter scenario, the chosen
strategy is applied during the iterations of the generalized Krylov method;
therefore the optimization problem (2) is solved only once.

We remark that the formulation of the stationary strategies discussed in
Section 3.1 does not depend on the selected algorithmic scheme. When consid-
ering the non-stationary rules presented in Section 3.2, several issues should
be considered, such as the existence of a fast parameter update and the con-
vergence of the overall iterative procedure. In this review, we focus on the
robustness of the considered approaches when embedded in the iterations of
the generalized Krylov method, and leave a rigorous analysis of the mentioned
issues to a future study.

3.1 Stationary rules

We describe the stationary rules considered in this paper.

3.1.1 Discrepancy principle

Let the noise that corrupts the data be Gaussian. Then we set p = 2. Let xµ

denote the solution of (2) with p = 2, i.e.,

xµ = argmin
x

1

2

∥∥Ax− bδ
∥∥2
2
+

µ

q
‖Lx‖qq .

Assume that a fairly accurate estimate δ > 0 of the norm of the noise is
available

‖η‖2 ≤ δ.

The discrepancy principle (DP) prescribes that the parameter µ be chosen
such that

µDP = sup
{
µ :

∥∥Axµ − bδ
∥∥
2
≤ τδ

}
,

where τ > 1 is a user-defined constant that is independent of δ.
A non-stationary strategy to estimate µDP is described in [9], and we will

discuss it in Section 3.2.1. Here we propose a stationary way to determine an
estimate of the DP parameter. Extensive numerical experience shows that the
computation of xµ is fairly stable with respect to the choice of µ and, therefore,
a rough estimate of µDP is usually enough to compute a satisfactory solution.
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The analysis of the DP requires that b ∈ R(A); see, e.g., [14]. Then µDP

is well defined, since

0 ∈
{
µ :

∥∥Axµ − bδ
∥∥
2
≤ τδ

}
.

Define the function r(µ) =
∥∥Axµ − bδ

∥∥
2
− τδ and assume that r(µ) is contin-

uous. This assumption is satisfied for q = 2, see, e.g., [14], but to the best of
our knowledge a proof for general q is not currently available. We may employ
a root-finder to determine µDP; see, e.g., [7, 31].

3.1.2 Residual whiteness principle

The whiteness property of the corrupting noise in linear inverse problems of the
form (1) has been extensively explored in the context of variational methods.
It is convenient to apply the whiteness property since it does not require
knowledge of the standard deviation of the noise. Moreover, as it will be made
clear in the following, it exploits more information of the data vector bδ than
the DP.

The whiteness property has been incorporated in variational models for im-
age denoising and deblurring problems in [3,24–26,32]. Despite the high-quality
results achieved in these works, these approaches suffer from the strong non-
convexity of the variational models that have to be solved. This makes mini-
mization a very hard task. Other approaches that exploit that the residual im-
age is expected to model white Gaussian noise are described in [18,33] and [1],
where the authors propose two statistically-motivated parameter choice proce-
dures based on the maximization of the residual whiteness by the normalized
cumulative periodogram and the normalized auto-correlation, respectively.
The approach introduced in [1] and applied as an a posteriori parameter choice
criterion for image deconvolution problems has been revisited in [27,30]. There
the authors propose to automatically update the regularization parameter dur-
ing the iterations of the algorithm used for the minimization of a wide class of
convex variational models for image restoration and super-resolution problems.

In what follows, we recall the main steps of the a posteriori criterion de-
scribed in [1, 27] and referred to as the Residual Whiteness Principle (RWP).
We remark that, although the RWP has been originally designed for Gaus-
sian noise corruption, it can been applied whenever the noise η in bδ has
independent and identically distributed entries.

Consider the noise realization η ∈ R
m in (1) represented in its original

m1 ×m2 form. Thus,

η = {ηi,j}(i,j)∈Ω , Ω := {0, . . . ,m1 − 1} × {0, . . . ,m2 − 1}. (15)

The sample auto-correlation of η is defined as

a(η) = {al,k(η)}(l,k)∈Θ ,
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with Θ := {−(m1 − 1), . . . ,m1 − 1} × {−(m2 − 1), . . . ,m2 − 1}. The scalar
components al,k(η) are given by

al,k(η) =
1

m

(
η ⋆ η

)
l,k

=
1

m

(
η ∗ η′

)
l,k

=
1

m

∑

(i,j)∈Ω

ηi,j ηi+l,j+k , (l, k) ∈ Θ , (16)

where the integer pairs (l, k) are referred to as lags, ⋆ and ∗ denote the
2D discrete correlation and convolution operators, respectively, and η′(i, j) =
η(−i,−j).

Clearly, for (16) to be defined for all lags (l, k) ∈ Θ, the noise realization
η must be padded with at least m1 − 1 samples in the vertical direction and
m2− 1 samples in the horizontal direction. We will assume periodic boundary
conditions for η, so that ⋆ and ∗ in (16) denote 2D circular correlation and
convolution, respectively. Then the auto-correlation has some symmetries that
allow us to only consider the lags

(l, k) ∈ Θ := {0, . . . ,m1 − 1} × {0, . . . ,m2 − 1}.
If the error η in (1) is the realization of a white noise process, then it

is well known that the sample auto-correlation a(η) satisfies the asymptotic
property:

lim
m→+∞

al,k(η) =

{
σ2 for (l, k) = (0, 0),

0 for (l, k) ∈ Θ0 := Θ \ {(0, 0)} .
(17)

We note that the discrepancy principle relies on exploiting only the lag
(0, 0) – among the m asymptotic properties of the noise auto-correlation given
in (17). Imposing whiteness of the residual image of the restoration by con-
straining the residual auto-correlation at non-zero lags to be small is a much
stronger requirement.

The whiteness principle can be made independent of the noise level by
considering the normalized sample auto-correlation of the noise realization η

in (15), namely

β(η) =
1

a0,0(η)
a(η) =

1

‖η‖2F

(
η ⋆ η

)
,

where ‖η‖F denotes the Frobenius norm of the matrix η. It follows easily from
(17) that

lim
m→+∞

βl,k(η) =

{
1 for (l, k) = (0, 0),

0 for (l, k) ∈ Θ0 .

We introduce the following σ-independent non-negative scalar measure of
whiteness W : Rm1×m2 → R

+ of the noise realization η:

W(η) := ‖β(η)‖2F =
‖η ⋆ η ‖2F

‖η‖4F
. (18)
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Clearly, the nearer the restored image xµ in (2) is to the target uncorrupted
image x†, the closer the associated m1 × m2 residual image obtained from
dµ = Axµ−bδ is to the white noise realization η in (1) and, hence, the whiter
is the residual image according to the scalar measure in (18). The RWP for
automatically selecting the regularization parameter µ in variational models
of the general form (2) therefore can be formulated as

µ∗ ∈ argmin
µ>0

W (µ), W (µ) := W (dµ) , dµ = Axµ − bδ ,

where the scalar cost function W is defined by

W (µ) = ‖ρ(dµ)‖22 =
‖dµ ⋆ dµ ‖22

‖dµ‖42
. (19)

We refer to W as the residual whiteness function.

3.1.3 Cross Validation

Two heuristic approaches to determine a suitable value of the regularization
parameter µ in (2) for any positive values of p and q based on cross validation
(CV) are described in [10]. This and the following subsections reviews these
methods. For details on CV, we refer to [35].

Let 1 ≤ d ≪ m and choose d distinct random integers i1, . . . , id in {1, . . . ,m}.
Remove rows i1, . . . , id from A and bδ. This gives the “reduced” matrix and

data vector Ã ∈ R
(m−d)×n and b̃δ ∈ R

m−d, respectively. Consider a set
{µ1, . . . , µl} of positive parameter values. For each µj , we solve

xj = argmin
x

1

p

∥∥∥Ãx− b̃δ
∥∥∥
p

p
+

µj

q
‖Lx‖qq .

Our aim is to determine the parameter µj that yields a solution that predicts
the values bδ

i1
, . . . ,bδ

id
well. Therefore, we compute for each j the residual error

rj =

√√√√
m∑

k=1

(Axj − bδ)
2
ik

and let
j∗ = argmin

j
rj .

Define µ∗ = µj∗ . To reduce variability, this process is repeated K times, pro-
ducing K (possibly different) values µ∗

1, . . . , µ
∗
K . The computed approximation

of x† is obtained as

x∗ = argmin
x

1

p

∥∥Ax− bδ
∥∥p
p
+

µ̂

q
‖Lx‖qq

with

µ̂ =
1

K

K∑

k=1

µ∗
j .
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3.1.4 Modified Cross Validation

Cross validation can be applied to predict entries of the computed solution
instead of entries of the data vector bδ. This is described in [10] and there
referred to as Modified Cross Validation (MCV). We outline this approach.
The idea is to determine a value of µ such that the computed solution is
stable with respect to loss of data. Let 1 ≤ d ≪ m and select two sets of d

distinct indices between 1 and m referred to as I1 = {i(1)1 , i
(1)
2 , . . . , i

(1)
d } and

I2 = {i(2)1 , i
(2)
2 , . . . , i

(2)
d }. Let Ã1 and b̃δ

1, and Ã2 and b̃δ
2, denote the matrices

and data vectors obtained by removing the rows with indexes I1 and I2 from
A and bδ, respectively. Let {µ1, . . . , µl} be a set of regularization parameters
and solve

x
(i)
j = argmin

x

1

p

∥∥∥Ãix− b̃δ
i

∥∥∥
p

p
+

µj

q
‖Lx‖qq , j = 1, 2, . . . , l, i = 1, 2.

We then compute the quantities

∆j =
∥∥∥x(1)

j − x
(2)
j

∥∥∥
2
, j = 1, 2, . . . , l,

evaluate

j∗ = argmin
j

∆j ,

and define µ∗ = µj∗ . To reduce variability, the computations are repeated K
times. This results in K values of µ∗, which we denote by µ∗

1, . . . , µ
∗
K . The

computed approximation of x† is given by

argmin
x

1

p

∥∥Ax− bδ
∥∥p
p
+

µ̂

q
‖Lx‖qq

with

µ̂ =
1

K

K∑

k=1

µ∗
j .

3.2 Non-stationary rules

We now describe a few non-stationary rules for determining the regularization
parameter.

3.2.1 Discrepancy principle

An iterative, nonstationary, approach to determine the regularization param-
eter µ for the minimization problem (2) when p = 2 and the error η in bδ is
white Gaussian is described in [9]. We review this method for the fixed ap-
proach described at the end of Section 2. Our discussion easily can be extended
to the adaptive case.
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Formula (14) for p = 2 simplifies to

y(k+1) = arg min
y∈Rk̂

∥∥AVky − bδ
∥∥2
2
+ ρ

∥∥∥LVky − ωF,(k)
reg

∥∥∥
2

2
.

Substituting QR factorizations of AVk and LVk into the above equation and
allowing ρ to change in each iteration, we obtain

y(k+1) = arg min
y∈Rk̂

∥∥RAy −QT
Ab

δ
∥∥2
2
+ ρ(k)

∥∥∥RLy −QT
Lω

F,(k)
reg

∥∥∥
2

2
. (20)

We determine the parameter ρ(k) in each iteration so that
∥∥∥AVky

(k+1) − bδ
∥∥∥
2
= τδ. (21)

The above is a nonlinear equation in ρ(k). After having computed the GSVD of
the matrix pair {RA, RL}, this equation can be solved efficiently using a zero-
finder; see [7, 31] for discussions. Here we just mention that the computation
of the GSVD, even though it has to be done in each iteration, is not computa-
tionally expensive since the sizes of the matrices RA an RL are typically fairly
small.

Since we compute the regularization parameter in each iteration, the method
is non-stationary. We summarize the iterations as follows:

1. Compute the weight ω
F,(k)
reg ;

2. Solve (21) for ρ(k);
3. Compute y(k+1) in (20);
4. Expand the solution subspace by computing the residual of the normal

equation and update the QR factorizations; see Section 2.

We carry out the iterations until two consecutive iterates are close enough,
i.e., until ∥∥∥y(k+1) − y(k)

∥∥∥
2
≤ γ

∥∥∥y(k)
∥∥∥
2

for some γ > 0.
We state the two main results of an analysis of this method provided in [9].

Theorem 1 ( [9]) Let A be of full column rank and let x(k) denote the iterates
generated by the algorithm described above. Then there exists a convergent
subsequence {x(kj)} whose limit x∗ satisfies

∥∥Ax∗ − bδ
∥∥
2
= τδ.

Theorem 2 ( [9]) Let A be of full column rank and let xδ denote the limit
(possibly of a subsequence) of the iterates generated by the method described
above with data vector bδ such that

∥∥b− bδ
∥∥
2
≤ δ.

Then
lim sup

δց0

∥∥xδ − x†
∥∥
2
= 0.
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3.2.2 Residual whiteness principle

The iterated version of the RWP outlined in Section 3.1.2 was proposed in
[27] for convex variational models, which can be solved by the Alternating
Direction Method of Multipliers (ADMM). The approach described in [27] for
the situation when the noise η is white Gaussian relies on the following steps:

1. Find an explicit expression of the residual whiteness function W defined
in (19) in terms of µ for a general ℓ2-ℓ2 variational model.

2. Exploit this expression of W as a function of µ to automatically update the
regularization parameter µ in the ℓ2-ℓ2 subproblem arising when employing
ADMM using a suitable variable splitting.

The iterative procedure proposed in [27] can not be directly applied to the
generalized Krylov method considered here. However, to explore the potential
of the RWP when applied during the iterations of a generalized Krylov scheme,
one can minimize the residual whiteness measure in (19) at each iteration in
a similar fashion as for the DP.

For simplicity let us consider the adaptive approach, and note that the
extension to the fixed case is straightforward. At each iteration, we solve

y(k+1) = arg min
y∈Rk̂

1

2

∥∥∥∥
(
W

(k)
fid

)1/2 (
AVky − bδ

)∥∥∥∥
2

2

+
µ(k)

2

∥∥∥∥
(
W (k)

reg

)1/2
LVky

∥∥∥∥
2

2

.

Denote by

yµ = arg min
y∈Rk̂

1

2

∥∥∥∥
(
W

(k)
fid

)1/2 (
AVky − bδ

)∥∥∥∥
2

2

+
µ

2

∥∥∥∥
(
W (k)

reg

)1/2
LVky

∥∥∥∥
2

2

.

The iterated RWP thus reduces to finding the µ-value by solving the min-
imization problem

µ(k) ∈ argmin
µ>0

W (µ) , W (µ) =
‖dµ ⋆ dµ‖22

‖dµ‖42
, (22)

with

dµ = AVkyµ − bδ .

The minimization problem (22) is solved by means of a Matlab optimization
routine that relies on the existence of a closed form for yµ. Alternatively, one
could compute yµ on a grid of different µ-values and compute the correspond-
ing whiteness measure function. Nonetheless, we believe that the design of
an efficient algorithmic procedure for tackling problem (22) is worth further
investigation.

We remark that the outlined strategy defines a new non-stationary method,
for which a convergence proof is not yet available.
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3.2.3 Generalized Cross Validation

This subsection summarizes the approach presented in [11]. Similarly as above,
we consider a non-stationary method for determining µ. This method can be
applied to any kind of noise.

Let us first assume that the noise is Gaussian and recall Generalized Cross
Validation (GCV) for Tikhonov regularization, i.e., when p = q = 2 in (2):

xµ = argmin
x

∥∥Ax− bδ
∥∥2
2
+ µ ‖Lx‖22 . (23)

Define the functional

G(µ) =

∥∥Axµ − bδ
∥∥2
2

trace (I −A(ATA+ µLTL)−1AT )
2 .

The regularization parameter determined by the GCV method is given by

µGCV = argmin
µ

G(µ).

When the GSVD of the matrix pair {A,L} is available, G(µ) can be evalu-
ated inexpensively. If the matrices A and L are large, then they can be reduced
to smaller matrices by a Krylov-type method and the GCV method can be ap-
plied to the reduced problem so obtained; see [11] for more details. This is how
we apply the GCV method in the methods of the present paper. Specifically,
in the adaptive solution method, we have to solve the minimization problem
(12), which is of the same form as (23). Therefore, one can use GCV to com-
pute an appropriate value of µ. Since the matrices RA and RL are fairly small,
it is possible to compute the GSVD quite cheaply. It follows that the param-
eter µGCV can be determined fairly inexpensively. Moreover, the projection
into a generalized Krylov subspace accentuates the convexity of G, making
minimization easier; see [15,16] discussions.

We iterate the above approach similarly as we iterated the discrepancy
principle, and compute the parameter µGCV in each iteration. This furnishes
a non-stationary algorithm. In detail, consider the kth iteration with regular-
ization parameter µ(k),

y(k+1) = arg min
y∈Rk̂

1

2

∥∥∥∥RAy −QT
A

(
W

(k)
fid

)1/2
bδ

∥∥∥∥
2

2

+
µ(k)

2
‖RLy‖22 .

Compute the GSVD of the matrix pair {RA, RL}. It gives the factorizations

RA = UΣAX
T , RL = V ΣLX

T ,

where ΣA and ΣL are diagonal matrices, the matrix X is nonsingular, and the
matrices U and V have orthonormal columns. We would like to compute the
minimizer of

G(µ) =

∥∥∥RAyµ − b̂
∥∥∥
2

2

trace
(
I −RA(RT

ARA + µRT
LRL)−1RT

A

)2 , (24)
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where b̂ = QT
A

(
W

(k)
fid

)1/2
bδ and yµ = (RT

ARA+µRT
LRL)

−1RT
Ab̂. Substituting

the GSVD of {RA, RL} into (24), we get

G(µ) =

∥∥∥(ΣA(Σ
T
AΣA + µΣT

LΣL)
−1ΣT

A − I)UT b̂
∥∥∥
2

2

trace
(
I −ΣA(ΣT

AΣA + µΣT
LΣL)−1ΣT

A

)2 .

Since ΣA and ΣL are diagonal matrices, the value of G(µ) can be computed
cheaply for any value of µ; see, e.g., [5] for a derivation. We let at each iteration

µ(k) = argmin
µ

G(µ).

Note that, even though it does not appear explicitly in the formulas, the
function G varies with k.

We now consider the case in which the noise is not Gaussian. Since, in the
continuous setting, the value of

∥∥Axµ − bδ
∥∥
2
is infinite when bδ is corrupted

by impulse noise, a smoothed version of GCV was proposed in [11]. Let bδ
smooth

denote a smoothed version of bδ obtained by convolving bδ with a Gaussian
kernel; see [11] for details. Consider the smoothed function

Gsmooth(µ) =

∥∥Axµ − bδ
smooth

∥∥2
2

trace (I −A(ATA+ µLTL)−1AT )
2

and the parameter µ is determined by minimizingGsmooth(µ). The non-stationary
ℓp-ℓq method in this case is obtained in a similar fashion as above. We there-
fore do not dwell on the details. In the following, we will refer to this method
as the GCV method regardless of the type of noise, and use G for Gaussian
noise and Gsmooth for non-Gaussian noise.

4 Numerical experiments

We compare the parameter choice rules described above when applied to some
image deblurring problems. These problems can be modeled by a Fredholm
integral equation of the first kind

g(s, t) =

∫

R2

k(s, u, t, v)f(u, v)dudv, (25)

where the function g represents the blurred image, k is a possibly smooth
integral kernel with compact support, and f is the sharp image that we would
like to recover. Since k has compact support and is smooth, the solution of
(25) is an ill-posed problem. When the blur is spatially invariant, the integral
equation (25) reduces to a convolution

g(s, t) =

∫

R2

k(s− u, t− v)f(u, v)dudv.
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The kernel k is often referred to as the Point Spread Function (PSF). After
discretization we obtain a linear system of equation of the form (1). Since we
only have access to a limited field of view (FOV), it is customary to make an
assumption about the behavior of f outside the FOV, i.e., we impose boundary
conditions to the problem; see [20] for more details on image deblurring.

We consider three different images and kinds of blur, and three different
types of noise. Specifically, we regard the cameraman image (242 × 242) and
blur it with a motion PSF, the boat image (222× 222), which we blur with a
PSF that simulates the effect of taking a picture while one’s hands are shaking,
and the clock image (226×226) with a Gaussian PSF; see Figure 1. We consider
Gaussian noise, Laplace noise, and a mixture of impulse and Gaussian noise.
In the first case, we scale the noise so that ‖η‖2 = 0.02 ‖b‖2, the second case
is obtained by setting θ = 1 and σ = 5 in (3), and in the third case we first
modify randomly 20% of the pixels of b and then add white Gaussian noise so
that ‖η‖2 = 0.01 ‖b‖2. Following [6], we set p = 2 when the data is corrupted
by Gaussian noise, p = 1 when the data is contaminated by Laplace noise, and
p = 0.8 in the mixed noise case. We let L be a discretization of the gradient
operator. Assume, for simplicity, that n = n2

1 and define the matrix

L1 =




−1 1
. . .

. . .

−1 1
1 −1


 ∈ R

n1×n1 .

Then

L =

[
L1 ⊗ In1

In1
⊗ L1

]
∈ R

2n×n,

where In1
denotes the n1 × n1 identity matrix and ⊗ is the Kronecker product.

Natural images typically have a sparse gradient. Therefore, we set q = 0.1.

We now briefly discuss the computational effort required by each parameter
choice rule. The cost of the stationary methods depends on how many values of
µ and, for CV and MCV, on how many training and testing sets are considered.
For DP and RWP we sample 15 values of µ, while for CV and MCV we
consider 10 values of µ and 10 different training sets. Therefore, DP and RWP
require the MM algorithm to be run 15 time, while CV and MCV run the MM
algorithm 101 and 201 times, respectively. The non-stationary methods require
a single run, however, the regularization parameter µk has to be tuned at each
iteration. Therefore, the cost of a single run of a non-stationary method is,
in general, more expensive that the cost of single run of a stationary method.
Nevertheless, since the computation of the parameter µk can be performed
cheaply, thanks to the projection into the generalized Krylov subspace, the
non-stationary methods are overall more computationally efficient than their
stationary counterparts.
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Table 1: RRE obtained with the different parameter choice rules in the com-
puted examples.

Noise

Parameter Selection Rule

Stationary Non-stationary

Optimal DP RWP CV MCV DP RWP GCV

C
a
m
er
a
m
a
n Gaussian 0.081373 0.083719 0.083260 0.089404 0.089404 0.093004 0.085529 0.121020

Laplace 0.107120 −− 0.108342 0.115830 0.667481 −− 0.108974 0.621421

Impulse+Gaussian 0.096814 −− −− 0.203390 0.145490 −− −− 0.396891

B
o
a
t

Gaussian 0.089190 0.094686 0.094041 0.089190 0.262010 0.091353 0.093658 0.328060

Laplace 0.118621 −− 0.119582 0.126140 0.979573 −− 0.120721 0.925001

Impulse+Gaussian 0.095678 −− −− 0.197083 0.983831 −− −− 0.232542

C
lo
ck

Gaussian 0.035170 0.040890 0.038767 0.035170 0.035588 0.049876 0.037852 0.686450

Laplace 0.040524 −− 0.044341 0.040524 0.043585 −− 0.043287 0.721820

Impulse+Gaussian 0.043197 −− −− 0.129171 0.722730 −− −− 0.196423

We compare the performances of the considered parameter choice rules in
term of accuracy using the Relative Restoration Error (RRE), defined as

RRE(x) =
‖x− xtrue‖2
‖xtrue‖2

.

Table 1 displays values of the RRE. We report the optimal RRE as well, i.e.,
the RRE obtained by hand-tuning µ to minimize the RRE. For each test image
and noise type, the RRE value that is closest to the optimal one is reported
in bold.

Since the DP only can be used for Gaussian noise, we cannot determine
the DP parameter for Laplace and mixed noise, while the RWP can be used
only for white noise. Table 1 shows the DP and RWP to usually provide very
accurate reconstructions, that is the achieved RRE is very close to the optimal
one. The limitation of the DP is that it requires a fairly accurate estimate of
‖η‖2 to be known. However, due to the Bakushinskii veto [2], the DP method
is the only one for which a complete theoretical analysis is possible.

The CV, MCV, and GCV methods can be applied to any type of noise;
however, being so-called heuristic methods, they may fail in certain situations.
Table 1 indicates that the MCV tends to select a µ-value that in some cases
leads to significantly large RREs. The same behavior can be observed for the
other CV-based strategies in the mixed noise case. Nonetheless, in general the
CV algorithm provides the most consistent results.

For the strategies that admit both stationary and non-stationary formu-
lations, the DP for Gaussian noise and the RWP for Gaussian and Laplace
noises, we observe that for the two scenarios the corresponding RRE are very
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close, suggesting that the computed restorations are very similar. This behav-
ior, which can be rigorously justified when the DP is used, provides empirical
evidences of the robustness of the RWP.

We report in Figure 2 the reconstructions obtained with the optimal choice
of the parameter µ in all considered cases. Note that, if the parameter µ is
chosen properly, then ℓp-ℓq minimization is able to determine very accurate
reconstructions.

5 Conclusions

This paper compares a few parameter choice rules for the ℓp-ℓq minimization
method. Their pros and cons are discussed and their performances are illus-
trated. We have shown that, if the regularization parameter is tuned carefully,
then the ℓp-ℓq model, solved by means of the generalized Krylov method, can
provide very accurate reconstructions. The RWP, which here has been applied
with the ℓp-ℓq model for the first time, can be seen to be particularly robust
and is able to determine restorations of high quality.
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Fig. 2: Recovered images with optimal choice of the parameter µ. Cameraman
test example: (a) 2% of white Gaussian noise, (d) Laplace noise with σ = 5,
(g) 20% of impulse noise and 1% of white Gaussian noise. Boat test example:
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