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Abstract: This paper considers the computation of approximations of matrix functionals of form
F(A) := vT f (A)v, where A is a large symmetric positive definite matrix, v is a vector, and f is a
Stieltjes function. The functional F(A) is approximated by a rational Gauss quadrature rule with
poles on the negative real axis (or part thereof) in the complex plane, and we focus on the allocation
of the poles. Specifically, we propose that the poles, when considered positive point charges, be
allocated to make the negative real axis (or part thereof) approximate an equipotential curve. This is
easily achieved with the aid of conformal mapping.
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1. Introduction

We are concerned with the development of numerical methods for the approximation
of expressions of the form

F(A) := vT f (A)v, (1)

where A ∈ RN×N is a large symmetric positive definite matrix, the vector v ∈ RN\{0} is of
unit Euclidean norm, f is a Stieltjes function, and the superscript T denotes transposition.
Thus, f can be represented as

f (z) =
∫ ∞

0

1
t + z

dµ(t), z ∈ C \ (−∞, 0], (2)

where µ is a nonnegative distribution function defined in the interval [0, ∞) such that f (z)
is defined; see, e.g., [1–4] for discussions and illustrations of Stieltjes functions. Examples
of Stieltjes functions include

f (z) = z−a =
sin(aπ)

π

∫ ∞

0

1
t + z

dµ(t), with dµ(t) = t−adt, a ∈ (0, 1),

f (z) =
log(z + 1)

z
=
∫ ∞

1

1
t + z

dµ(t), with dµ(t) = t−1dt.

When the matrix A is large, straightforward evaluation of (1) by first computing
f (A) may be prohibitively expensive; see Higham [5] for discussions and analyses of
many methods for the evaluation of matrix functions. We are, therefore, interested in
exploring the possibility of reducing A to a fairly small matrix Hm by a rational Krylov
subspace method and approximating F(A) by evaluating f (Hm). This results in a rational
approximant of F(A), whose poles are allocated by the user on the negative real axis.
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The rational approximant can be chosen to converge to zero as z → ∞, similarly as f (z).
This paper focuses on the choice of poles. In particular, we propose to allocate the poles
so that, when considered as positive point charges, they roughly make the negative real
axis or part thereof an equipotential curve. This can easily be achieved with the aid of
conformal mapping.

Similarly, as in [6], we express the rational approximant as a linear combination of
rational orthogonal functions with specified poles and use the fact that these functions
satisfy a recurrence relation with few terms only. We use a rational Gauss quadrature rule
to determine an approximation of an integral of this rational approximant. The novelty of
the present paper is that it addresses the allocation of the poles of the rational approximant.
This issue was ignored in [6]. A nice introduction to rational Gauss quadrature is provided
by Gautschi (Section 3.1.4 in [7]).

The choice of poles for rational approximants of Stieltjes functions has previously
been discussed by Güttel and Knizhnerman [8], who propose a greedy algorithm, and by
Massei and Robol [4], who express the approximation problem as a Zolotarev minimization
problem. We will allocate the poles with the aid of conformal mapping. This approach
is based on the observation that the approximation error is invariant under conformal
mapping. Specifically, we allocate the poles equidistantly on the unit circle and then
map the circle conformally to the negative real axis or a subset thereof. A benefit of this
approach is that it is very easy to implement; in particular, it does not require the solution
of a minimization problem.

This paper is organized as follows. Section 2 expresses (1) as an integral of the Stieltjes
function over the positive real axis with respect to a measure that is determined by both
the matrix A and vector v. This kind of transformation is described, e.g., by Golub and
Meurant (Chapter 7 in [9]). Properties of orthogonal rational functions with real poles
are reviewed in Section 3, and rational Gauss quadrature is discussed in Section 4. Our
approach to choosing the poles is described in Section 5. A few computed examples are
presented in Section 6, and concluding remarks can be found in Section 7.

2. Integration of Stieltjes Functions

We derive an integral that will be approximated by a rational Gauss quadrature rule.
A similar derivation can be found in [6]. Our derivation uses the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λN ], (3)

where the matrix U ∈ RN×N is orthogonal and the eigenvalues λi of A are ordered
according to 0 < λ1 ≤ · · · ≤ λN . We remark that the spectral factorization (3) is helpful for
deriving our approximation method. However, the application of the quadrature rules of
this paper does not require the computation of this factorization.

We introduce the vector [ν1, ν2, . . . , νN ] := vTU. Using the factorization (3), the expres-
sion (1) with f defined by (2) can be written as

vT f (A)v = vTU f (Λ)UTv =
∫ ∞

0
vTU(tI + Λ)−1UTv dµ(t)

=
∫ ∞

0

N

∑
i=1

(t + λi)
−1ν2

i dµ(t)

=
∫ ∞

0

∫ ∞

0
(t + y)−1dν(y)dµ(t)

=
∫ ∞

0
f (y)dν(y) =: I( f ), (4)

where the nonnegative measure dν(y) has support at the eigenvalues λi of A. The distri-
bution function ν(y) can be chosen to be a nondecreasing piece-wise constant function
with jumps of size ν2

i at the eigenvalues λi of A. We will approximate the integral (4) by a
rational Gauss quadrature rule.
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3. Recursion Relations for Orthogonal Rational Function

We first review results in [10] on recursion relations for certain orthogonal rational
functions. In this reference, functions with real poles and complex conjugate poles are
allowed. Here we focus on rational functions with real poles only. The number of terms in
the recursion relations depends on the number of distinct poles of the rational functions as
well as on the ordering of certain elementary rational basis functions to be defined below.

We introduce linear spaces of rational functions with finite distinct real poles αi of
multiplicity ki,

Qi,ki
= span

{
1

(y− αi)
j : j = 1, 2, . . . , ki

}
, i = 1, 2, . . . , `. (5)

In our application, the poles will be allocated on the negative real axis. Let

k =
`

∑
i=1

ki (6)

and define the (m + 1)-dimensional linear space

Sm+1 := Pm+1−k ⊕Q1,k1 ⊕ · · · ⊕Q`,k` . (7)

Here ki is chosen so that 0 ≤ k ≤ m − 1. The space (7) then contains linear func-
tions. Let

Ψm+1 = {ψ0, ψ1, . . . , ψm} (8)

denote an elementary basis for the space Sm+1, i.e., ψ0(y) = 1 and each basis function ψi(y),
for i = 1, 2, . . . , m, is one of the functions

yj,
1

(y− αi)
j , (9)

for some positive integers i and j. We use the notation ψs ≺ ψt to indicate that the basis
function ψs comes before ψt. We refer to the ordering of the basis functions (8) as natural if
ψ0(y) = 1 and the remaining functions ψj, j = 1, 2, . . . , m, satisfy:

1. yp ≺ yp+1 for all integers p > 0,
2. 1

(y−αi)
p ≺ 1

(y−αi)
p+1 for all integers p > 0 and every real pole αi.

In particular, if ψj = yp for some p > 1, then some preceding elementary basis
function ψi with i < j equals yp−1. An analogous statement also holds for negative powers
(y− αi)

−p for p > 1.
It is shown in [10] that a Stieltjes procedure for orthogonalizing elementary basis

functions with respect to some inner product only requires short recursion relations when
the basis functions are in natural order. A recursion relation is said to be short if the
number of terms in the relation can be bounded independently of the number of orthogonal
functions generated. A well-known special case is a situation when all elementary basis
functions are monomials, i.e., when ψj(y) = yj, j = 0, 1, 2, . . .. Then the Stieltjes procedure
yields a family of orthogonal polynomials φ0, φ1, φ2, . . . with φj of degree j for all j. The
polynomials φj satisfy a three-term recurrence relation.

Similarly, when orthogonalizing elementary basis functions in the natural order with
respect to a bilinear form [ f , g] = L( f g), where L is a linear functional on Sm+1, the
orthogonal rational basis functions φ0, φ1, φ2, . . . obtained satisfy short recurrence relations,
provided that L(φ2

j ) 6= 0 for all j. We will orthogonalize the elementary basis functions
with respect to the bilinear form

〈 f , g〉 = ( f (A)v)T(g(A)v). (10)
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This bilinear form is an inner product for all elementary basis functions of low enough order.
When the elementary basis functions are of the form (9), the number of terms required

in the recurrence relations depends on how often powers of the same function appear in
the sequence (8). We review two types of recursion relations from [10] that are required
below. First, consider the recursion relation

yφr(y) =
n2

∑
j=−n1

cr,r+jφr+j(y), r = 0, 1, . . . , (11)

where r− n1 is the largest integer smaller than r such that ψr−n1 is a monomial if there is
such a monomial (otherwise r− n1 = 0), and r + n2 is the smallest integer larger than r
such that ψr+n2 is a monomial. To introduce a real pole α we need the recursion relation

1
y− αi

φr(y) =
n4

∑
j=−n3

c(i)r,r+jφr+j(y), r = 0, 1, 2, . . . , (12)

where r− n3 is the largest integer smaller than r such that ψr−n3 is a rational function with
a pole at αi, provided that there is such a rational function (otherwise r − n3 = 0), and
r + n4 is the smallest integer larger than r such that ψr+n4 is a rational function with a pole
at αi.

We introduce the vector of orthonormal rational functions,

Φm(y) := [φ0(y), φ1(y), . . . , φm−1(y)]T .

Assume that ψm is a monomial and that m− d is the largest integer smaller than m
such that ψm−d is a monomial. Then the recursion formulas (12) can be written in the form

yΦm(y) = HmΦm(y) +
d

∑
j=1

hm−j,mφm(y)em+1−j, (13)

where ej = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rm denotes the jth axis vector. The matrix Hm in (13)
has the following block-diagonal structure: the matrix has m− k− 1 square blocks along
the diagonal, such that any two consecutive blocks overlap in one diagonal element. The
jth block of Hm is of dimension r × r, where r − 2 is the number of rational functions
between consecutive monomials yj−1 and yj for some j. In detail, the jth block of Hm is
the submatrix Hm(r1 : r2, r1 : r2) (using MATLAB notation) with the entries hij for r1 ≤
i, j ≤ r2, where ψr1(y) = yj−1 and ψr2(y) = yj. Further, r = r2 − r1 + 1. The nonvanishing
entries of Hm = [hij]

m−1
i,j=0 are recursion coefficients for the orthogonal rational functions

φi, i = 0, 1, . . . , m− 1. The recursion coefficients satisfy

hi,j = 〈yφi(y), φj(y)〉 = 〈yφj(y), φi(y)〉 = hj,i.

This shows that the matrix Hm depends only on the first m elementary basis functions
ψj, j = 0, 1, . . . , m− 1. In particular, Hm is independent of ψm. Throughout this paper, we
will assume that ψm is a monomial because then the zeros of φm are eigenvalues of Hm.

The structure of the matrix Hm is illustrated by the following example.

Example 1. Consider the elementary basis{
1,

1
y− α1

, y,
1

(y− α1)2 , y2, . . . ,
1

y− α`
, yk
}

. (14)
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This elementary basis, together with the function ψm(y) = yk+1, where k is defined by (6) and
m = 1 + 2k, satisfies the requirements of natural ordering. The basis (14) spans the space Sm+1.
The matrix Hm determined by this basis has k 3× 3 blocks along the diagonal,

Hm =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


.

Here we mark matrix entries that may be nonvanishing by ∗. If we place one more elementary
rational basis function between the two consecutive monomials yj−1 and yj in the elementary basis,
then the size of the jth block of Hm increases by one. Analogously, if we remove one elementary
rational basis function between two consecutive monomials, then the size of the corresponding block
decreases by one.

Assume that the functions φj, j = 0, 1, . . . , m, are orthonormal with respect to the
bilinear form (10). Then the vectors

{v0 = φ0(A)v, . . . , vj = φj(A)v}

form an orthonormal basis for the rational Krylov subspace

Kj+1(A, v) = span{ψ0(A)v, ψ1(A)v, . . . , ψj(A)v}, (15)

for j = 0, 1, . . . , m, with respect to the bilinear form (10). Indeed,

vT
j vi = (φj(A)v)T(φi(A)v) = 〈φj, φi〉.

We note that the vectors vj and the orthogonal rational functions φj satisfy the same
recursion relations. The vectors, therefore, can be determined by the rational Lanczos pro-
cess (Algorithm 1). This process is analogous to the Stieltjes-type procedure (Algorithm 3.1
in [10]) for computing an orthonormal basis for the space Sm+1. The rational Lanczos pro-
cess is based on the recursion relations (12). The norm ‖ · ‖ in Algorithm 1 is the Euclidean
vector norm.

The execution of Algorithm 1 requires the solution of linear systems of equations
with matrices of the form A− αi I, where the αi are suitable real scalars. We assume, in
this paper, that the matrix A has a structure that allows fairly efficient computation of
(A− αi I)−1vr−1 by a direct or an iterative method. This is, for instance, the case when
A is banded with a small bandwidth or when A is a symmetric positive Toeplitz matrix;
see, e.g., ref. [11] for fast solvers for the latter kind of systems of equations. We note
here that since A is a symmetric positive definite and αi < 0, the matrix A− αi I also is
a symmetric positive definite. Moreover, when A is obtained by discretizing an elliptic
partial differential equation, it may be possible to solve the required linear systems rapidly
by a multigrid method.
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Algorithm 1 The rational Lanczos process

1: Input: v ∈ RN\{0}, a sequence of matrix-valued elementary basis functions
ψ0, ψ1, . . . , ψm, and functions for evaluating matrix-vector products with A and for
solving linear systems of equations with matrices of the form A− α` I. Thus, we do
not explicitly form the elementary basis functions Aj and (A− α` I)−j. The sequence of
elementary basis functions implicitly defines the integers j and ` used below.

2: Output: Orthonormal basis {vr}m
r=0.

3: Initialization: v0 := v/‖v‖; r := 1;
4: while r ≤ m do
5: if ψr = Aj for some j ∈ N then
6: u := Avr−1;
7: for i = r̂ : r− 1 do
8: cr−1,i := vT

i u; u := u− cr−1,ivi;
9: end for

10: δr := ‖u‖; vr := u/δr;
11: r = r + 1
12: else if ψr = (A− α` I)−j for some j, ` ∈ N then
13: u := (A− α` I)−1vr−1;
14: for i = r̂ : r− 1 do
15: cr−1,i := vT

i u; u := u− cr−1,ivi;
16: end for
17: δr := ‖u‖; vr := u/δr;
18: r = r + 1
19: end if
20: end while

In Algorithm 1, we assume that the basis (8) satisfies conditions 1 and 2 of natural
ordering. The value of r̂ is such that ψr̂ is a basis function with the same poles as ψr, with at
least one of the poles of smaller order; if no such basis function ψr̂ exists, then r̂ = 0. When
carrying out m steps of Algorithm 1, we obtain an orthonormal basis {v0, v1, . . . , vm} for
the rational Krylov subspace Km+1(A, v).

The matrix
Vm = [v0, v1, . . . , vm−1] ∈ RN×m, with v0 = v,

and the symmetric matrix

Hm = [hi,j]
m−1
i,j=0 ∈ Rm×m, hi,j = I(yφiφj) = vT

i Avj,

satisfy the relation

AVm = Vm Hm +
d

∑
j=1

hm−j,mvmeT
m+1−j, (16)

where the vector vm ∈ RN is such that VT
m vm = 0. The subspace Ki, 1 ≤ i ≤ m, is spanned

by the first i columns of the matrix Vm. In particular, the rational Krylov subspaces are
nested, i.e., K1 ⊆ K2 ⊆ . . . . The orthogonal projection of A onto the rational Krylov
subspace (15) is given by

Hm = VT
m AVm.

We will assume that m is small enough so that the decomposition (16) with the stated
properties exists. This is the generic situation. Note that the determination of the matrix
Hm only requires that m− 1 steps of Algorithm 1 be carried out.
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4. Rational Gauss Quadrature

This section describes properties of rational Gauss quadrature rules for the approxi-
mation of functionals (1) when f is a Stieltjes function (2) and A is a symmetric positive
definite matrix. Then

F(A) = vT f (A)v =
∫ ∞

0
vT(tI + A)−1v dµ(t) =: I( f ). (17)

It is shown in [12] that
Ĝm( f ) := eT

1 f (Hm)e1 (18)

is a rational Gauss quadrature rule for the approximation of (17). The rational Gauss
quadrature rule is characterized by the property

Ĝm( f ) = I( f ), ∀ f ∈ S2m,

where
S2m := P2m−2k ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k`

denotes a 2m-dimensional linear subspace spanned by the chosen elementary rational functions.
In view of (4), the rational Gauss rule (18) can be expressed as

Ĝm( f ) =
∫ ∞

0
eT

1 (tI + Hm)
−1e1dµ(t), (19)

where we recall that the measure dµ defines function f ; the rational Gauss rule is with
respect to the measure dν in (4).

The orthonormal rational function φm has m distinct zeros {yi}m
i=1 that lie in the

convex hull of the support of the measure dν, and they are the eigenvalues of Hm in (13);
see (Theorem 2.5 in [12]). Recall that we assume ψm to be a monomial. Thus the rational
function φm in (13) can be written as

φm(y) = cm
∏m

i=1(y− yi)

w(y)
∈ Sm+1,

where

w(y) =
`

∏
i=1

(y− αi)
ki (20)

is a polynomial of degree k with k defined by (6). The scalars αi are the poles of the rational
approximant; see the beginning of Section 3. Moreover, cm is a scalar. A remainder term for
the rule (19) is derived in [6].

5. Allocation of Poles

The formulas in the previous section are valid independently of the location of the
distinct negative real poles αi and their multiplicities. However, their location and multi-
plicities affect the size of the quadrature error

Em( f ) := |F(A)− Ĝm( f )|. (21)

Example 5.3 reported in [6] indicates that when the rational approximant of the
Stieltjes function f has more distinct poles, the rational Gauss rule (19) may give a smaller
quadrature error (21) than when the rational approximant is of the same order with fewer
distinct poles. However, no discussion on the allocation of the poles is provided in [6].
Here we propose to allocate the poles so that, when considered positive point charges, they
approximately make the negative real axis an equipotential curve. The allocation of poles
that satisfy this property is very easy to determine with the aid of conformal mapping.
Computed examples in Section 6 illustrate the performance of this pole allocation technique.
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We remark that using many distinct poles may not be advantageous because each
distinct pole αi requires the solution of a linear system of equations of the form

(A− αi I)z = w

for some vector w; see the discussion in Section 3. When the systems of equations are
solved by factorization of the system matrix, each distinct pole requires the computation
of a factorization. It follows that the computing time required to achieve a quadrature
error (21) that is smaller than a specified tolerance may be smaller when using a rational
approximant with fewer distinct poles than when using a rational approximant of the same
order with more distinct poles. The optimal choice of the number of distinct poles depends
on the structure of A, i.e., on how demanding the computation of the factorization of the
matrix A− αi I is. This section considers the allocation of ` distinct poles; cf. (5).

We set the poles to be images under a conformal mapping of equidistant points on
the unit circle. These poles are easy to compute. The application of conformal mappings is
justified by the fact that the approximation errors of analytic functions by rational functions
are invariant under conformal mapping because conformal mappings map equipotential
curves onto equipotential curves.

Consider the problem of approximating an analytic function outside the unit circle
by a rational function with poles on the unit circle. If no particular properties of the
analytic function are known, then it is natural to allocate the poles equidistantly on the unit
circle; see, e.g., Walsh (Chapter 9 in [13]) for a discussion on rational approximation and
equipotential curves. Let the unit circle be in the z-plane. We can map the unit circle to the
interval [−1, 1] by the Joukowski map

w =
1
2
(z + 1/z);

see, e.g., Henrici (Chapter 5 in [14]). As z traverses the unit circle, w traverses the interval
[−1, 1] twice. We now map w to the semi-infinite interval [−∞, α] with α ≤ 0 by the
Moebius transformation

ζ =
w− 1
w + 1

+ α. (22)

Then ζ = −∞ when w = −1, and ζ = α for w = 1. When z traverses the top half of
the unit circle counterclockwise, starting at z = 1 and ending at z = −1, ζ traverses the
interval [−∞, α] starting at α. Similarly, when z traverses the bottom half of the unit circle
clockwise, ζ also traverses the interval [−∞, α] starting at α.

To allocate ` distinct poles on the interval [−∞, α], we first define the ` equidis-
tant points

zj = exp(πi(j− 1/2)/`), i =
√
−1, j = 1, 2, . . . , `,

on the upper unit semicircle. The Joukowski map yields the points

wj =
1
2
(zj + 1/zj), j = 1, 2, . . . , `,

on the interval [−1, 1]. Finally, using (22) gives the distinct poles

αj =
wj − 1
wj + 1

+ α, j = 1, 2, . . . , `, (23)

on [−∞, α]. We will use these poles in the computed examples of the following section.

6. Computed Examples

This section illustrates the application of rational Gauss rules to Stieltjes functions of a
symmetric positive definite matrix. We illustrate the pole allocation described in Section 5
and compare it with ad hoc pole allocation. The computations were carried out using
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MATLAB R2017b on a 64-bit MacBook Pro personal computer; arithmetic was performed
with about 15 significant decimal digits. We determine the quadrature error by explicitly
evaluating the functionals (1). This limits the size of the matrices A that we can consider.

Example 2. Consider the approximation of the functional

F(A) := vT A−1/2v, (24)

where A ∈ R1000×1000 is a symmetric positive definite Toeplitz matrix with first row
[1, 1/2, . . . , 1/1000], and v = [1/

√
1000, . . . , 1/

√
1000]T ∈ R1000. The smallest eigenvalue

of A is λ1 = 0.3863, and the largest one is λ1000 = 12.1259. The value of F(A) is about 0.2897.
We compute approximations of (24) by rational Gauss rules. The computations require the solution
of linear system of equations with symmetric positive definite Toeplitz matrices A− αi I, where
αi < 0 are poles. Ammar and Gragg [11] describe fast algorithms for the solution of systems of
equations with this kind of matrix.

We will use the rational Krylov subspace

Km(A, v) = span
{

v, Av, (A− α1 I)−1v, A2v, . . . , (A− α1 I)−k1 v, Ak1+1v,

(A− α2 I)−1v, Ak1+2v, . . . , (A− α2 I)−k2 v, Ak1+k2+1v, . . . ,

(A− α` I)−1v, . . . , (A− α` I)−k`v, Ak+1v
}

,

where k is determined by (6).
To calculate the exact value of (24), we evaluate vT A−1/2v by first computing the matrix

square root A1/2 with the MATLAB function sqrtm and then solving a linear system of equations
with the matrix A. The rational Gauss rule is evaluated as

eT
1 H−1/2

m e1,

where H−1/2
m e1 is determined by first computing the matrix H1/2

m using the MATLAB function
sqrtm and then solving a linear system of equations with the matrix Hm.

The first row of Table 1 displays the error in the approximation of (24) obtained by rational
Gauss rules with the somewhat arbitrarily chosen distinct poles

αi ∈ {−1,−2} (25)

of multiplicity two. On the second row, Table 1 shows the error in the approximation obtained with
rational Gauss rules with poles defined by (23) with α = 0 and ` = 2. Thus, the poles used are of
two multiplicity two. The distinct poles are α1 = −0.1716 and α2 = −5.8284. Table 1 shows the
latter poles to yield a smaller error than the poles (25).

We now turn to the use of four distinct poles. The first row of Table 2 displays the errors in
approximations determined by rational Gauss rules with the arbitrarily chosen distinct poles

αi ∈ {−1/2,−1,−3/2,−2} (26)

of multiplicity one. Row two of Table 2 displays the approximation of the error obtained with the
four poles αi ∈ {−0.0396,−0.4465,−2.2398,−25.2741} of multiplicity one, which is defined by
(23) with α = 0 and ` = 4. The latter poles can be seen to give a smaller approximation error than
the equidistant poles (26).
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Table 1. Example 2: Errors in rational Gauss rules for approximating (24) with A is a symmetric
positive definite Toeplitz matrix. For the first row, the distinct poles are αi ∈ {−1,−2}, each of multi-
plicity two. The second row shows the error when the poles are allocated with the aid of conformal
mapping using (23) with α = 0 and ` = 2. Then the distinct poles are αi ∈ {−0.1716,−5.8284}.

m Em( f )

10 3.42× 10−11

10 8.19× 10−13

Table 2. Example 2: Errors in rational Gauss rules for approximating (24) with A a symmetric positive
definite Toeplitz matrix. In the first row, the poles are αi ∈ {−1/2,−1,−3/2,−2} of multiplicity one.
The second row shows the error when the poles are allocated by using (23) with α = 0 and ` = 4. The
poles are αi ∈ {−0.0396,−0.4465,−2.2398,−25.2741} of multiplicity one.

m Em( f )

10 1.15× 10−11

10 2.70× 10−13

Example 3. We would like to calculate an approximation of the functional

F(A) := vT log(A + I)A−1v, (27)

where A ∈ R1000×1000 is a symmetric positive definite Toeplitz matrix with a first row
[3, 3/2, . . . , 3/1000]. The vector v ∈ R1000 is the same as in Example 1. The smallest eigen-
value of A is λ1 = 1.1589, and the largest one is λ1000 = 36.3776. The value of F(A) is
approximately 0.1009.

The first row of Table 3 shows the error for the rational Gauss quadrature rule with somewhat
arbitrarily chosen poles α1 = 0 of multiplicity two and α2 = −1/4 of multiplicity one. The second
row displays the error for the rational Gauss rule with poles α1 = −1.1716 of multiplicity two and
α2 = −6.8284 of multiplicity one. The latter poles are determined by (23) with α = −1 and ` = 2.
We observe that the approach of choosing poles with the aid of conformal mapping provides a more
accurate result.

The first and second rows of Table 4 display the errors in rational Gauss rules with somewhat
arbitrarily chosen poles αi ∈ {0,−1} of multiplicity two and with poles αi ∈ {−1.1716,−6.8284}
of multiplicity two, respectively. The latter poles are defined by (23) with α = −1 and ` = 2. It can
be seen that the error in the second row is smaller than the error in the first row.

Table 3. Example 3: Errors in rational Gauss rules for the approximating of (27) with A a symmetric
positive definite Toeplitz matrix. In the first row, the poles are α1 = 0 of multiplicity two and
α2 = −1/4 of multiplicity one. In the second row, the poles are allocated using (23) with α = −1 and
` = 2. The pole α1 = −1.1716 is of multiplicity two, and the pole α2 = −6.8284 is of multiplicity one.

m Em( f )

8 6.66× 10−11

8 4.09× 10−13

Table 4. Example 3: Errors in rational Gauss rules for approximating (27) with A a symmetric positive
definite Toeplitz matrix. In the first row, the poles are α1 = 0 and α2 = −1 of multiplicity two. In the
second row, the poles are allocated with (23) with α = −1 and ` = 2. This gives the distinct poles
α1 = −1.1716 and α2 = −6.8284 of multiplicity two.

m Em( f )

10 1.60× 10−13

10 1.29× 10−15
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Example 4. In this example, we determine an approximation of

F(A) := vT(π(I +
√

A)−1)v, (28)

where the matrix A ∈ R1000×1000 and vector v ∈ R1000 are the same as in Example 1. The value of
F(A) is approximately 0.7053. We note that

f (z) =
π

1 +
√

z
=
∫ ∞

0

1
t + z

dµ(t), dµ(t) =
√

t
1 + t

dt,

is a Stieltjes function.
Table 5 displays the errors in approximations determined by rational Gauss rules. In the

first row, we choose four somewhat arbitrary equidistant poles, αi ∈ {0,−2,−4,−6}, each of
multiplicity one. In the second row, the poles are αi ∈ {−0.0396,−0.4465,−2.2398,−25.2741} of
multiplicity one, and the poles in the third row are αi ∈ {−0.1716,−5.8284} of multiplicity two.
The poles in the second and third rows are allocated using (23). It can be seen that the errors in the
second and third rows are of a smaller magnitude than the error in the first row.

Table 5. Example 4: Errors in rational Gauss rules for computing approximations of (28) when A is a
symmetric positive definite Toeplitz matrix. In the first row, we choose four equidistant poles αi ∈
{0,−2,−4,−6} of multiplicity one. The second row displays the approximation error when the poles
are allocated by (23) with α = 0 and ` = 4; the poles are αi ∈ {−0.0396,−0.4465,−2.2398,−25.2741}
of multiplicity one. The poles on the third row are obtained by using (23) with α = 0 and ` = 2. Then
the distinct poles are αi ∈ {−0.1716,−5.8284} of multiplicity two.

m Em( f )

10 2.49× 10−12

10 1.01× 10−13

10 2.68× 10−13

7. Conclusions

This paper discusses the evaluation of expressions of the form (1), where A is a
symmetric positive definite matrix and f is a Stieltjes function. We approximate f by a
rational function with user-specified poles and integrate the rational function by a rational
Gauss quadrature rule. The rational function is expressed as a linear combination of
rational orthogonal functions, which can be generated with recursion formulas with few
terms. The paper focuses on the choice of poles of the rational function. They are allocated
on the negative real axis and chosen to be images of equidistant points on the upper
unit semicircle under a suitable conformal mapping. The computed examples show this
approach of allocating the poles to give a smaller quadrature error than poles chosen in an
ad hoc manner.
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