
Computation of pairs of related
Gauss-type quadrature rules

H. Alqahtania, C. F. Borgesb, D. Lj. Djukićc, R. M. Mutavdžić Djukićc, L.
Reicheld, M. M. Spalevićc

aDepartment of Mathematics, Faculty of Science and Arts, King Abdulaziz University,
Rabigh, Saudi Arabia

bDepartment of Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA
cDepartment of Mathematics, University of Belgrade, Faculty of Mechanical Engineering,

Kraljice Marije 16, 11120 Belgrade 35, Serbia
dDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Abstract

The evaluation of Gauss-type quadrature rules is an important topic in scien-
tific computing. To determine estimates or bounds for the quadrature error
of a Gauss rule often another related quadrature rule is evaluated, such as an
associated Gauss-Radau or Gauss-Lobatto rule, an anti-Gauss rule, an averaged
rule, an optimal averaged rule, or a Gauss-Kronrod rule when the latter exists.
We discuss how pairs of a Gauss rule and a related Gauss-type quadrature rule
can be computed efficiently by a divide-and-conquer method.

Keywords: divide-and-conquer method, Gauss rule, Gauss-Radau rule,
Gauss-Lobatto rule, averaged Gauss rule, optimal averaged Gauss rule
2010 MSC: 65D30, 65D32

1. Introduction

The need to evaluate Gauss-type quadrature rules arises in many appli-
cations in science and engineering. Therefore, the computation of such rules
occupies a central place in scientific computing. This paper is concerned with
the efficient evaluation of Gauss quadrature rules, as well as of some related
rules that help bound or estimate the error in the Gauss rules.

Many algorithms have been developed for the fast evaluation of Gauss rules
associated with a non-negative measure with support on (parts of) the real
axis. The classical algorithm for this purpose is due to Golub and Welsch [19];
it requires O(n2) arithmetic floating point operations (flops) to determine the

Email addresses: hfalqahtani@kau.edu.sa (H. Alqahtani), borges@nps.edu (C. F.
Borges), ddjukic@mas.bg.ac.rs (D. Lj. Djukić), rmutavdzic@mas.bg.ac.rs (R. M.
Mutavdžić Djukić), reichel@math.kent.edu (L. Reichel), mspalevic@mas.bg.ac.rs (M. M.
Spalević)

Preprint submitted to Elsevier January 17, 2024



nodes and weights of an n-node Gauss-rule. More recently, Bogaert [3] as well
as Hale and Townsend [21] described algorithms that only require O(n) flops
to compute the nodes and weights of n-node Gauss-Legendre and Gauss-Jacobi
quadrature rules. These methods are competitive when n is large, but are
restricted to the Legendre measure, dw(t) = dt for −1 < t < 1, see [3], or a
Jacobi measure dw(t) = (1 − t)α(1 + t)βdt for −1 < t < 1 and α, β > −1; see
[21]. These algorithms are faster than the algorithm by Glaser et al. [15], which
also requires only O(n) flops, but the latter algorithm can be applied to a larger
class of classical measures, including Legendre, Jacobi, Hermite, and Laguerre
measures.

It is the purpose of the present paper to revisit the problem of evaluating
Gauss-type quadrature rules. We are interested in being able to compute nodes
and weights for general non-negative non-classical measures with support on
(part of) the real axis. The reasons for our interest are two-fold: there is
presently no public-domain implementation of the Golub-Welsch algorithm that
requires O(n2) flops to a determine the nodes and weights of an n-node Gauss
rule. For instance, the implementation provided by Gautschi [13] demands
O(n3) flops. Moreover, it is often important to be able to determine an estimate
for the quadrature error of an n-node Gauss rule in order to assess whether
the chosen number of nodes is sufficiently large to yield an approximation of
the desired integral of required accuracy. A too small value of n gives a too
large quadrature error, while a too large value results in an unnecessarily large
computational burden, in particular if the integrand is expensive to evaluate.

Several approaches have been proposed to estimate the quadrature error of
an n-node Gauss rule. The classical approach is to evaluate a (2n + 1)-node
Gauss-Kronrod rule that is associated with the n-node Gauss rule. However,
Gauss-Kronrod rules are not guaranteed to have all nodes in the convex hull
of the support of the measure that defines the Gauss rule; in particular, some
Gauss-Kronrod nodes might have pairs of complex conjugate nodes away from
the real axis; see Notaris [24] for a nice survey of Gauss-Kronrod rules as well
as computed examples in [1]. When the Gauss-Kronrod rule has nodes in the
complex plane, the integrand has to be defined in a sufficiently large domain
in the complex plane that contains the support of the measure in order for the
Gauss-Kronrod rule to be applicable. This limits the applicability of these rules.

This shortcoming of Gauss-Kronrod rules has lead to the development of
several alternative approaches to estimate the quadrature error of Gauss rules.
These approaches include the evaluations pairs of

(i) an n-node Gauss and an associated (n+1)-node Gauss-Radau or an associ-
ated (n+2)-node Gauss-Lobatto rule. Pairs of Gauss and Gauss-Radau or
pairs of Gauss and Gauss-Lobatto quadrature rules give upper and lower
bounds for the integral under suitable conditions on the integrand and an
appropriate choice of the user-specified Radau node. This follows from the
remainder terms for Gauss and Gauss-Radau quadrature; see, e.g., Golub
and Meurant [17] as well as Gautschi [14]. Note that Gauss-Radau and
Gauss-Lobatto rules associated with an n-node Gauss rule are guaranteed

2



to exist and to have real nodes.

(ii) an n-node Gauss and an associated (n+ 1)-node anti-Gauss rule. Pairs of
these rules yield upper and lower bounds for the integral if the integrand
is sufficiently smooth; see [8], as well as [2] a for related method. Anti-
Gauss rules were introduced by Laurie [22]. They are modifications of
Gauss rules. In particular, the nodes of the n-node Gauss rule interlace
the nodes of the associated (n+1)-node anti-Gauss rule. Anti-Gauss rules
always exist and have real nodes, however, for some measures that define
the Gauss rule, the associated anti-Gauss rule may have a node or two
outside the convex hull of the support of the measure; see [22] for details.

(iii) Gauss and averaged Gauss rules. The difference between an n-node Gauss
rule and the associated (2n + 1)-node averaged Gauss rule provides an
estimate for the quadrature error. The latter rule is the average of the
n-node Gauss rule and the associated (n+1)-node anti-Gauss rule. These
averaged rules were introduced by Laurie [22]. Thus, the computation
of an n-node Gauss rule and the associated averaged rule demands the
evaluation of the Gauss rule and the associated (n + 1)-node anti-Gauss
rule. The averaged rule might have a node or two outside the convex hull
of the support of the measure.

(iv) Gauss and optimal averaged Gauss rules. The difference between an n-
node Gauss rule and the associated (2n+1)-node optimal averaged Gauss
rule provides an estimate for the quadrature error. The latter rules were in-
troduced by Spalević [27] and have for smooth enough integrands a higher
degree of precision than the averaged Gauss rule defined by Laurie [22].
Optimal averaged Gauss rules associated with an n-node Gauss rule can be
expressed as a weighted sum of the n-node Gauss rule and a related (n+1)-
node Gauss-type quadrature rule; see [25]. The optimal averaged Gauss
rules always exist and have real nodes, but similarly as for the averaged
Gauss rules, they may for certain measures have one or two nodes outside
the convex hull of the support of the measure that defines the Gauss rule.
Analyses of the location of the nodes for optimal averaged rules as well
as for averaged rules for a variety of classical and other measures can be
found in [10, 11, 12] and references therein.

In all the approaches (i)-(iv), both the n-node Gauss rule and an associated
(n+1)-node Gauss-type quadrature rule have to be evaluated. This requires two
applications of the Golub-Welsch algorithm. We propose to use a divide-and-
conquer method to evaluate the n-node Gauss rule and one of the associated
Gauss-type quadrature rules mentioned above. The flop count for the evalua-
tion of each one of these quadrature rules by the divide-and-conquer method
described is O(n2) flops, and the application of this method is faster than the
use of the Golub-Welsch algorithm; see Section 5 for timings. Parallel implemen-
tation of divide-and-conquer methods is quite straightforward and this makes
it possible to use these methods to evaluate quadrature rules with very many
nodes.

3



We will not discuss the evaluation of pairs of an n-node Gauss rule and the
associated (2n+ 1)-node Gauss-Kronrod rule because, as mentioned above, the
latter rules are not guaranteed to have real nodes. Moreover, Gauss-Kronrod
rules are more complicated to compute than the rules listed above; see [1, 7, 23]
for algorithms for evaluating Gauss-Kronrod rules.

This paper is organized as follows. Section 2 describes Gauss quadrature
rules and how a divide-and-conquer method can be applied to their evaluation.
In Section 3, we describe Gauss-Radau, Gauss-Lobatto, anti-Gauss, as well as
averaged and optimal averaged Gauss rules, and discuss their efficient computa-
tion by a divide-and-conquer method. Section 4 is concerned with the deflation
process of the divide-and-conquer method. Computed examples are presented
in Section 5 and concluding remarks can be found in Section 6.

2. A divide-and-conquer method applied to the evaluation of Gauss
quadrature rules

Let dw be a non-negative measure on (part of) the real axis with infinitely
many points of support and such that all moments µk =

∫
tkdw(t), k = 0, 1, . . . ,

are well defined. For notational simplicity, we assume that µ0 = 1. We are
interested in the approximation of integrals of the form

I(f) =

∫
f(t)dw(t) (1)

by an n-node Gauss quadrature rule

Gn(f) =

n∑
j=1

f(tj)wj . (2)

Gauss rules are related to monic orthogonal polynomials p0, p1, . . . determined
by the inner product

〈f, g〉 =

∫
f(t)g(t)dw(t).

Hence, the polynomials pj of degree j have leading coefficient one and satisfy

〈pi, pj〉
{
> 0, i = j,
= 0, i 6= j.

We have p0(x) ≡ 1, and it is convenient to define p−1(x) ≡ 0. It is well known
that the polynomials pk satisfy a three-term recurrence relation of the form

pj+1(t) = (t− αj)pj(t)− βjpj−1(t), j = 0, 1, . . . ,

where the coefficients αj and βj are given by

αj =
〈tpj , pj〉
〈pj , pj〉

, j = 0, 1, . . . ,

βj =
〈pj , pj〉

〈pj−1, pj−1〉
, j = 1, 2, . . . ,

4



and β0 = 1. All βj are known to be positive. The polynomial pn has n dis-
tinct real zeros, all of which are in the convex hull of the support of dw. The
nodes t1, t2, . . . , tn of the Gauss rule (2) are the zeros of pn and the weights
w1, w2, . . . , wn are positive; see, e.g., [14, 28] for proofs.

Among all interpolatory quadrature rules with n nodes for the approximation
of the integral (1), the Gauss rule (2) has maximal degree of precision, 2n− 1,
i.e.,

Gn(p) = I(p), ∀p ∈ P2n−1,

where P2n−1 denotes the set of all polynomials of degree at most 2n − 1; see
[14, 28] for proofs. This makes Gauss quadrature rules well suited for the ap-
proximation of many integrals of the form (1).

The Gauss rule (2) can be associated with the symmetric tridiagonal matrix

Tn =



α0

√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1

0
√
βn−1 αn−1


∈ Rn×n, (3)

which is unreduced, i.e., all subdiagonal entries are positive. Therefore, its
eigenvalues are real and distinct; they are the nodes t1, t2, . . . , tn of the Gauss
rule. Moreover, the weights w1, w2, . . . , wn of the Gauss rule are the square of
the first component of normalized eigenvectors.

This section discusses the computation of the nodes and weights of the Gauss
quadrature rule (2) by a divide-and-conquer method applied to the matrix (3).
Algorithms for divide-and-conquer methods have been described by Borges and
Gragg [6] as well as by Gu and Eisenstat [20]. They consist of a divide phase
and a conquer phase. We will outline these phases in order and use the no-
tation in [6], where further details can be found. Thus, introduce the spectral
factorization of the matrix (3),

Tn = UnΛnU
T
n , (4)

where the matrix Un ∈ Rn×n is orthogonal; its columns are eigenvectors of Tn
and the superscript T denotes transposition. The diagonal entries of

Λn = diag[λ1, λ2, . . . , λn] ∈ Rn×n

are the eigenvalues of (3). We would like to compute these eigenvalues, which
are the nodes of the rule (2), and the first components of the eigenvectors, from
which the weights wj in (2) can be determined. The divide-and-conquer method
to be described yields the eigenvalues, and the first and last components of
normalized eigenvectors. We will refer to a decomposition of the matrix Tn that
consists of the eigenvalues, and first and last components of the eigenvectors, as
a partial spectral factorization of Tn.

5



Let ek = [0, . . . , 0, 1, 0, . . . , 0]T denote the kth axis vector of appropriate
dimension for k = 1, 2, . . . , and introduce the split index s for some 1 ≤ s ≤ n.
Consider the following block form of the matrix (3),

Tn =

 T̆1 es−1
√
βs−1 0

eTs−1
√
βs−1 αs−1 eT1

√
βs

0 e1
√
βs T̆2

 ,
where T̆1 is the leading principal (s− 1)× (s− 1) submatrix of Tn and T̆2 is the
trailing principal (n − s) × (n − s) submatrix. Our discussion below assumes
that 1 < s < n, but the values s = 1 and s = n are permitted; in the former
case the matrix T̆1 is empty, and in the latter case T̆2 is empty.

Assume for the moment that the smaller eigenvalue problems

T̆k = ŬkΛ̆kŬ
T
k , k = 1, 2, (5)

have been solved. Here Ŭk is an orthogonal matrix whose columns are eigen-
vectors of T̆k, and Λ̆k is a diagonal matrix whose diagonal entries are the eigen-
values. Define the orthogonal block diagonal matrix

Ûn =

Ŭ1 0
1

0 Ŭ2

 ∈ Rn×n,

where “1” denotes the scalar one. Letting u1 = ŬT1 es ∈ Rs−1 and u2 = ŬT2 e1 ∈
Rn−s, we obtain

ÛTn TnÛn =

 Λ̆1 u1
√
βs−1 0

uT1
√
βs−1 αs−1 uT2

√
βs

0 u2
√
βs Λ̆2

 . (6)

Note that only the last row of the matrix Ŭ1 and the first row of Ŭ2 are required
to determine the vectors u1 and u2. This observation is important for the fast
computation of the nodes and weights of the quadrature rule (2). We will return
to the computation of this quadrature rule below.

The matrix (6) is the sum of a diagonal matrix and a “cross”. It is convenient
to permute the rows and columns symmetrically so that the “cross” is moved
to the last row and column. Thus, define the permutation matrix

P̂n = [e1, e2, . . . , es−1, es+1, es+2, . . . , en, es] ∈ Rn×n.

Then

P̂Tn Û
T
n TnÛnP̂n =

 Λ̆1 0 u1
√
βs−1

0 Λ̆2 u2
√
βs

uT1
√
βs−1 uT2

√
βs αs−1

 (7)

is an arrow matrix. There are efficient methods for computing the spectrum of
an arrow matrix. Such methods are discussed by Borges and Gragg [6], and Gu

6



and Eisenstat [20]. We will discuss the former method in more detail below.
Here we only note that the eigenvectors of an arrow matrix have a simple form.
For notational simplicity, consider the arrow matrix

A =

[
D c
cT α

]
, (8)

where D = diag[d1, d2, . . . , dm] ∈ Rm×m and c = [γ1, γ2, . . . , γm]T ∈ Rm. If any
entry γj vanishes, then ej is an eigenvector and we may set λj = dj . Borges
and Gragg [6] refer to this as γ-deflation. We comment on γ-deflation further
in Section 4. Assume that all possible deflations of this kind have been carried
out and let (8) be the resulting matrix. Thus, all the entries γj of this matrix
are non-vanishing. Let λj be an eigenvalue of (8). Then

vj =

[
(λjI −D)−1c

1

]
(9)

is an eigenvector of A; see [6]. Normalization yields orthonormal eigenvectors.
We turn to the computation of the Gauss rule (2). The following proposition

shows that only the first row of the matrix Ŭ1, and the eigenvalues of (6), part
of the matrix made up of normalized eigenvectors defined by (9), are required
to determine the nodes and weights of the Gauss rule (2).

Proposition 1. Only the first row of the matrix Ŭ1 and the first s components
of each normalized eigenvector (9) are needed to compute the nodes and weights
of the quadrature rule (2).

Proof. Consider the spectral factorization of the matrix (7). We have

P̂Tn Û
T
n TnÛnP̂n = ŴnΛnŴ

T
n , (10)

where the matrix Wn ∈ Rn×n is orthogonal; it is obtained by normalizing the
eigenvectors (9). It follows from (4) and (10) that

Un = ÛnP̂nŴn.

Therefore,

eT1 Un = [eT1 Ŭ1, 0
T
n−s+1]P̂nŴn = [eT1 Ŭ1, 0

T
n−s+1]Ŵn, (11)

where 0j ∈ Rj denotes the zero vector. The right-hand side of (11) can be
evaluated by computing the first s−1 components of the normalized eigenvectors
(9).

The proposition relies of the fact that only the first row of the matrix Un
is required to determine the Gaussian weights. A more detailed analysis shows
that only the first and last components of the eigenvector matrices Ŭ1 and Ŭ2,
as well as the eigenvalues of the matrices T̆1 and T̆2, and of their subdivisions,
are required to carry out the computations with the divide-and-conquer method

7



and, in particular, to compute the nodes and weights of the Gauss rule (2). In
detail, each eigenvector can be evaluated in O(n) flops. Therefore, the left-
hand side of (11) can be computed in O(n2) flops by evaluating eT1 Ŭ1 first.
The divide-and-conquer method splits the eigenproblems for the matrices (5)
similarly as we split the eigenproblem for (4). Splittings are applied recursively
until only small eigenproblems (whose sizes are independent of n) remain. When
the splitting is carried out so that each subproblem is of roughly the same small
size, e.g., the subproblems may be of order one, two, or three, and only partial
spectral factoriztions are computed, one obtains an algorithm that demands
only O(n2) flops to compute the nodes and weights of the Gauss rule (2); see
[6] for details on the divide-and-conquer method.

3. Divide-and-conquer methods for pairs of related Gauss-type quadra-
ture rules

This section describes how the divide-and-conquer method outlined in Sec-
tion 2 can be applied to evaluate pairs of two related quadrature rules, one of
which is the Gauss rule (2).

3.1. Computation of pairs of Gauss and Gauss-Radau rules

Assume that the integrand f in (1) is 2n+1 times continuously differentiable
and that the support of the measure dw is contained in the bounded real interval
[a, b]. If the 2nth and (2n+ 1)st derivatives of f are of constant sign, then the
user-specified node t̃0 in an (n+ 1)-nodes Gauss-Radau rule

Rn+1(f) =

n∑
j=0

f(t̃j)w̃j (12)

can be chosen so that the quadrature errors of the Gauss and Gauss-Radau rules
are of opposite sign. The values of the Gauss rule (2) and the associated Gauss-
Radau rule (12) then bracket the value of the integral (1). This follows from
the remainder terms for Gauss and Gauss-Radau quadrature rules; see Golub
and Meurant [17] for details. It is therefore of interest to compute the nodes
and weights of both the rules (2) and (12). The latter rule can be associated
with the symmetric tridiagonal matrix

T̃n+1 =



α0

√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1√

βn−1 αn−1
√
βn

0
√
βn α̃n


∈ R(n+1)×(n+1). (13)

The entry α̃n is chosen so that the Radau node t̃0 is allocated at the desired
location, which usually is t̃0 = a or t̃0 = b; expressions for α̃n can be found

8



in [16, 17]. Then the eigenvalues of (13) are the nodes t̃0, t̃1, . . . , t̃n of the
Gauss-Radau rule (12) and the weights w̃0, w̃1, . . . , w̃n are the square of the
first component of normalized eigenvectors of the matrix (13).

We apply the divide-and conquer method to the matrix (13) as follows: first
the method is applied to the leading principal submatrix (3) as outlined above.
This yields the Gauss rule (2). Then using (4), we obtain

T̃n+1 =

[
Tn en

√
βn

eTn
√
βn α̃n

]
=

[
Un 0n
0Tn 1

] [
Λn ũn

√
βn

ũTn
√
βn α̃n

] [
UTn 0n
0Tn 1

]
, (14)

where ũn = UTn en. The formation of this vector only requires knowledge of
the last row of Un, which we assume to be available. The middle matrix in
(14) is an arrow matrix. The calculation of its partial spectral factorization
demands O(n2) flops. These quantities allow us to compute the first row of
the eigenvector matrix (the square root of the Gauss-Radau weights) and the
Gauss-Radau nodes (the eigenvalues of the middle matrix). It follows that the
computations of the nodes and weights of the Gauss-Radau rule demand O(n2)
flops.

We required for notational simplicity that the support of the measure dw is
(part of) a bounded real interval [a, b]. This requirement easily can be relaxed
to allow the support of the measure to live in a semi-infinite interval [a,∞[, with
a ∈ R finite, if the integrand f(t) converges to zero sufficiently quickly when
t → ∞; one can handle the situation when the support of the measure lives in
the semi-infinite interval ]−∞, b] with b ∈ R finite in a similar manner.

3.2. Computation of pairs of Gauss and Gauss-Lobatto rules

Assume that the integrand f is 2n + 2 times continuously differentiable on
the bounded interval [a, b] that contains the support of the measure dw. Let
the 2nth and (2n + 2)nd derivatives of f be of constant and opposite signs on
[a, b]. The user-specified nodes in the Gauss-Lobatto rule

Ln+2(f) =

n+1∑
j=0

f(t̃j)w̃j (15)

are commonly chosen as t̃0 = a and t̃n+1 = b. Then the quadrature errors of
the Gauss and Gauss-Lobatto rules are of opposite sign. This follows from the
remainder terms for Gauss and Gauss-Lobatto quadrature rules; see Golub and
Meurant [17] for details. Thus, the Gauss and Gauss-Lobatto rules bracket the
value of the integral (1).

The symmetric tridiagonal matrix associated with the (n + 2)-node Gauss-

9



Lobatto rule (15) is of the form

T̃n+2 =



α0

√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1√

βn−1 αn−1
√
βn

√
βn αn

√
β̃n+1

0
√
β̃n+1 α̃n+1


∈ R(n+2)×(n+2),

(16)

where the entries α̃n+1 and β̃n+1 are determined so that the nodes t̃0 and t̃n+1

of rule (15) are allocated at specified points, say t̃0 = a and t̃n+1 = b; see [16, 17]

for formulas for α̃n+1 and β̃n+1.
Assume that the partial spectral factorization of the matrix (3) is known.

This factorization suffices to determine the Gauss rule (2). Then apply the
divide-and-conquer method with s = n to the matrix (16) to determine the
Gauss-Lobatto rule, where we use the fact that the first and last rows of the
eigenvector matrix of the spectral factorization (4) are known. The flop count
for computing both the Gauss and Gauss-Lobatto rules is O(n2).

3.3. Computation of pairs of Gauss and anti-Gauss rules

The anti-Gauss rule

An+1(f) =

n+1∑
j=1

f(t̃j)w̃j (17)

associated with the Gauss rule (2) is characterized by

(I − An+1)(f) = −(I − Gn)(f) ∀ P2n+1;

see Laurie [22]. Anti-Gauss rules can be applied to estimate the quadrature
error. Under suitable conditions, pairs of Gauss and the associated anti-Gauss
rule bracket the exact value of the integral (1); see [8].

The tridiagonal matrix associated with the anti-Gauss rule (17) is given by

T̃n+1 =



α0

√
β1 0

√
β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1√

βn−1 αn−1
√

2
√
βn

0
√

2
√
βn α̃n


∈ R(n+1)×(n+1). (18)

10



It follows that pairs of Gauss and anti-Gauss rules can be determined similarly
as pairs of Gauss and Gauss-Radau rules. A stability analysis of anti-Gauss
rules is presented by Dı́az de Alba et al. [9]. When the entry α̃n is expensive
to compute, simplified anti-Gauss rules can be applied; see [2]. The symmetric
tridiagonal matrix associated with an (n+ 1)-node simplified anti-Gauss rule is
of the same form as (18). Hence, pairs of Gauss rules and anti-Gauss rules or
pairs of Gauss rules and simplified anti-Gauss rules can be evaluated similarly
as pairs of Gauss and Gauss-Radau rules. As mentioned above, the average
of a Gauss and an associated anti-Gauss rule yields an averaged Gauss rule,
which also can be applied to estimate the error in the Gauss rule. Similarly,
the average of a Gauss rule and an associated simplified anti-Gauss rule gives
a simplified averaged rule, which can be applied to estimate the error in the
Gauss rule.

3.4. Computation of pairs of Gauss and optimal averaged Gauss rules

The difference between the values of the Gauss rule (2) and the associated
(2n+ 1)-node optimal averaged Gauss quadrature rule

S2n+1(f) =

2n+1∑
j=1

f(t̃j)w̃j (19)

generally provides quite accurate estimates of the quadrature error of the Gauss
rule; see [25, 26] for illustrations. This suggests that optimal averaged Gauss
quadrature rules can be applied to estimate the quadrature error in the Gauss
rule.

Introduce the reverse matrix

T ′n =


αn−1

√
βn−1 0√

βn−1 αn−2
√
βn−2

. . .
. . .

. . .√
β2 α1

√
β1

0
√
β1 α0

 ∈ Rn×n,

which is obtained by reversing the order of the rows and columns of the ma-
trix (3). The nodes and weights of the optimal averaged Gauss rule (19) are
the eigenvalues and the squared first component of normalized eigenvectors,
respectively, of the concatenated symmetric tridiagonal matrix

T̂2n+1 =

 Tn
√
βnen 0√

βne
T
n αn

√
βn+1e

T
1

0
√
βn+1e1 T ′n

 ∈ R(2n+1)×(2n+1); (20)

see [27] for details. This matrix can be split into two matrices, one of them being
a multiple of the matrix (3); see [25]. However, when using a divide-and-conquer
method to determine the nodes and weights of the rule (19), it is beneficial to
apply the method to the matrix (20). Introduce the skew-identity Jn ∈ Rn×n,

11



which has the entries one on the skew-diagonal and all other entries equal to
zero. Define the orthogonal block matrix

Û2n+1 =

Un 0
1

0 JnUn

 ∈ R(2n+1)×(nk+1),

where “1” is a scalar and introduce the permutation matrix

P̂2n+1 = [e1, e2, . . . , en, en+2, en+3, . . . , e2n+1, en+1] ∈ R(2n+1)×(2n+1).

Then

P̂T2n+1Û
T
2n+1T̂2n+1Û2n+1P̂2n+1 =

 Λn 0 u
√
βn

0 Λn u
√
βn+1

uT
√
βn uT

√
βn+1 αn


with u = UTn en. We now can annihilate the vector u

√
βn by orthogonal simi-

larity transformation as follows. This annihilation is known as combo-deflation;
see Section 4 below. Define the block Givens rotation

Ĝ2n+1 =

 cIn sIn
−sIn cIn

1

 ∈ R(2n+1)×(2n+1),

where In ∈ Rn×n denotes the identity matrix and

c =

√
βn+1√

βn + βn+1

, s =

√
βn√

βn + βn+1

.

Then

ĜT2n+1P̂
T
2n+1Û

T
2n+1T̂2n+1Û2n+1P̂2n+1Ĝ2n+1 =


Λn 0n 0n

0Tn Λn u

√
β̃n

0Tn uT
√
β̃
n

αn,

 ,
where β̃n = βn + βn+1. This shows that the eigenproblem for the matrix T̂2n+1

splits into two eigenproblems: the eigenproblems for Tn and the eigenproblem
for the trailing (n+ 1)× (n+ 1) arrow submatrix

M̃n+1 =

 Λn u

√
β̃n

uT
√
β̃n αn

 . (21)

Thus, we first compute the partial spectral factorization of the matrix (4) by a
divide-and-conquer method, and then determine the eigenvalues and first com-
ponents of the eigenvectors of the matrix (21) as described in Section 2. This
yields the quadrature rules (2) and (19) in O(n2) flops.

12



4. Deflation in the divide-and-conquer method

The computation of the spectral factorization or partial spectral factoriza-
tion of the matrix (7) may require deflation. Two kinds of deflation will be
considered: γ-deflation and combo-deflation.

As mentioned above, the symmetric tridiagonal matrices T̆1 and T̆2, defined
by (5), are unreduced, i.e., all the super- and sub-diagonal elements are non-
vanishing. We will show that the divide-and-conquer algorithm outlined above
therefore does not require γ-deflation at any step of the algorithm when applied
to the symmetric arrow matrix (7).

We can apply γ-deflation to the arrow matrix (7) if one of the elements in
the last row or column vanishes. These elements are made up of scaled elements
from the first row of Ŭ2 and from the last row of Ŭ1. In particular, they are non-
vanishing. This follows from the fact that the first and last elements of every
eigenvector of an unreduced symmetric tridiagonal matrix are non-vanishing.
We conclude that γ-deflation cannot take place as it would imply that an element
in either the first row of Ŭ2 or the last row of Ŭ1 was zero.

Eigenvalues of the arrow matrix (7) can be determined with combo-deflation
if any of the shaft elements (that is, the diagonal elements of the matrices Λ̆1

and Λ̆2) are repeated. We note that since the matrices T̆1 and T̆2 are unreduced,
neither matrix has repeated eigenvalues. Therefore, any repeated elements on
the shaft of the arrow occur in pairs. We already noted in Subsection 3.4 that
combo-deflations may occur.

We illustrate details of combo-deflation. Let

J =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 .
Permutation gives the matrix

PTJP =


1 1 0 0 0
1 1 0 0 1
0 0 1 1 1
0 0 1 1 0
0 1 1 0 1

 .
Reduction to an arrow via the divide-and-conquer method yields

A =


2 0 0 0 1/

√
2

0 0 0 0 1/
√

2

0 0 2 0 1/
√

2

0 0 0 0 −1/
√

2

1/
√

2 1/
√

2 1/
√

2 −1/
√

2 1

 .

13



Another permutations gives the matrix

M =


2 0 0 0 1/

√
2

0 2 0 0 1/
√

2

0 0 0 0 1/
√

2

0 0 0 0 −1/
√

2

1/
√

2 1/
√

2 1/
√

2 −1/
√

2 1

 .

It is easy to see that one gets two combo-deflations since the shaft elements are
made up of a pair of zeros and a pair of twos. Combo-deflations are easy to deal
with since the eigenvector corresponding to the eigenvalue represented by the
repeated shaft element can be constructed very simply as follows: take the last
column of the arrow and zero out everything except for the barb elements that
correspond to the repeated shaft elements. Swap the two non-zero elements
and negate one. This gives an unnnormalized eigenvector without additional
rounding error. The rest of the algorithm is undisturbed by the combo-deflation.

The divide-phase is carried out repeatedly until only 3 × 3, 2 × 2, or 1 × 1
matrices remain. Details on how to compute the partial spectral factorization
of these matrices accurately is addressed by Borges [4, 5]. The former work
discusses the accurate spectral factorization of symmetric 3× 3 matrices. First
these matrices are transformed to arrow matrices, whose eigenvalues are com-
puted by applying a zero-finder to a spectral function. A cubically convergent
zero-finder described in [4, 6] can be used; the fact that the zero-finder con-
verges cubically follows from [6, Eq. (5)]. Alternatively, we can apply a Newton
method to compute the zeros. Newton’s method can be shown to determine
iterates that converge monotonically to the extreme zeros; see Section 4 for
details. The iterations with both zero-finders are terminated as soon as two
consecutive approximations of the zero are numerically identical. The “conquer
phase” of the divide-and-conquer method yields larger and larger eigenproblems
for symmetric arrow matrices until the nodes and weights of the Gauss rule (2)
have been determined.

In [5] Borges discusses the computation of the spectral factorization of a 2×2
symmetric matrix by the application of a similarity transformation determined
by a Givens rotation. Borges advocates the use of the MATLAB function hypot
when evaluating the Givens rotations. This is done in the software used for the
computed examples of the following section.

5. Computed examples

This section presents timings for the divide-and-conquer method applied to
the Gauss, Gauss-Radau, Gauss-Lobatto, and optimal averaged Gauss quadra-
ture rules as described in Section 3, and compares them to timings of the Golub-
Welsch algorithm applied to the computation of these quadrature rules. We
use the implementation of the Golub-Welsch algorithm furnished by the code
gauss.m by Gautschi [13], and recall that this code does not implement the
Golub-Welsch algorithm as described in [19]; to compute the nodes and weights

14



of an n-node quadrature rule, the code gauss.m calculates the spectral factoriza-
tion of an n×n matrix with the aid of the MATLAB function eig. This approach
ignores the structure of the problem and requires O(n3) flops, while the struc-
ture exploiting algorithm by Golub and Welsch described in [19] only demands
O(n2). Also computations with the divide-and-conquer algorithm only requires
O(n2) flops. However, the timings presented below show the code gauss.m to de-
mand less CPU time than computations with the divide-and-conquer algorithm
for the evaluation of quadrature rules with few to moderately many nodes. This
depends on that the MATLAB function eig is implemented very efficiently; for
quadrature rules with 100 nodes or more, the use of the divide-and-conquer
algorithm is competitive with regard to CPU time. We note that the code
gauss.m and, therefore, the function eig are called twice to evaluate pairs of
Gauss and Gauss-Radau rules, pairs of Gauss and Gauss-Lobatto rules, or pairs
of Gauss and optimal averaged Gauss rules. We remark that similarly as the
divide-and-conquer algorithm, a user-implementation of the Golub-Welsch al-
gorithm as described in [19], would require more CPU time than gauss.m for
the computation of quadrature rules with few or moderately many nodes.

The accuracy of the computed nodes and weights determined by using the
divide-and-conquer algorithm and the code gauss.m is about the same. We note
that the structure of the former algorithm is well suited for implementation
in a parallel computing environment. Such an implementation would make it
possible to compute the nodes and weights of quadrature rules with very many
nodes. The timings reported below are carried out on a laptop computer.

Specifically, the timings reported in Tables 1-4 are carried out in MATLAB
version R2023a on a MacBook Pro laptop computer with an M1 processor and 8
GB of RAM. The computations are performed with about 15 significant decimal
digits. Timings of the same computations carried out in different runs typically
differ. The tables therefore report mean values over 1000 runs.

Table 1: Ratios of average CPU times for computing Gauss rules by the Golub-Welsch and
the divide-and-conquer algorithms for several numbers of nodes. The table shows averages
over 1000 runs.

Gauss rules with k nodes.

k
Golub-Welsch algorithm

divide-and-conquer algorithm

200 4.733
100 1.669
50 0.614
20 0.459
10 0.876

Tables 1-4 show the divide-and-conquer algorithm to be competitive with
the Golub-Welsch algorithm as implemented by the code gauss.m for 100 or
more nodes.

15



Table 2: Ratios of average CPU times for computing Gauss and Gauss-Radau rules by the
Golub-Welsch and the divide-and-conquer algorithms for several numbers of nodes. The table
shows averages over 1000 runs.

Gauss rules with k nodes and Gauss-Radau rules with k + 1 nodes.

k
Golub-Welsch algorithm

divide-and-conquer algorithm

200 4.565
100 1.583
50 0.560
20 0.266
10 0.359

Table 3: Ratios of average CPU times for computing Gauss and Gauss-Lobatto rules by the
Golub-Welsch and the divide-and-conquer algorithms for several numbers of nodes. The table
shows averages over 1000 runs.

Gauss rules with k nodes and Gauss-Lobatto rules with k + 2 nodes.

k
Golub-Welsch algorithm

divide-and-conquer algorithm

200 4.685
100 1.825
50 0.714
20 0.473
10 0.733

Table 4: Ratios of average CPU times for computing Gauss and optimal averaged Gauss rules
by the Golub-Welsch and the divide-and-conquer algorithms for several numbers of nodes.
The table shows averages over 1000 runs.

Gauss rules with k nodes and optimal averaged Gauss rules with 2k + 1 nodes.

k
Golub-Welsch algorithm

divide-and-conquer method

200 4.984
100 1.728
50 0.719
20 0.318
10 0.106

16



6. Conclusion

The paper describes the calculation of the nodes and weights of several
Gauss-type quadrature rules by using the divide-and-conquer algorithm pre-
sented in [6]. This approach to compute quadrature rules is found to be compet-
itive with the available implementation gauss.m of the Golub-Welsch algorithm
for quadrature rules with 100 or more nodes.

Acknowledgment

The research of D. Lj. Djukić, R. M. Mutavdžić Djukić and M. M. Spalević
is supported in part by the Serbian Ministry of Science, Technological Develop-
ment, and Innovations, according to Contract 451-03-47/2023-01/200105 dated
on February 3, 2023.

The authors would like to thank the referees for comments that led to clar-
ifications of the presentation.

References

[1] G. S. Ammar, D. Calvetti, and L. Reichel, Computation of Gauss-Kronrod
quadrature rules with non-positive weights, Electron. Trans. Numer. Anal.,
9 (1999), pp. 26–38.

[2] H. Alqahtani and L. Reichel, Simplified anti-Gauss quadrature rules with
applications in linear algebra, Numer. Algorithms, 77 (2018), pp. 577–602.

[3] I. Bogaert, Iteration-free computation of Gauss-Legendre nodes and weights,
SIAM J. Sci. Comput., 36 (2014), pp. A1008–A1026.

[4] C. F. Borges, Solving the 3×3 symmetric eigenproblem, arXiv: 1806.06698,
2018.

[5] C. F. Borges, An improved formula for Jacobi rotations, arXiv:
1806.07876v1, 2018.

[6] C. F. Borges and W. B. Gragg, A parallel divide and conquer algorithm
for the generalized symmetric definite tridiagonal eigenvalue problem, in
Numerical Linear Algebra, eds. L. Reichel, A. Ruttan, and R. S. Varga, de
Gruyter, Berlin, 1993, pp. 11–29.

[7] D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel, Computation of
Gauss-Kronrod rules, Math. Comp., 69 (2000) 1035–1052.

[8] D. Calvetti, L. Reichel, and F. Sgallari, Application of anti-Gauss quadra-
ture rules in linear algebra, in Applications and Computation of Orthogonal
Polynomials, W. Gautschi, G. H. Golub, and G. Opfer, eds., Birkhäuser,
Basel, 1999, pp. 41–56.

17



[9] P. Dı́az de Alba, L. Fermo, and G. Rodriguez, Solution of second kind
Fredholm integral equations by means of Gauss and anti-Gauss quadrature
rules, Numer. Math., 146 (2020), pp. 699–728.

[10] D. Lj. Djukić, L. Reichel, and M. M. Spalević, and J. D. Tomanović, In-
ternality of generalized averaged Gauss rules and their truncations for
Bernstein-Szegő weights, Electron. Trans. Numer. Anal., 45 (2016), pp.
405–419.

[11] D. Lj. Djukić, R. M. Mutavdžić Djukić, L. Reichel, and M. M. Spalević,
Internality of generalized averaged Gauss quadrature rules and truncated
variants for modified Chebyshev measures of the first kind, J. Comput.
Appl. Math., 398 (2021), Art. 113696.

[12] D. Lj. Djukić, R. M. Mutavdžić Djukić, L. Reichel, and M. M.
Spalević, Weighted averaged Gaussian quadrature rules for modified
Chebyshev measures, Appl. Numer. Math., (2023), ISSN 0168-9274,
https://doi.org/10.1016/j.apnum.2023.05.014.

[13] W. Gautschi, OPQ: A Matlab suite of programs for generating orthogonal
polynomials and related quadrature rules, available at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.htm

[14] W. Gautschi, Orthogonal Polynomials: Computation and Approximation,
Oxford University Press, Oxford, 2004.

[15] A. Glaser, X. Liu, and V. Rokhlin, A fast algorithm for calculating the roots
of special functions, SIAM J. Sci. Comput., 29 (2007), pp. 1420–1438.

[16] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15
(1973), pp. 318–334.

[17] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with
Applications, Princeton University Press, Princeton, 2010.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns
Hopkins University Press, Baltimore, 2013.

[19] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math.
Comp., 23 (1969), pp. 221–230.

[20] M. Gu and S. C. Eisenstat, A divide-and-conquer method for the symmetric
tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–
191.

[21] N. Hale and A. Townsend, Fast and accurate computation of Gauss-
Legendre and Gauss-Jacobi quadrature nodes and weights, SIAM J. Sci.
Comput., 35 (2013), pp. A652–A674.

[22] D. P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp., 65 (1996),
pp. 739–747.

18



[23] D. P. Laurie, Calculation of Gauss-Kronrod quadrature rules, Math. Comp.,
66 (1997), pp. 1133–1145.

[24] S. Notaris, Gauss-Kronrod quadrature formulae - a survey of fifty years of
research, Electron. Trans. Numer. Anal., 45 (2016), pp. 371–404.

[25] L. Reichel and M. M. Spalević. A new representation of generalized averaged
Gauss quadrature rules, Appl. Numer. Math., 165 (2021) pp. 614–619.

[26] L. Reichel and M. M. Spalević. Averaged Gauss quadrature formulas: Prop-
erties and applications, J. Comput. Appl. Math., 410 (2022), Art. 114232.

[27] M. M. Spalević, On generalized averaged Gaussian formulas, Math. Comp.,
76 (2007), pp. 1483–1492.

[28] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Providence,
1975.

19


