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Abstract Ill-posed problems arise in many areas of science and engineering. Their
solutions, if they exist, are very sensitive to perturbations in the data. To reduce
this sensitivity, the original problem may be replaced by a minimization problem
with a fidelity term and a regularization term. We consider minimization problems
of this kind, in which the fidelity term is the square of the ℓ2-norm of a discrep-
ancy and the regularization term is the qth power of the ℓq-norm of the size of the
computed solution measured in some manner. We are interested in the situation
when 0 < q ≤ 1, because such a choice of q promotes sparsity of the computed solu-
tion. The regularization term is determined by a regularization matrix. Novati and
Russo let q = 2 and proposed in [P. Novati and M. R. Russo, Adaptive Arnoldi–
Tikhonov regularization for image restoration, Numer. Algorithms, 65 (2014), pp.
745–757] a regularization matrix that is a finite difference approximation of a dif-
ferential operator applied to the computed approximate solution after reordering.
This gives a Tikhonov regularization problem in general form. We show that this
choice of regularization matrix also is well suited for minimization problems with
0 < q ≤ 1. Applications to image restoration are presented.
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1 Introduction

We consider the computation of an approximate solution of minimization problems
of the form

min
x∈Rn

‖Ax− bδ‖2, (1)

where A ∈ R
m×n is a large matrix, whose singular values decrease to zero gradually

with no significant gap. In particular, A is severely ill-conditioned and may be
rank-deficient. The vector bδ ∈ R

m represents measured error-contaminated data.
We will refer to the error in bδ as “noise.” The norm ‖ · ‖2 in (1) denotes the
Euclidean vector norm. We will allow m ≥ n as well as m < n. Unicity of the
computed solution is secured by adding a regularization term to (1); see below.

Minimization problems of the kind (1) are commonly referred to as discrete ill-

posed problems. They typically arise from the discretization of ill-posed problems,
such as Fredholm integral equations of the first kind with a smooth kernel; see, e.g.,
[7,8] for discussions on ill-posed and discrete ill-posed problems. We are primarily
interested in image deblurring. Then the vector bδ represents a blur- and noise-
contaminated image, and the matrix A is a blurring operator. We would like to
determine the unknown blur- and noise-free image associated with the available
image represented by bδ.

Let b ∈ R
m denote the (unknown) noise-free vector associated with bδ. We

will assume that b is in the range of A and that a fairly sharp bound δ for the
norm of the noise in bδ is known, i.e.,

‖b− bδ‖2 ≤ δ. (2)

These assumptions allow us to determine a regularization parameter with the aid
of the discrepancy principle; see below.

Let A† denote the Moore–Penrose pseudoinverse of A. Then

x̂ := A†b (3)

represents the blur- and noise-free image associated with bδ, which we would like
to determine. Since A is ill-conditioned and bδ is contaminated by error, the näıve
solution of (1) of minimal Euclidean norm, given by

A†bδ = x̂+A†(bδ − b),

typically is a useless approximation of x̂, because generally ‖A†(bδ −b)‖2 ≫ ‖x̂‖2.
To achieve a more accurate approximation, the discrete ill-posed problem (1) is
replaced by a nearby problem, whose solution is less sensitive to the error in bδ.
This replacement is known as regularization.

A regularization technique that recently has received considerable attention is
the replacement of (1) by a minimization problem of the form

x∗ := arg min
x∈Rn

J (x), (4)
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where

J (x) :=

{
1

2
‖Ax− bδ‖22 +

µ

q
‖Lx‖qq

}
(5)

for some q > 0. The regularization matrix L ∈ R
ℓ×n is such that

N (A) ∩N (L) = {0}. (6)

Then there are no nontrivial vectors that are in both N (A) and N (L). Here N (M)
denotes the null space of the matrix M . Moreover,

‖z‖q :=




ℓ∑

j=1

|zj |
q




1/q

, z = [z1, . . . , zℓ]
T ∈ R

ℓ.

We will refer to ‖z‖q as the q-norm of z also for 0 < q < 1, even though the mapping
z → ‖z‖q does not satisfy the triangle inequality and, therefore, is not a norm for
these q-values. Throughout this paper the superscript T denotes transposition.

The regularization parameter µ > 0 in (5) balances the relative influence of
the first term (the fidelity term) and the second term (the regularization term).
When q = 2 the minimization problem (4) is known as a Tikhonov regularization
problem in general form [8].

The use of 0 < q < 2 has received considerable attention; see, e.g., [1,2,3,4,5,9,
12] and references therein. Note that if 0 < q < 1, then the functional (4) generally
is not convex. We will determine µ > 0 so that the computed solution xcomp of
(4) satisfies the discrepancy principle, i.e., such that

‖Axcomp − bδ‖2 = τδ, (7)

where τ > 1 is a user-supplied constant that is independent of the bound δ in (2).
We briefly comment on the choice of q. In many situations it is known that the

desired vector (3) is sparse in some basis, i.e., the vector x̂ has many vanishing
coefficients when expressed in a suitable basis. To enhance sparsity in the solution
of (4), we use 0 < q ≤ 1. Generally, the smaller q > 0, the sparser is the solution
and the more difficult is its computation; see [9,12] for illustrations. We remark
that the “norm” ‖z‖0, which counts the number of nonvanishing entries of the
vector z, promotes sparsity but is difficult to compute with. Therefore, this “norm”
generally, is not used.

We will solve the minimization problem (4) by approximating the ℓq-norm for
some 0 < q ≤ 1 by a weighted ℓ2-norm. By iteratively refining this approximation,
it is possible to effectively compute a solution of (4). This process is known as
the iteratively reweighted norm (IRN) method. It has been applied in several
different situations with good results; see [3,9,12,15,16]. IRN methods proceed
by solving a sequence of weighted least-squares problems until a solution of (4)
has been determined to desired accuracy. Applications of IRN-type methods to
minimization problems (4) with q smaller than unity are described in [3,9,12].

We turn to the choice of the regularization matrix L in (4). The choice of this
matrix has not received much attention in the literature. We propose to use a
matrix L1 that represents a discrete first order derivative operator in one space-
dimension in combination with a reordering of the unknowns. Let P be a per-
mutation matrix that describes the reordering. Then we let L := L1P in (4). An
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adaptive reordering method is described. The construction of this kind of regular-
ization matrices for the minimization problem (4) is an adaption of a method pro-
posed by Novati and Russo [13] for choosing a regularization matrix for Tikhonov
regularization in general form.

This paper is organized as follows: Section 2 outlines a majorization-minimization
method for the solution of (4) described in [9]. An algorithm for determining the
regularization parameter µ and the regularization matrix L by reordering the en-
tries of the approximate solution are discussed in Section 3, and a few numerical
examples are presented in Section 4. Finally, Section 5 contains concluding re-
marks.

2 A majorization-minimization method

We review a majorization-minimization method for the solution of (4). This method
was first described in [9], where it is referred to as the FMM-GKS method. Intro-
duce the function

Φq,ε(t) :=

{
|t|q, q > 1,(

t2 + ε2
)q/2

, 0 < q ≤ 1,
(8)

where ε > 0 is a small constant. We will comment on the choice of ε in Section 4.
The function t → Φq,ε(t) is everywhere differentiable for any q > 0. This function
is used to define a smoothed version of ‖z‖qq by

‖z‖qq ≈

ℓ∑

i=1

Φq,ε(zi), z = [z1, z2, . . . , zℓ]
T ∈ R

ℓ.

Substituting this smoothed norm into the functional (4) yields

Jε(x) :=
1

2
‖Ax− bδ‖22 +

µ

q

ℓ∑

i=1

Φq,ε((Lx)i). (9)

Instead of minimizing (4), we seek to solve

x∗ := arg min
x∈Rn

Jε(x). (10)

When q < 1, the functional (10) is not convex. The majorization-minimization
method for the solution of (10) described in [9] constructs a sequence of iterates
x(k), k = 1, 2, . . . , that converge to a stationary point of Jε. At each step, the
functional Jε is majorized by a quadratic functional x → Q(x,x(k)) that is tangent
to Jε at x(k). Thus, i) x → Q(x,x(k)) is quadratic, ii) Q(x,x(k)) ≥ J (x) for all
x ∈ R

n, and iii) Q(x(k),x(k)) = J (x(k)) and ∇xQ(x(k),x(k)) = ∇J (x(k)), where
∇x denotes the gradient with respect to the first argument of Q.

We outline the construction of a quadratic tangent majorant at the point x(k)

for 0 < q < 2. Let

u(k) := Lx(k)
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and introduce the vector

ω
(k) := u(k)

(
1−

(
(u(k))2 + ε2

ε2

)q/2−1
)

,

where all the operations, including squaring, are meant element-wise. It is shown
in [9] that the functional

Q(x,x(k)) :=
1

2
‖Ax− bδ‖22 +

µεq−2

2

(
‖Lx‖22 − 2〈ω(k), Lx〉

)
+ c, (11)

with c a suitable constant that is independent of x, is a quadratic tangent majorant
for Jε at x(k). In (11) and below 〈u,v〉 := uTv denotes the standard inner product
of two real vectors u and v.

Given x(k), the next iterate, x(k+1), is the minimizer of x → Q(x,x(k)). Since
Q is quadratic, x(k+1) can be computed by determining the zero of the gradient
of x → Q(x,x(k)), i.e., by solving the linear system of equations

(ATA+ ηLTL)x(k+1) = ATbδ + ηLT
ω

(k), η := µεq−2. (12)

Due to the requirement (6), the above linear system of equations has a unique
solution for any η > 0.

An approximate solution of (12) can be computed efficiently by seeking a
solution in a low-dimensional subspace. Let the columns of Vk ∈ R

n×d, with 1 ≤
d ≪ n, form an orthonormal basis for the subspace in which we determine an
approximate solution x(k+1) of (12). We determine x(k+1) as the solution of the
minimization problem

y(k+1) := argmin
y

∥∥∥∥
[

AVk
η1/2LVk

]
y −

[
bδ

η1/2ω(k)

]∥∥∥∥
2

2

(13)

and let

x(k+1) := Vky
(k+1). (14)

However, instead of explicitly solving the problem (13), we compute the solution
of a reduced problem that is obtained by using the QR factorizations

AVk = QARA with QA ∈ R
m×d, RA ∈ R

d×d,

LVk = QLRL with QL ∈ R
ℓ×d, RL ∈ R

d×d.
(15)

Thus, the matrices QA and QL have orthonormal columns and the matrices RA

and RL are upper triangular. Inserting the factorizations (15) into (13) yields the
low-dimensional minimization problem

y(k+1) := argmin
y

∥∥∥∥
[

RA

η1/2RL

]
y −

[
QT

Abδ

η1/2QT
Lω

(k)

]∥∥∥∥
2

2

, (16)

which we solve numerically. The solution y(k+1) is computed by QR factorization
of the matrix [

RA

η1/2RL

]
, (17)
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where we may use the fact that both submatrices RA and η1/2RL are upper tri-
angular and of the same size.

Substituting (14) into (12) gives the residual vector

r := AT (AVky
(k+1) − bδ) + ηLT (LVky

(k+1) − ω
(k)).

This expression can be simplified by using the factorizations (15). We expand
the solution subspace by including the scaled residual vector vnew := r/‖r‖ in
it. This vector is orthogonal to the columns of the matrix Vk, and we define the
new matrix Vk+1 = [Vk,vnew] ∈ R

n×(d+1). Its columns form an orthonormal basis
for the expanded solution subspace. The solution subspaces determined in this
manner are referred to as generalized Krylov subspaces.

The main computational effort of the algorithm for large matrices A and L

is the evaluation of matrix-vector products with these matrices and with their
transposes. The QR factorizations (15), as well as of (17), can be updated for
increasing values of k as described in [6]. It can be shown that the approximate
solutions x(k) for k = 1, 2, . . . , computed in the manner outlined, converge to a
stationary point of (9); see [9] for details.

We turn to the determination of the regularization parameter µ > 0. A bound
(2) for the error in bδ is assumed to be known. This allows us to determine µ

with the aid of the discrepancy principle (7). Thus, for each k, we determine the
regularization parameter µ = µ(k) so that the computed approximate solution (14)
satisfies the discrepancy principle, i.e.,

‖Ax(k+1) − bδ‖2 = τδ. (18)

The computation of such a µ-value can be carried out quite efficiently by using the
factorizations (15). Details are described in [3]; here we just provide an outline.
Substituting (14) into (18) and using (15) gives

‖QARAy(k+1) − bδ‖2 = τδ,

where we note that the vector y(k+1), which is computed by solving (16), depends
on µ, because η is a function of µ; cf. (12). Define the function

ϕ(µ) = ‖RAy(k+1) −QT
Qbδ‖22

and solve

ϕ(µ) = τ2δ2 (19)

by Newton’s method or a related root-finder. The regularization parameter µ is
updated in each iteration, and this requires the solution of (16). Since the matrices
RA and RL are fairly small, the computations can be carried out quite rapidly.
We denote the solution of (19) by µ(k+1).

We refer to [7] for a discussion on the discrepancy principle. We remark that
other methods for choosing the regularization parameter also can be used; see,
e.g., [4,8,10,11,14] for discussions.

The following algorithm outlines the computations for a fixed matrix L and a
fixed regularization parameter µ > 0. We will generalize this algorithm in Section
3.
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Algorithm 1 (The MM-GKS-DP method) Let 0 < q < 2 be fixed and let the

matrices A ∈ R
m×n and L ∈ R

ℓ×n satisfy (6). We are particularly interested in the

regularization matrix (23) below. Let x(0) = 0 be the initial approximate solution, and

let ε > 0 and k0 > 0 be constants.

Generate the initial subspace basis: V0 ∈ R
n×k0 such that V T

0 V0 = I;

Compute and store AV0 and LV0;

Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

for k = 0, 1, . . . do

u(k) = Lx(k);

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

η(k) = µ(k)εq−2;

where µ(k) is such that ‖AVky
(k+1) − bδ‖2 = τδ;

y(k+1) = (RT
ARA + η(k)RT

LRL)
−1(RT

AQT
Abδ + η(k)RT

LQ
T
Lω

(k));

r = AT (AVky
(k+1) − bδ) + ηLT (LVky

(k+1) − ω
(k));

Reorthogonalize, if needed: r = r− VkV
T
k r;

vnew = r/‖r‖2; Vk+1 = [Vk,vnew];
Update the factorization (15) to obtain AVk+1 = QARA and LVk+1 =
QLRL;

x(k+1) = Vk+1y
(k+1);

end

The iterations with Algorithm 1 are terminated as soon as two consecutive
approximate solutions are sufficiently close, i.e., as soon as

‖x(k) − x(k+1)‖2
‖x(k)‖2

≤ 10−4. (20)

3 Determining the regularization matrix

This section describes a new method for adaptively determining a regularization
matrix L. We first discuss how to determine a permutation matrix in each iteration
of Algorithm 1.

Let P ∈ R
n×n be a permutation matrix. Replacing Lx by Ly with y = Px in

(11) gives the functional

Q̃(y,y(k)) =
1

2
‖APTy − bδ‖22 +

µεq−2

2

(
‖Ly‖22 − 2〈ω(k), Ly〉

)
+ c,

where y(k) = Px(k). The next iterate, y(k+1), satisfies the linear system of equa-
tions

(PATAPT + ηLTL)y = PATbδ + ηLT
ω

(k),

which is analogous to (12). Equivalently, x(k+1) satisfies

(ATA+ ηPTLTLP )x = ATbδ + ηPTLT
ω

(k),

which are the normal equations associated with the least-squares problem

min
x∈Rn

{
‖Ax− bδ‖22 + η‖LPx− ω

(k)‖22

}
. (21)
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The minimization problem (21) suggests that we determine a permutation
matrix P such that the regularization term be small. However, the minimization
of this term over all permutations for given vectors x ∈ R

n, ω(k) ∈ R
ℓ, and matrix

L ∈ R
ℓ×n is difficult. We therefore consider the simpler minimization problem

min
P∈P

‖LPx‖ (22)

for some distance measure ‖ · ‖, where P denotes the set of n × n permutation
matrices. A permutation matrix P ∗ ∈ R

n×n that satisfies (22) is said to be optimal
with respect to the matrix L, the vector x, and the norm ‖ · ‖. Novati and Russo
[13] considered the minimization problem (22) for the Euclidean vector norm, but
other vector norms also can be used. We are particularly interested in the situation
when the matrix L in (22) is the bidiagonal matrix

L1 :=




1 −1 0
1 −1

1 −1
. . .

. . .

0 1 −1



∈ R

(n−1)×n, (23)

which is a scaled finite difference approximation at equidistant points of the first
derivative operator in one space-dimension.

Theorem 1 Let the matrix L in (22) be given by (23), and let the permutation matrix

P ∗ ∈ R
n×n order the entries of the vector x ∈ R

n in increasing or decreasing order.

Then P ∗ solves (22) when ‖ · ‖ = ‖ · ‖1.

Proof Let y = [y1, y2, . . . , yn−1]
T = LPx. Then, by the triangle inequality,

|y1 + y2 + . . .+ yn−1| ≤ |y1|+ |y2|+ . . .+ |yn−1| = ‖y‖1,

with equality if all the yi have the same sign. The latter occurs if the permutation
P is such that all the entries of LPx are nonnegative or all entries are nonpositive.
Thus, ‖LPx‖1 achieves its lower bound if the permutation P orders the elements
of x in increasing order or in decreasing order.

The well-known relations

‖y‖2 ≤ ‖y‖1 ≤ (n− 1)1/2‖y‖2, y ∈ R
n−1

suggests that the permutation P ∗ of Theorem 1 is suitable also when ‖ · ‖ is the
Euclidean norm.

Theorem 2 Let y = [y1, y2, . . . , yn−1]
T = LPx and consider the distance measure

‖y‖ =

(
n−1∑

i=1

|yi|
q

)1/q

for some q > 0. Assume that all entries yi are nonvanishing. Then ‖y‖ achieves its

minimum when all |yi| are equal.
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Proof We will show the theorem by using a Lagrange multiplier. Let zi = |yi|.
Since zi > 0 for all i, we may scale all zi by the same positive factor so that the
scaled zi satisfy

n−1∏

i=1

zi = 1. (24)

We will assume this scaling has been carried out and consider the function

f(z1, z2, . . . , zn−1) = zq1 + zq2 + . . .+ zqn−1 + λz1z2 . . . zn−1.

The partial derivatives are given by

∂f

∂zi
(z1, z2, . . . , zn−1) = qzq−1

i + λz1 . . . zi−1zi+1 . . . zn−1, i = 1, 2, . . . , n− 1.

Setting the partial derivatives to zero and multiplying by zi > 0 gives

qzqi + λz1z2 . . . zn−1 = qzqi + λ = 0, i = 1, 2, . . . , n− 1.

We conclude that

zi = (−λ/q)1/q , i = 1, 2, . . . , n− 1. (25)

Thus, all the zi are equal. This is the unique stationary point of the function f in
its domain. Let z1 = t and zj = 1/t1/(n−2) for j = 2, 3, . . . , n − 1 and t > 0. Then
these zj satisfy the constraint (24) and it follows that f(z1, z2, . . . , zn−1) → ∞ as
t → ∞. We can similarly let any subset of at most n − 2 variables zj approach
infinity so that the constraint (24) is satisfied. This shows that the function f is
coercive. It therefore has (at least) one local minimum in its domain. It follows that
the point defined by (25) therefore is the unique minimum of the function f under
the constraint (24). The measure ‖z‖, and therefore ‖y‖, achieve their minima
when f is minimal. We conclude that ‖y‖ is minimal when all nonvanishing |yi|
are the same. This occurs, for instance, when the entries xi of x, for i = 1, 2, . . . , n,
are equidistant.

The vector y = [y1, y2, . . . , yn−1]
T = P ∗Lx, with the permutation P ∗ of The-

orem 1, generally does not satisfy |yi| = |yj | for all 1 ≤ i, j < n. Nevertheless,
Theorem 2 indicates that the permutation P ∗ may be suitable to apply when the
entries of x = [x1, x2, . . . , xn]

T may be considered piece-wise smooth functions of
their index, with only a few jump discontinuities.

Algorithm 2 solves the minimization problem (22) for every iterate x = x(k+1)

generated during the execution of the algorithm. The initial permutation P0 is
the identity matrix. We refer to Algorithm 2 as the reordered (RR) MM-GKS-
DP algorithm, because it complements the computations of Algorithm 1 with
reordering of the entries of the approximate solutions determined in the inner
loop.
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Algorithm 2 (The RR-MM-GKS-DP method) Let 0 < q < 2 be fixed and let

the matrices A ∈ R
m×n and L1 ∈ R

ℓ×n satisfy (6). Let x0 ∈ R
n be an initial approx-

imate solution, and let ε > 0, s and k0 > 0 be constants.

for t = 0, 1, . . . do

Compute bt = b−Axt, let x
(0)
t = xt;

Generate the initial subspace basis on A and bt: V0 ∈ R
n×k0 such that

V T
0 V0 = I;

Define L = L1Pt;

Compute the QR factorizations AV0 = QARA and LV0 = QLRL;

for k = 0, 1, . . . do

u(k) = Lx
(k)
t ;

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

η
(k)
t = µ

(k)
t εq−2;

where µ
(k)
t is such that ‖AVky

(k+1)
t − bδ‖2 = τδ;

y
(k+1)
t = (RT

ARA + η
(k)
t RT

LRL)
−1(RT

AQT
Abδ + η

(k)
t RT

LQ
T
Lω

(k));

r = AT (AVky
(k+1)
t − bδ) + ηLT (LVky

(k+1)
t − ω

(k));

Reorthogonalize, if needed, r = r− VkV
T
k r;

vnew = r/‖r‖; Vk+1 = [Vk,vnew];
Update (15) to obtain AVk+1 = QARA and LVk+1 = QLRL;

x
(k+1)
t = Vk+1y

(k+1)
t ;

end

xt+1 = x
(k+1)
t ;

Determine new permutation matrix Pt+1;

end

The iterations in the inner loop (the k-loop) of Algorithm 2 are terminated as
soon as two consecutive approximate solutions are sufficiently close, i.e., as soon as
(20) holds. Then a new ordering of the entries of the available approximate solution
x(k+1) (i.e., a new permutation matrix Pt+1) is determined, and the computations
with Algorithm 2 are continued. The outer loop is exited as soon as two consecutive
approximate solutions xt+1 and xt are sufficiently close, i.e., as soon as

‖xt − xt+1‖2
‖xt‖2

≤ 10−4. (26)

This stopping criterion is analogous to (20).

4 Numerical examples

This section presents two image restoration examples that compare Algorithms
1 and 2. The examples illustrate that using the ordering of the entries of the
computed solution described in Section 3 improves the quality of the computed
restorations, when compared with the standard ordering of Algorithm 1 of Section
2.
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noise iteration number µ relative error CPU time

% Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

ℓ2-ℓ0.5
0.01 106 186 4.9 · 10−1 7.0 · 10−1 1.10 · 10−1 1.02 · 10−1 4.99 · 101 3.80 · 101

0.001 181 157 1.9 · 10−2 6.6 · 10−3 5.25 · 10−2 4.63 · 10−2 2.26 · 102 7.59 · 101

ℓ2-ℓ1
0.01 74 186 9.7 · 10−3 7.0 · 10−1 1.20 · 10−1 1.03 · 10−1 1.06 · 102 2.94 · 101

0.001 181 186 6.0 · 10−4 8.2 · 10−2 6.57 · 10−2 4.80 · 10−2 1.49 · 102 6.03 · 101

Table 1 Example 4.1: Comparison of Algorithms 1 and 2 applied to the ℓ2-ℓ1 and ℓ2-ℓ0.5
models for the restoration of MRI test images that have been corrupted by motion blur and
Gaussian noise.

The error e = bδ −b in the vector bδ in (4) models zero mean white Gaussian
noise. We refer to the quotient

σ :=
‖e‖

‖b‖

as the noise level, and set δ := σ‖b‖ in (7) and in Algorithms 1 and 2. We let
τ = 1.01 in the algorithms. The parameter ε in (8) is set to one, as suggested
in [3]. This choice of ε is appropriate for image restoration problems, because it
is much smaller than the largest pixel value, which is 255. Choosing 0 < ε <

1 does not improve the quality of the computed restorations, but increases the
number of iterations required by the Algorithms 1 and 2, and therefore increases
the computing time. Other applications of the minimization problem (4), such
applications to linear regression described in [1], may require 0 < ε < 1 to furnish
good results.

The initial regularization matrix L in the algorithms is (23). We set the max-
imal number of iteration with Algorithm 1 and the maximal number of inner
iterations with Algorithm 2 to 30, and the maximal number of outer iterations in
the latter algorithm to 6. These choices do not affect the quality of the computed
restorations significantly. In all examples we let the columns of V0 ∈ R

n×k0 in
Algorithms 1 and 2 be the basis for the initial Krylov subspace

Kk0
(ATA,ATb0) = span{ATb0, (A

TA)ATb0, . . . , (A
TA)k0−1ATb0} (27)

with k0 = 10, where b0 = bδ in Algorithm 1 or b0 = bt in Algorithm 2.

We measure the quality of the restored image, represented by the vector xcomp,
with the relative restoration error

ek :=
‖xcomp − x̂‖2

‖x̂‖2
,

where the vector x̂ represents the desired blur- and noise-free image. The com-
putational efficiency is measured in terms of the total CPU time required by the
algorithms to satisfy the stopping criterion. All experiments were carried out in
MATLAB with about 15 significant decimal digits on an Intel Core i5-3230M
2.60GHz computer with 8GB RAM.

Example 4.1. We consider the restoration of the test image MRI, which is rep-
resented by an array of 256 × 256 pixels. The model (9) with q = 1 or q = 0.5 is
applied. The pixels of the available blur- and noise-contaminated image are stored
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Fig. 1 Example 4.1: (a) Available blur- and noise-contaminated MRI image represented by the
matrix bδ, (b) desired image, restored images by (c) Algorithm 1, and (d) Algorithms 2.

column-wise in the vector bδ ∈ R
2562

. The blurring matrix A ∈ R
2562×2562

, which
models horizontal motion blur is a block Toeplitz matrix defined by

A = I256 ⊗B,

where ⊗ stands for the Kronecker product, and B = [bij ] ∈ R
256×256 is a symmetric

banded matrix with half-bandwidth d = 15 and nontrivial entries

bij =

{
1

2d−1 , |i− j| ≤ d,

0, otherwise.

We show results for the noise levels ν = 1 · 10−j , j = 2, 3. The available blur-
and noise-contaminated image is displayed in Figure 1(a) with noise corresponding
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Fig. 2 Example 4.1: Convergence of the logarithm of the relative errors ek as a function of
the iteration number k in restorations determined by the MM-GKS-DP algorithm (Alg. 1)
and the RR-MM-GKS-DP algorithm (Alg.2) for ℓ2-ℓ1 minimization model with noise levels
(a) ν = 1 · 10−2 and (b) ν = 1 · 10−3.

to the noise level ν = 1 · 10−3. Figure 1(b) shows the desired blur- and noise-free

image, which is represented by the vector x̂ ∈ R
2562

. It is assumed not to be known.

Table 1 displays the regularization parameter values µ determined by Algo-
rithms 1 and 2, as well as the total number of iterations, the relative error ek in
the computed restorations, and the CPU time required for two noise levels and two
values of q. The iterations with the algorithms are terminated as soon as the stop-
ping criteria (20) or (26) are satisfied. The table shows Algorithm 2 to determine
approximations of x̂ of higher quality with less CPU time than Algorithm 1 for all
noise levels. We remark that the CPU time is not proportional to the number of
iterations, because the count of the latter includes both inner and outer iterations;
the inner iterations for the zero-finder are less expensive than the outer iterations
that expand the solution subspace. Figures 1(c) and (d) display the computed
approximate solutions determined by Algorithm 1 and Algorithm 2, respectively,
when the noise level in the available image bδ is ν = 1 · 10−3.

Figure 2 compares the relative error as a function of the iteration number in
restorations computed with Algorithms 1 and 2 when q = 1 for the noise levels
ν = 1 · 10−j , j = 2, 3. For the purpose of comparison, we do not stop the iteration
when the stopping criterion (20) and (26) are satisfied. The figure shows Algorithm
2 to determine restorations of higher quality than Algorithm 1 for both noise levels.
✷

Example 4.2. We consider the restoration of the test image QRcode, which is
represented by an array of 256 × 256 pixels. We let q = 0.5 or q = 1 in (9). The

available image is represented by the vector bδ ∈ R
2562

. It is corrupted by motion
blur and additive zero-mean white Gaussian noise. The blurring matrix A is of
the same type as in Example 4.1 with half-bandwidth d = 15. The contaminated
image is determined similarly as in Example 4.1; it is shown in Figure 3(a). Figure
3(b) displays the desired blur- and noise-free image. It is represented by the vector
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noise iteration number µ relative error CPU time

% Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

ℓ2-ℓ0.5
0.1 13 40 1.2 · 10−2 4.9 · 10−1 3.02 · 10−1 2.47 · 10−1 5.25 · 101 2.52 · 101

0.01 91 34 6.8 · 10−3 4.9 · 10−1 1.51 · 10−1 1.83 · 10−2 1.06 · 102 3.23 · 101

0.001 166 34 3.3 · 10−3 7.0 · 10−1 1.24 · 10−1 5.60 · 10−3 1.20 · 102 3.48 · 101

ℓ2-ℓ1
0.1 14 41 1.2 · 10−1 7.0 · 10−1 3.03 · 10−1 2.52 · 10−1 5.47 · 101 2.52 · 101

0.01 107 36 6.8 · 10−3 2.4 · 10−1 1.48 · 10−1 2.30 · 10−2 1.07 · 102 3.74 · 101

0.001 180 34 3.3 · 10−1 3.4 · 10−1 1.17 · 10−1 7.50 · 10−3 1.24 · 102 3.78 · 101

Table 2 Example 4.2: Comparison of Algorithms 1 and 2 with q = 0.5 and q = 1 applied
to the restoration of the QRcode test images that are corrupted by motion blur and Gaussian
noise.
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Fig. 3 Example 4.2: (a) Available blur- and noise-contaminated QRcode image represented
by the vector bδ, (b) desired image, restored images determined by (c) Algorithm 1, and (d)
Algorithm 2.
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Fig. 4 Example 4.2: The logarithm of the relative error ek as a function of the iteration
number k for the MM-GKS-DP algorithm (Alg. 1) and the RR-MMGKS-DP algorithm (Alg.
2) with (a) q = 0.5 and (b) q = 1. The noise level in the contaminated image is ν = 1 · 10−3.

x̂ ∈ R
2562

, and is assumed not to be known. We computed restorations for the
noise levels ν = 1 · 10−j , j = 1, 2, 3.

Table 2 displays the values of the regularization parameter µ determined by the
algorithms, the relative errors ek in the computed approximate solutions, xcomp,
determined by Algorithms 1 or 2, and the CPU times required. The iterations
are terminated as soon as the stopping criteria (20) or (26) are satisfied. Table 2
shows Algorithm 2 to determine approximations of x̂ of higher quality with less
CPU time than Algorithm 1. Figures 3(c) and (d) depict the computed restorations
determined by Algorithms 1 and 2, respectively, when ν = 1 · 10−3.

Figure 4 shows log10(ek) for the restorations determined at step k of the al-
gorithms with applied for noise level ν = 1 · 10−3 with q = 0.5 and q = 1 in
(9). The figures show the RR-MM-GKS-DP algorithm (Algorithm 2) to determine
restorations of higher quality than the MM-GKS-DP algorithm (Algorithm 1). ✷

5 Conclusions

We apply a method for determining the regularization matrix based on reordering
of the unknowns, proposed by Novati and Russo [13] for Tikhonov regularization,
in a restarted ℓ2-ℓq minimization method for image restoration. The restorations
determined in this manner are of higher quality than when no reordering is carried
out. The regularization parameter is determined by the discrepancy principle. This
makes it possible to apply the method described without user interaction.
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