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Abstract. We describe a computational method for parameter estimation in lin-
ear regression, that is capable of simultaneously producing sparse estimates and
dealing with outliers and heavy-tailed error distributions. The method used is
based on the image restoration method proposed in [G. Huang, A. Lanza, S. Morigi,
L. Reichel, and F. Sgallari, Majorization-minimization generalized Krylov subspace
methods for `p-`q optimization applied to image restoration, BIT Numer. Math.,
57 (2017), pp. 351–378]. It can be applied to problems of arbitrary size. The
choice of certain parameters is discussed. Results obtained for simulated and real
data are presented.

1. Introduction

Linear regression is one of the basic tools of Statistics (see, e.g., [30]). The classical
theory, based on ordinary least squares (OLS) estimates, has a long history and is
well understood; however, it has important limitations. Two of those limitations are
the requirement for non-collinear predictors and sensitivity to outliers.

Regularization has been used in Statistics, under different names, for a few decades.
The goals have been diverse, but concentrated on three aspects: improving the sta-
bility of estimates, improving generalizability and prediction accuracy, and model
selection. In linear regression, regularization has been successful in dealing with
collinear predictors, producing “shrunken” and even sparse coefficient estimates (see,
e.g., [29]).

Outliers can strongly affect parameter estimates in OLS; this is also true in reg-
ularized methods that use quadratic loss for the fidelity (fitness) term. In multiple
regression, manual outlier identification can be particularly challenging, as several
outliers can mask each other (see, e.g., [14]). This makes it imperative to use methods
that can deal with outliers automatically.

In this article we propose a method for parameter estimation capable of simulta-
neously producing sparse estimates in the presence of collinearity and dealing with
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outliers and heavy-tailed error distributions. Our method is based on solving a non-
convex optimization problem, and our algorithm can be applied to the solution of
small and large problems.

The minimization method described has previously been applied to image recon-
struction problems [13, 17]. It is the purpose of the present paper to explore its
application to regression problems and compare its performance under different pa-
rameter choices. We therefore present the method with notation that is commonly
used in discussions on regression problems, which varies slightly from the notation
in image reconstruction.

Remarks about notation. Throughout this paper, we define ‖z‖p =
(∑m

j=1 |zj|p
)1/p

for z = [z1, z2, . . . , zm]T ∈ Rm and p > 0. The function z 7→ ‖z‖p is a norm for
p ≥ 1; we will be particularly interested in the situation when 0 < p < 1, and will,
for convenience, abuse terminology and refer to ‖z‖p as a norm also for the latter
values of p, even though this is not a norm for p < 1. The superscript T denotes
transposition.

2. Formulation of the estimation criterion

2.1. The regression problem. Consider the linear regression problem

(1) y = Xβ + ε, with E(ε) = 0 and Var(ε) = σ2In,

where X = [x1, . . . ,xn]T ∈ Rn×m contains the values of the m covariates on the n
observations, y ∈ Rn is the response, and In denotes the identity matrix of order n.

The OLS estimator, given by

(2) β̂OLS = arg min
β∈Rm

||y −Xβ||22,

has several desirable properties that have made it extremely popular: it is the best
linear unbiased estimator (BLUE) for model (1) by the Gauss-Markov Theorem
(here “best” means minimum variance). Moreover, it coincides with the maximum
likelihood estimator if the errors are Gaussian. In this case, the solution easily can be
computed by QR factorization or singular value decomposition of the matrix X. The
solution β̂OLS is unique only if rank(X) = m, which, in particular, implies that m ≤
n. Furthermore, the estimate becomes unstable (numerically) and highly variable
(statistically) if X is badly conditioned due to approximate multiple collinearity
among the covariates.

It is often of interest to find a solution to the regression problem also in situa-
tions when m > n, or when the covariates are highly correlated and exhibit multiple
collinearity [29]. One approach is to get rid of some covariates until X becomes
better conditioned, but this can involve an arduous selection problem. Regularized
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regression offers a way to obtain useful solutions to the regression problem and some-
times provides a method for model selection, i.e., selection of a subset of covariates
to be included in the model.

Regularized regression can be understood as constraining the possible solutions β.
By Lagrangian relaxation, it results in the addition of a penalty term, multiplied by
a regularization parameter. It can sometimes also be recast as a Bayesian approach,
by imposing a prior distribution on β. In general, these methods produce biased
estimates, and one of the goals is to trade the increase in bias for a reduction in
variance. Two important and popular methods are ridge regression [11] and Lasso
[28].

Ridge regression [11] consists in adding a penalty term based on the `2-norm.
Instead of (2), we consider the optimization problem

(3) β̂ridge(λ) = arg min
β∈Rm

{
||y −Xβ||22 + λ||β||22

}
,

for some λ > 0. The solution can be expressed as

β̂ridge(λ) = (XTX + λI)−1XTy.

Adding a positive multiple of the identity I to XTX is a straightforward way to
obtain an invertible matrix even if XTX is singular. In the context of ill-posed
problems, this approach is known as Tikhonov regularization [10]. The effect of the
ridge penalty is to shrink the estimates towards zero; the shrinkage is larger when λ
is larger.

Lasso [28] is a regularized regression method based on the optimization problem

(4) β̂lasso(λ) = arg min
β∈Rm

{
||y −Xβ||22 + λ||β||1

}
for λ > 0. The Lasso solution β̂lasso(λ) tends to be sparse, i.e., it tends to have entries
exactly equal to zero (larger values of λ lead to greater sparsity). This property
has been exploited as a method for model selection. However, the minimization (4)
also shrinks the non-zero components of the solution. A larger value of λ results in
more shrinkage. Achieving the appropriate level of sparseness might lead to excessive
shrinkage and bias [20].

2.2. `p-`q estimation. This estimation method encompasses (3) and (4) as particu-
lar cases (rescaling λ if necessary). We define the `p-`q estimator for β as the solution
to the optimization problem

(5) β̂lplq(p,q,λ) = arg min
β∈Rm

{
1

p
||y −Xβ||pp +

λ

q
||β||qq

}
,

where p, q, and λ are positive constants. The first term inside the argmin function
is referred to as the fidelity term and the second as the regularization term. We are
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primarily interested in minimization problems (5) with q < 1 and 1 ≤ p ≤ 2. Note
that when q < 1 or p < 1, the minimization problem is non-convex.

2.3. Geometric intuition. Figure 1 shows the geometric intuition behind `p-`q reg-
ularized estimation, including ridge regression and Lasso. By the Lagrange multiplier
method, a solution to the optimization problem (5) is found where level curves for
the fitness term and level curves for the penalty term meet in an “osculatory man-
ner”. This includes the cases when one of the curves has a “spike” or a sharp point
at the intersection. Since p < 2 leads to non-ellipsoidal level sets, the sharper spikes
appearing on the level sets of the penalty term when q < 1 help increase the proba-
bility of zeros appearing in the solution vector, i.e., the solution being at the tip of
a spike.

2.4. Bayesian justification. The definition of β̂lplq(p,q,λ) in (5) can be justified
with a Bayesian argument by using the generalized error distribution (GED) and
maximum-a-posteriori estimation. The GED, first studied by Subbotin [1, 27], is a
location-scale family of distributions with density function

ξν,µ,σ(x) = cν,σ exp

(
−|x− µ|

ν

νσν

)
.

It includes the Gaussian and Laplacian (or double exponential) distributions as par-
ticular cases, for ν = 2 and ν = 1, respectively. When ν < 2, we obtain distributions
with heavier tails than the Gaussian distribution. This makes the GED useful for
modeling situations in which the error term has a propensity for outliers [1].

We now set up a GED-based Bayesian version of the regression model (1). Assume
that β = [β1, β2, . . . , βm]T is a random vector with prior distribution

βj
i.i.d∼ fβ = fq,0,σβ , j = 1, 2, . . . ,m,

that x1,x2, . . . ,xn are either fixed or independent of β, and that the conditional
density for y = [y1, y2, . . . , yn]T is fy|β,x = ξp,xTβ,σy .

After observing independent samples y1, y2, . . . , yn with corresponding covariate
vectors x1,x2, . . . ,xn, the prior density for β is updated to the posterior as follows:

fβ|y,X ∝ exp

(
− 1

pσpy

n∑
i=1

|yi − xTi β|p
)

exp

(
− 1

qσqβ

m∑
j=1

|βj|q
)

= exp

(
− 1

pσpy
||y −Xβ||pp −

1

qσqβ
||β||qq

)
.
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Figure 1. Level curves of the fitness (red) and penalty (blue) terms,
in a penalized regression setting. A solution to the optimization prob-
lem (5) is obtained when level curves meet and are tangent to one
another (by the Lagrange multipliers method); the center of the fit-
ness term level curves corresponds to the non-penalized solution: OLS
for p = 2 and LAD (least absolute deviations) for p = 1. The top left
picture corresponds to ridge regression, while the top right corresponds
to Lasso. The bottom two figures use an `1-fidelity term (p = 1), pro-
ducing non-ellipsoidal level curves; the sharper spikes in the penalty
level curves obtained with q < 1 increase the chance of obtaining zero
entries in β̂, even when the fitness level sets are non-ellipsoidal.

Then the maximum-a-posteriori estimate for β is obtained by minimizing

1

p
||y −Xβ||pp +

σpy
σqβ

1

q
||β||qq,

which is the optimization problem (5) with λ = σpy/σ
q
β.
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2.5. `p-`q regularization and thresholding. Notice that both the prior and poste-
rior for β are continuous distributions in Section 2.4, and therefore assign probability
zero to the event of having any component of β exactly equal to zero. However, the
use of maximum-a-posteriori estimation results in a positive probability for such an
outcome whenever q ≤ 1, since the objective function in (5) is not differentiable, as
illustrated by the contour plots in Figure 1. The following example, extremely simple
as it is, clarifies this point and establishes a connection with thresholding functions.

Consider this simple situation: Let y = β + ε, with β ∼ ξq,0,λ and ε ∼ ξp,0,1,
independently. The maximum-a-posteriori estimate for β given y corresponds to the
`p-`q estimate for a regression problem with intercept but no covariates, and only
one observation: the objective function in (5) is

gy(β) =
1

p
|y − β|p + λ

1

q
|β|q,

and the posterior distribution of β given y is proportional to exp(−gy(β)).

We now describe the behavior of gy(β) and its minimizer β̂lplq = β̂lplq(p,q,λ,y), and
how that behavior changes with y. Figure 2 shows the behavior of the function gy
for different values of p and q. Without loss of generality, we may assume that y > 0
(the case y < 0 is symmetric). The function gy has no critical points for β < 0 or
β > y. If q ≤ 1, then gy is not differentiable at β = 0, and if p ≤ 1, then it is not
differentiable at β = y, while for 0 < β < y, we have

g′y(β) = −(y − β)p−1 + λβq−1.

If either p, q > 1 or p, q < 1, so that p− 1 and q− 1 have the same sign, then there is
a unique critical point of gy in (0, y): when p, q > 1, it is the global minimizer, but
when p, q < 1, it is a local maximum, and the global minimizer is found at either 0
or y; see Figure 2, Panels A, B, and C.

When p = 2 and q = 1 (the Lasso case), we have g′y(β) > 0 for all β ∈ (0, y)

(resulting in β̂lplq = 0) whenever y < λ, and β̂lplq = y − λ whenever y > λ. In

other words, y 7→ β̂lplq is the soft thresholding function with threshold λ, defined by
y 7→ max{0, |y| − λ} · sign(y); see Figure 3, Panel C.

The case 0 < q < p ≤ 1 produces the following behavior: For y < (λp/q)1/(p−q),

we obtain β̂lplq = 0, while for y > (λp/q)1/(p−q), we have β̂lplq = y. That is, y 7→ β̂lplq

is the hard thresholding function, with threshold (λp/q)1/(p−q) defined by y 7→ y ×
1{y>threshold}.

The situation when p ≤ q ≤ 1 does not seem to be useful, as the result is either
a reversed hard thresholding (zero for large values of y), constant equal to either 0
or y (depending on the value of λ), or undefined because of multiple global minima.
The case 1 < q ≤ p ≤ 2 results in functions that “shrink” y, with more shrinkage
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Figure 2. Plots of the objective function gy(β) from the simple ex-
ample in Section 2.5 for different values of p, q, and y. Vertical dotted
lines mark local minima (other than at β = 0). Panels D, E, and F
correspond to the situation of most interest when 0 < q < 1 < p ≤ 2:
Small values of |y| result in the minimum being attained at 0; larger
values of |y| lead to the appearance of another local minimum (Panel
E). Finally, even larger values of |y| make that local minimum become
the global minimum.

for small values of y if q < p (see Figure 3, Panels A and B), but without inducing
sparsity. In general, p < q does not lead to useful results, as we obtain a function
that expands small values of y, or the reverse hard thresholding function mentioned
above.

The case of main interest is 0 < q < 1 < p ≤ 2. (See Figure 2, Panels D, E, and
F, and Figure 3, Panels D, E, and F). There is an inflection point for gy between
0 and y; as y grows, the inflection point becomes a critical point, and immediately
generates a local maximum (closer to 0) and a local minimum (closer to y). As y
keeps growing, the value of gy at that local minimum eventually becomes smaller

than gy(0), becoming the global minimum. That is, β̂lplq as a function of y has a
jump discontinuity. The following proposition summarizes the results for this case.

Proposition 1. Assume 0 < q < 1 < p ≤ 2, and consider the function U : y 7→ β̂lplq,
as above.

7



(1) There exists t > 0 (which depends on p,q, and λ), such that U is identically
equal to zero for |y| < t.

(2) U has jump discontinuities at −t and t.
(3) For |y| > t, U(y) has the same sign as y, and |U(y)| < |y|.
(4) A lower bound for t is λ1/(p−q).
(5) An upper bound for t is (λp/q)1/(p−q).
(6) As |y| → ∞, |y − U(y)| = |y| − |U(y)| → 0.

Proof. Without loss of generality, we may assume that y > 0. Then gy is decreasing
on (−∞, 0] and increasing on [y,∞). Notice that limβ→0+ g

′
y(β) = +∞. Therefore

any local minimum in (0, y) is away from zero. For small values of y, gy is increasing
on (0, y): If there is a 0 < β < y such that g′y(β) = 0, that is, (y − β)p−1 = λβq−1,

then yp−1 > λyq−1, from which we conclude that y > λ1/(p−1). Taking

t = sup{y : U(y′) = 0, ∀y′ ∈ (0, y)}
shows (1) and (4). For (5), y = (λp/q)1/(p−q) is the value for which gy(y) = gy(0),

which implies that the global minimum was achieved at a value 0 < β̂lplq < y, since
g′y(y) > 0. This also shows (2), since t < ∞, and (3). For (6), notice first that g′′y
has at most one zero and, therefore, there are at most two critical points. Now let
ε > 0. Since q − 1 < 0, if y is large enough, then λ(y − ε)q−1 < εp−1. This implies
that g′y(y − ε) < 0, and it follows that the global minimum is achieved at a value

β̂lplq > y − ε. �

Figure 3 shows a few thresholding and shrinkage functions for different combina-
tions of values of p and q.

3. Numerical Methods

This section outlines the method for the solution of the minimization problem (5)
that is used for the computed examples in Sections 4 and 5. Further details can be
found in [13]. The minimization problem (5) can be written in more general form as

(6) min
β∈Rm

J (β), J (β) = Φfid(β) + λΦreg(β),

where Φfid(β) and Φreg(β) are referred to as the fidelity term and the regularization
term, respectively, and the parameter λ > 0 controls the trade-off between these
terms; see [4, 5] for a discussion on how to determine λ in the context of ill-posed
inverse problems. For the subsequent analysis, it is convenient to write the fidelity
and regularization terms in the form

(7) Φfid(β) =
1

p

n∑
i=1

φp
(
(Xβ − y)i

)
, Φreg(x) =

1

q

m∑
j=1

φq
(
(β)j

)
,
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Figure 3. Plots of the threshold functions U(y) from Section 2.5
for p = 2 and different values of q. The diagonal dashed line is the
identity. Panel A corresponds to ridge regression and gives shrinkage
by a scalar factor. Panel C corresponds to lasso. The function U in this
case gives soft thresholding. Panel B shows an intermediate function
that shrinks small values more, but not all the way to zero. The
Panels D, E, and F correspond to the situation of most interest when
0 < q < 1 < p ≤ 2: vertical dotted lines mark the theoretical bounds
(lower and upper) for the threshold t from Proposition 1. As q gets
closer to 0, the thresholding function approaches the hard thresholding
function h(y) = y1{|y|≥t}.

with the function φz : R→ R+ ∪ {+∞} given by

(8) φz(t) = |t|z, z ∈ R ,

where 0 < p, q ≤ 2. We remark that the minimization problem discussed in [13]
allows a regularization matrix L in the regularization term, but the application dis-
cussed in the present paper does not require this generality.

We note that the model (6)–(8) is convex and smooth when 1 < p, q ≤ 2, but
nonconvex and nonsmooth when 0 < p < 1 or 0 < q < 1. Minimization problems of
the type (6)-(8) appear in many applications in different areas, including numerical
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linear algebra [2, 33], compressive sensing [6, 7, 8, 9, 19], and image restoration
[8, 13, 17, 18, 25].

In the setting of linear regression, the matrix X in general is not square, and
contains the covariate data. While in classical linear regression X is required to have
linearly independent columns, in modern statistical applications that often fails, and
often there are more columns than rows.

We remark that the structure of the matrices X that arise in linear regression
is quite different from the structure encountered in image processing applications
[4, 5, 13, 17], where X is the discretization of a blurring operator. For instance,
if the blur is space invariant, then the matrix X is square with a Toeplitz-type
structure, which however may be modified due to boundary conditions. We found
that models (6)–(8), that arise from linear regression, often are more difficult to solve
than models from image restoration, in the sense that it is more important for the
former models that a good initial approximate solution be available. We compute a
suitable initial solution by solving a convex `2-`1 minimization problem.

One of the most popular and effective methods for the solution of `p-`q minimiza-
tion problems of the form (6)–(8), when 0 < p, q ≤ 2 with pq < 4, is the iteratively
reweighted norm (IRN) algorithm [23], also known as the iteratively reweighted least-
squares (IRLS) algorithm [31]. This solution approach is equivalent to the (multi-
plicative) half-quadratic method [8] and to the gradient linearization iterative pro-
cedure [21]. The IRN method solves a sequence of penalized weighted least-squares
problems that differ from each other by diagonal weighting matrices. Each one of
these least-squares problems is solved by the conjugate gradient (CG) algorithm; see
[23, 24].

Based on the observation that the weighting matrices generated by the IRN method
do not change very quickly during the iterations, two alternative approaches have re-
cently been proposed in [13, 17]. They extend the generalized Krylov subspace (GKS)
method proposed in [16] for the case p = q = 2 to the situation when 0 < p, q ≤ 2
and pq < 4. Instead of solving each least-squares problem generated independently
by the conjugate gradient method, these methods use a generalized Krylov subspace
determined by solving previously generated least-squares problems to solve the new
least-squares problem at hand. Computed examples in [17] illustrate that this ap-
proach may require significantly fewer matrix-vector product evaluations than the
IRN scheme described in [24, 23].

The GKS methods in [13, 17] are majorization-minimization (MM) methods. They
replace the original, possibly nonconvex, `p-`q problem (6)-(8) by a sequence of sim-
ple convex weighted least-squares problems. The kth iteration of the MM approach
consists of two steps: A majorization step, that generates a surrogate convex qua-
dratic functional that majorizes the `p-`q functional, and a minimization step that
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Figure 4. (a) Plots of the penalty function φz(t) defined in (8) for
some z-values, and (b) of the associated smoothed functions φz,ε(t)
defined in (9) with ε = 0.1.

finds a minimizer of the majorant. Two quadratic majorization techniques are de-
scribed in [13], one of them is the “adaptive aperture” method, which we will outline.
It is used in the computed examples of this paper.

Other solution methods for solving the problem (6)-(8) have been described in the
literature; see, e.g., [7, 12, 22, 32, 33]. It is outside the scope of the present paper to
compare these methods. Here we only note that the method used allows flexibility
in the choice of p and q, which makes it attractive for many problems.

We describe the construction of quadratic majorants. Further details can be found
in [13].

Definition 1. Let G(β) : Rm → R be a continuously differentiable function. Then
the function Q(β,γ) : Rm × Rm → R is said to be a quadratic tangent majorant for
G(β) if for any γ ∈ Rm the following conditions hold:

c1) Q(β,γ) is quadratic in β,
c2) Q(γ,γ) = G(γ),
c3) ∇βQ(γ,γ) = ∇βG(γ),
c4) Q(β,γ) ≥ G(β) for all β ∈ Rm,

where ∇β denotes the gradient with respect to the variable β.

The determination of quadratic tangent majorants requires the function G to be
continuously differentiable; cf. condition c3) above. We therefore smooth the func-
tional J (β) when 0 < p ≤ 1 or 0 < q ≤ 1. A popular smoothed version of φz is
given by

(9) φz,ε(t) =
(√

t2 + ε2
)z

with

{
ε > 0 for 0 < z ≤ 1,

ε = 0 for 1 < z ≤ 2.
11



To allow quadratic majorization, we replace the possibly nonsmooth original `p-`q
minimization problem (6)-(8) by the smoothed minimization problem

(10) min
β∈Rm

Jε(β), Jε(β) =
1

p

n∑
i=1

φp,ε
(
(Xβ − y)i

)
+
λ

q

s∑
j=1

φq,ε
(
(β)j

)
,

where a common value ε > 0 of the smoothing parameter is used for the penalty
functions in the fidelity and regularization terms. Figures 4(a)-(b) show the original
and smoothed penalty functions φz and φz,ε, respectively, for several values of the
parameter z of interest in this paper. Note that the function φz is not smoothed
when 1 < z ≤ 2.

One can show that the quadratic functional

Q(β,β(k)) =
1

2

∥∥∥(W
(k)
fid )1/2(Xβ − y)

∥∥∥2

2
+
λ

2

∥∥(W (k)
reg )1/2Lβ

∥∥2

2
+ c,

is a tangent majorant for Jε(β) at β = β(k). All terms that are independent of β

are collected in the term c, and the matrices W
(k)
fid and W

(k)
reg are defined by

W
(k)
fid = diag(w

(k)
fid ), w

(k)
fid =

((
Xβ(k) − y

)2

+ ε2

)p/2−1

,

W (k)
reg = diag(w(k)

reg), w(k)
reg =

((
Lβ(k)

)2

+ ε2

)q/2−1

,

where all the operations are meant element-wise; see [13] for details.
The minimization step in the kth iteration of the MM-GKS method can be written

as

β(k+1) = arg min
β∈Rm

[∥∥∥(W
(k)
fid )1/2(Xβ − y)

∥∥∥2

2
+ λ

∥∥(W (k)
reg )1/2β

∥∥2

2

]
.

This minimization problem has a unique solution if

(11) Ker
(
XTW

(k)
fid X

)
∩Ker

(
W (k)

reg

)
= {0},

where Ker(M) denotes the null space of the matrix M . This requirement generally
is satisfied. The MM method is shown in [13] to determine a stationary point of the
functional (10) when condition (11) holds.

4. Simulations

This section describes a simulated numerical experiment to show the performance
of the minimization method of Section 3. We apply the method to minimization
problems with synthetic data and compare its performance to the Lasso method.

We first describe how we generated the data. The matrix X ∈ R200×250 is de-
termined by using independent draws from the standard normal distribution. The

12



vector β ∈ R250 is such that 10 entries are chosen randomly with uniform distribution
with standard deviation 1, while the remaining 240 entries are set to zero. Starting
from X and β, we computed y according to

y = Xβ + εGED + εGauss,

where εGED is a GED variable with p = 1.5 and σ = 1, and εGauss is such that each
entry is the realization of a Gaussian variable with 0 mean and scaled such that
‖εGauss‖2 = 0.01‖Xβ‖2.

To generate random numbers from the GED, we exploit the following property: If
S ∼ U({−1, 1}) and Y ∼ Gamma(1/ν, 1/ν) are independent, then σSY 1/ν + µ has
a GED distribution with parameters (µ, ν, σ). This is easy to prove; the result also
can be found in [1, Eq. (4.2)].

Since the noise is a mixture of Gaussian and GED noise with p = 1.5, we set
p = 1.8 and q = 0.5, and use cross validation to select the parameter λ; we refer
to Stone [26] for a discussion on cross validation and to [5] for an application of
cross validation to `p-`q minimization in the context of image reconstruction. The
smoothing parameter in (10) is ε = 10−3. We will set all entries of the computed
solutions that are smaller than ε in magnitude to zero.

Since q < 1, the functional (10) is non-convex. Therefore, the computed solution
may depend on the initial guess. To ensure that the initial guess is not too far from
a desirable stationary point, we use the solution of the Lasso minimization as initial
guess for the MM method.

Figure 5 and Table 1 compare the method of Section 3 to the Lasso method and
`2-`q minimization. Figure 5 displays the computed vectors β and a scatter plot, i.e.,
the graphs obtained by plotting the magnitude of the computed coefficients against
the magnitude of the exact ones. Visual comparison of the computed coefficients
shows that Lasso fails to recognize as 0 most of the zero entries of β, while both the
`p-`q and `2-`q minimization methods are able to better identify the zero elements of
β. However, the `2-`q method does not recognize as zeros 6 entries that are supposed
to be nonvanishing and sets to 0 one nonzero entry of β, while `p-`q only recognize 2
additional nonzero entries and does not fail to identify any nonzero entry of β. The
scatter plot shows that, due to the use of the 1-norm in Lasso, this method shrinks
the nonzero coefficients. Shrinkage also can be observed in the solution computed by
the `2-`q method, but to a lesser extent. The method of Section 3 is able to impose
sparsity without shrinkage.

Table 1 shows the number of non-zero entries identified in each computed solution.
Recall that we consider any entry of the computed solution that is of magnitude

13



Method NNZ RRE Residual error
`p-`q 12 0.10434 0.11604
`2-`q 15 0.15308 0.15538
Lasso 118 0.19842 0.20427

Table 1. Comparison of the results obtained with Lasso, `2-`q, and
`p-`q in the computed example. For each method we report the number
of non-zero entries (NNZ), the relative restoration error (RRE), and
the residual error.

smaller than ε as zero. The table also shows the relative reconstruction error

RRE(β̂) =

∥∥∥β − β̂∥∥∥
2

‖β‖2

,

where β denotes the exact solution of the problem and β̂ the computed one. Finally,
Table 1 displays

Residual error(β̂) =
‖Xβ −Xβ̂‖2

‖Xβ‖2

.

Moreover, we consider the errors of type I and II, the first one is the percentage
of nonzero entries of β that are set to 0 in the reconstruction and the latter is the
percentage of nonzero entries in the reconstruction that are actually zero in the exact
β.

Table 1 shows the `p-`q method of Section 3 to give more accurate approximations

β̂ of the desired solution β in terms of error β − β̂ and of residuals.

5. Example with real data: Genomic association study for liver
metabolites in mice

In this section, we use a real data set of fairly large size to illustrate the combined
effect of using q < 1 for sparsity and p < 2 for dealing with outliers. The data
are part of a genomic study in mice [15]. A total of 246 males, from 99 strains of
inbred and recombinant inbred mice, were assayed using microarrays to measure the
expression level of 22,716 genes/transcripts. Separately, the levels of 283 metabolites
were also measured for those mice, with the goal of establishing associations between
gene expression levels and metabolite levels.

For our example, we use only one of the metabolites, pyridoxate, which produced
the strongest association result in the original study. Rather than performing 22,716
tests of association, as is customary, we use a single large-scale regression. Thus, our
regression problem has 246 observations and 22,716 covariates, resulting in a design
matrix X of size 246× 22, 717 (including the intercept).

14



0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

(b)

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d)

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(f)

Figure 5. Reconstructions and scatter plots. Panels (a) and (b) re-
port the reconstructions obtained with the `p-`q method, and associ-
ated scatter plots. Panels (c) and (d) report reconstruction determined
by the `2-`q method and the corresponding scatter plot. Panels (e) and
(f) report the reconstruction and the scatter plot obtained with Lasso.
The exact solution is displayed as a dotted line, while the solid line
represents the computed approximate solution.
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As expected from the discussion in Section 2.5, the results for p < 1 are highly
variable and often non-optimal. This difficulty does not arise when we set q < 1. In
this example, we used values of p between 1.25 and 2.

We fitted 392 `p-`q models, using all combinations of values for p, q, and λ in
Table 2. After fitting the model with p = q = 2 and λ = 0.8 (this corresponds to
ridge regression), subsequent fits used available computed solutions with the closest
p- q- and λ-values as starting points for the iterations. Note that, differently from
the simulated case of Section 4, we do not use cross validation to determine the value
of λ. In this way we are able to show the robustness of the proposed approach with
respect to the choice of this parameter.

p 2.00 1.75 1.50 1.25 1.00 0.75 0.50
q 2.00 1.75 1.50 1.25 1.00 0.75 0.50
λ 0.80 0.69 0.59 0.48 0.37 0.26 0.16 0.05

Table 2. Values for p, q, and λ used in the computations. The values
of p < 1 led to highly variable and suboptimal results.

All the models identified aldehyde oxidase 3 (Aox3 ) as the gene whose expression
is most strongly associated to pyridoxate levels, in agreement with the original study.
Results for the other genes vary.

Figure 6 shows residuals-versus-fitted-values plots for four models that illustrate
the effect of using p < 2. All models were fitted with q = 0.75 to encourage sparseness
of the computed solution. The models A and C were fitted using p = 2, while the
models B and D used p = 1.25. In order to make meaningful comparisons, the values
of λ were chosen so that the computed solutions for models B and C have similar
residuals of about the same `1-norm (expressed here as Mean Absolute Deviation,
MAD), while at the same time model A has the same level of sparsity as as model
B (about 89 non-zero coefficients), and model D has the same level of sparsity as C
(about 125 non-zero coefficients). Notice that for the same level of sparsity, p = 1.25
results in reduced MAD; similarly, for the same MAD, p = 1.25 results in greater
sparseness. Table 3 summarizes the results.

Examination of the outliers in the plots suggests that the improvements obtained
with p = 1.25 result from allowing the outliers to be farther from the predicted value,
while fitting better the bulk of the data points. In this case, the bulk of the data
have fitted values between −0.5 and 1.5, while a number of outliers are spread to
the left. It is visible that, for the same sparsity, the models with p = 1.25 allow for
the outliers to settle farther from the horizontal axis, while keeping the bulk of the
points more tightly bound to the axis.

16



●

●

●

●

●

●●

●

●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●
●● ●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●● ●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

lambda = 0.821

−2
.0

−1
.0

0.
0

1.
0

●

●

●

●

●

●●

●

●

●

●● ●●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

● ●

●
●●●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
● ●●● ●●

●

●
●

●

●
●

●

●

●

●

●
●● ●
●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●
● ●
●

●

●

●
●

●

●

●●●
●

●

●

●● ●●

●●

●

●

●

●
●

●
●

●
●● ●

●
●

●
●

●
● ●●

●

●
●

●

●

●

●
●

●

●

●

● ●●
●

●
●

●

●

●
●

●
●● ●● ●
● ●

●
●

●

● ●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
● ●

●
●
●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

● ●

●

●

●

●

−2
.0

−1
.0

0.
0

1.
0 lambda = 0.807

●

●

●

●
●

●
●

●

●
●

●
● ●
●

●●

●

●
●

●
●

●
●●

●
●

●
● ●

● ●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●
●● ●

●
●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●●●
●

●● ●●
●

●●

●
●

●

●

●

●

●

●
●●

●●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●
●
●

●

●

●

●● ●

●

●●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●● ● ●●

●
●

●

●

●

●

●
●●

●

●

● ●●
●●●

●

●

●
●

●
●

●
●● ●

●
●

●

●
● ●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●● ●

●
●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

−3 −2 −1 0 1

lambda = 0.422

●

●

●

●

●
●●
●

●

●

●● ●● ●●
●

●
●

●
●

●
●●●

●

● ● ●

●

●

●

●

●

●

●
●●●

●
●●

● ●
●
●●●● ●●

●
●

●

●●

●

●
●

●

●
●

●
●●

●
● ●●● ●●● ●●●

●●

●

● ●
●

●

●

●

● ●● ●
●

●● ●●
●

●
●

●

●
● ●

●
●
●

●

●●
●

●●

●

●

●
●

●

●
●

●● ●
●
●

●

●
●

●

●

●●● ●

●

●

●● ●●
●●

●

●

●

●●● ●
●
●● ●●

●

●
●

●
● ●●

●
●

●

●

●

●

●
●●

●

●

● ●●●
●

●

●

●

●
●

● ●●
●● ●● ●

●
●

●
● ●

●

●

●●●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●●●
●

●

●●
●

● ● ●●●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

● ●● ●

●

●

−3 −2 −1 0 1

−2
.0

−1
.0

0.
0

1.
0 lambda = 0.627

Mean Absolute
Deviation

0.271

0.185

0.126

p = 2

p = 1.25

~89 non-ze
ro

coeffic
ients

~125 non-ze
ro

coeffic
ients

q = 0.75 for all four models

R
es

id
ua

ls

Fitted Values

A

D

B C

Figure 6. Plots of residuals vs. fitted values, for four models (these
are the same models in Table 3). All models were fitted with q = 0.75;
models A and C have p = 2, while B and D use p = 1.25. The
values of λ were chosen so that B and C have similar residual `1 norm
(expressed here as Mean Absolute Deviation, MAD), A has the same
level of sparsity as B (about 89 non-zero coefficients), and D the same
level of sparsity as C (about 125 non-zero coefficients). Notice that for
the same level of sparsity, p = 1.25 results in reduced MAD; similarly,
for the same MAD, p = 1.25 results in greater sparseness. Examination
of the outliers in the plots suggests that the improvements obtained
with p = 1.25 result from allowing the outliers to be farther from the
predicted value, while fitting better the bulk of the data points.

6. Discussion

We considered the use of loss functions based on `p-(quasi)norms, in which, for
fixed p, q > 0, we define the regression optimization problem by setting the fitness
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p q λ MAD β̂ non-zeros
Model A 2.00 0.75 0.82 0.271 88
Model B 1.25 0.75 0.81 0.185 89
Model C 2.00 0.75 0.42 0.185 122
Model D 1.25 0.75 0.63 0.126 127

Table 3. Models in Figure 6. All models were fitted with q = 0.75.
Models A and C have p = 2, while B and D use p = 1.25. The
values of λ were chosen so that B and C have similar residual `1-norm
(expressed here as Mean Absolute Deviation, MAD), A has the same
level of sparsity as B (about 89 non-zero coefficients), and D the same
level of sparsity as C (about 125 non-zero coefficients). Notice that for
the same level of sparsity, p = 1.25 results in reduced MAD; similarly,
for the same MAD, p = 1.25 results in greater sparseness.

term to be the `p-(quasi)norm of the residual vector, and the penalty term to be the
`q-(quasi)norm of the coefficient vector, possibly transformed by a linear transforma-
tion L, and scaled by a regularization parameter λ > 0.

The use of loss functions for the fitness term that penalize outliers to a lower degree
than `2 has been studied for a long time in the robustness literature [14]. The use of
`1 for the penalty term has become a standard tool in Statistics [28], while the use
of non-convex penalties has been studied much less [20]. In this article we combined
both approaches, together with a numerical algorithm for fitting the models.

Values of q < 1 lead to more sparsity in the vector β̂ of estimated coefficients,
with similar residual `1-loss, compared with q ≥ 1. Correspondingly, for similar
levels of sparsity, q < 1 results in less shrinkage of the nonzero coefficients, and a
correspondingly reduced residual `1-loss.

While we have found that q < 1 is useful and produces stable results, using p < 1
often results in unstable and/or suboptimal fits, likely due to local minima in the
optimization landscape. One possible explanation is that using p < 1 encourages
sparseness of the residuals, which is not a worthwhile goal since it means that the
regression surface will interpolate a few of the data points, while paying little at-
tention to the rest of the points; in this situation, it is not surprising to have many
suboptimal local minima. The discussion in Section 2.5 suggests that choosing p < q
is not useful.

However, choosing 1 ≤ p < 2 proved helpful in reducing the effect of outliers,
improving fit for the bulk of the data, and providing a better trade-off between
sparseness and fit than when p = 2.

Part of the power of `p-`q minimization resides in its ability to deal with large
problems by reducing them to smaller problems through the use of generalized Krylov
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subspaces. In practice, this means that one can fit regression models with many
covariates (the example in Section 5 has over 22 thousand variables). This approach
is useful for variable selection when the number of variables is large, and the data is
contaminated by outliers.

The introduction of constraints in the problem (see, e.g., [3]) will be subject of
future research.
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