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Summary

The capability of a network to cope with threats and survive attacks is referred to
as its robustness. This paper discusses one kind of robustness, commonly denoted
structural robustness, which increases when the spectral radius of the adjacency
matrix associated with the network decreases. We discuss computational techniques
for identifying edges, whose removal may significantly reduce the spectral radius.
Nonsymmetric adjacency matrices are studied with the aid of their pseudospectra.
In particular, we consider nonsymmetric adjacency matrices that arise when peo-
ple seek to avoid being infected by Covid-19 by wearing facial masks of different
qualities.
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1 INTRODUCTION

Networks appear in many areas, including transportation, communication, social science, and chemistry; see, e.g., Estrada5 and
Newman15 for many examples. An edge-weighted network is represented by a graph  = { ,  ,}, which consists of a set of
nodes  = {nj}nj=1, a set of edges  = {ej}mj=1 that connect the nodes, and a set of edge weights  = {wj}mj=1 that indicate theimportance of the edges. The weights are assumed to be positive. For instance, in a road network, the nodes nj may represent
cities, the edges ej may represent roads between the cities, and the edge weight wj may be proportional to the amount of traffic
on the road represented by edge ej . We refer to a graph  as undirected if for each edge ej , there is an edge ekj that points in theopposite direction and has the same weight as ej . If this is not the case, then the graph  is said to be directed.
The adjacency matrixA = [aij]ni,j=1 ∈ ℝn×n associated with the graph  has the entry aij = wk if there is an edge ek emerging

from node ni and ending at node nj ; if the graph is undirected, then also aji = wk. Other matrix entries vanish. Thus, the matrix
A is symmetric if and only if the graph  is undirected. We will assume that there are no self-loops and no multiple edges. The
former implies that the diagonal entries of A vanish. Typically, the number of edges, m, satisfies 1 ≤ m ≪ n2. Then the matrix
A is sparse.
The maximum of the magnitudes of the eigenvalues of A is known as the spectral radius of A. We will denote the spectral

radius of A by �(A). It has been shown that the spectral radius is an important indicator of how flu-type infections spread in the
network that is associated with the adjacency matrix A; the smaller �(A), the less spread; see, e.g.,11, 14 and below. This paper
seeks to shed light on how the spectral radius of an adjacency matrix can be reduced by targeted edge perturbations, i.e., by
reducing edge-weights or removing edges. It is well known that reducing an edge-weight, or removing an edge, does not increase
the spectral radius of a nonnegative matrix; see, e.g.,9, Corollary 8.1.19. We are interested in identifying which weights should be
reduced, or which edges should be removed, to achieve a significant decrease of the spectral radius.
Howard et al.10 discuss the benefits of wearing facial masks to reduce Covid-19 transmission. Several studies found 70% or

higher efficacy of facial masks in protecting the wearer of Covid-19 infections. They found that wearing a mask protects people
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around persons wearing masks, as well as the people who wear a mask, but to lesser degree. Also the type of mask is important;
see also Gandhi et al.6, 7 for related discussions.
Let the nodes in a graph represent people and the edge weights represent the possibility of getting a sufficient viral load to

become ill with Covid-19. The modeling of facial masks of different quality results in a nonsymmetric adjacency matrix A
associatedwith the graph; see Section 3.We refer to a network (or graph) that is robust against the spread of viruses as structurally
robust, and measure the structural robustness in terms of the spectral radius of the adjacency matrix associated with the graph.
A network is more structurally robust, the smaller the spectral radius is. We are interested in determining which edge-weights
should be reduced, or which edges should be removed, to give a relatively large decrease in the spectral radius of the adjacency
matrix.
This paper is organized as follows. Section 2 discusses the structural robustness of a network. In particular, the sensitivity

of the eigenvalues to perturbations of the adjacency matrix A associated with the network is considered. Tridiagonal adjacency
matrices that model the role of face masks are described. Section 3 is concerned with the calculation of the spectral radius of
a large matrix, and with the determination of edges that should be eliminated, or whose weight should be reduced, to achieve
a relatively large decrease in the spectral radius of A. Properties of the pseudospectrum of a matrix are reviewed and applied.
Some large-scale computed examples are presented in Section 4, and concluding remarks can be found in Section 5.

2 STRUCTURAL ROBUSTNESS

A formulation of structural robustness against the spread of viruses comes from spectral graph theory. Epidemiological theory
predicts that if the effective infection rate of a virus in an epidemic is below the reciprocal of the spectral radius �(A) of the
adjacency matrix A associated with the graph that represents the network, then the virus contamination in the network dies out
over time. In more detail, assume a universal virus birth rate � along each edge that is connected to an infected node, and a virus
death rate � for each infected node. If the effective infection rate, given by �∕�, is below the epidemic threshold for the network,
i.e., if

�
�
< 1
�(A)

,

then the infections tend to zero exponentially over time. In fact, the reciprocal of the spectral radius �(A) is a network-epidemic
threshold in a Susceptible-Infectious-Susceptible (SIS) network, in which the evolution of the viral state si(t) ≥ 0 of node ni,
i = 1, 2,… , n, at time t is governed by the system of differential equations

ds(t)
dt

= −�s(t) + � diag(e − s(t))As(t),

where s(t) = [s1(t), s2(t),… , sn(t)]T and e = [1, 1,… , 1]T ∈ ℝn. Indeed, if one has �(�−1�A) < 1, then s(t) → 0 as t → ∞;
see, e.g.,11 and references therein. The smaller �(A) is, the higher is the structural robustness of the network against the spread
a virus. Hence, in order to enhance the structural robustness of a network, one may want to reduce the weights of suitable edges
in  of the graph , or eliminate certain edges; see14.
Let ej = [0,… , 0, 1, 0,… , 0]T ∈ ℝn denote the jth axis vector and assume that the entry aℎk of A is positive. Consider the

rank-1 matrix
Eℎk = −aℎkeℎeTk ,

where the superscript T denotes transposition. Regard the perturbed adjacency matrix
Ã = A + "Eℎk, (1)

where " > 0 is chosen small enough so that the matrix Ã is nonnegative. Assume for the moment that the graph  associated
with the adjacency matrix A is strongly connected, i.e., that starting at any node of the graph, one can reach any other node of
the graph by traversing the edges along their directions. This is equivalent to A being irreducible. Then the Perron–Frobenius
theorem applies, see, e.g.,9, Chapter 8, and shows that the eigenvalue of A of largest magnitude is unique and equals �(A). This
eigenvalue is commonly referred to as the Perron root of A. Moreover, right and left eigenvectors of A associated with the
Perron root,

u = [u1, u2,… , un]T and v = [v1, v2,… , vn]T ,
respectively, are unique up to scaling. They can be normalized to be of unit Euclidean norm and only have positive entries.
These normalized vectors are known as the right and left Perron vectors, respectively, ofA. We define the spectral impact of the
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directed edge eℎk ∈  on the spectral radius of A as the relative change of the spectral radius �(A) induced by the perturbation
of the edge (1), i.e.,

s(�(A))ℎk =
�(A) − �(Ã)

�(A)
.

A first order approximation of s(�(A))ℎk , when 0 < " ≪ 1, is derived in14, Eq. (17) as follows. Observe that

�(A) − �(Ã) ≈ −
vT "Eℎku

vTu
=
" aℎkvℎuk

vTu
> 0,

Let � be a simple eigenvalue of A, and let x, y ∈ ℝn be associated right and left eigenvectors. Then the condition number of �
is defined as

�(�) =
‖x‖‖y‖
|xT y|

;

see, e.g.,16. Here and throughout this paper ‖ ⋅ ‖ denotes the Euclidean vector norm or the spectral matrix norm. In particular,
the condition number of the largest eigenvalue �(A) of A is given by

�(�(A)) = 1
vTu

.

Therefore,
s(�(A))ℎk ≈ �ℎk

" �(�(A))
�(A)

, (2)
where

�ℎk = aℎkvℎuk. (3)
Notice that the first order approximation (2) of the spectral impact of the edge eℎk ∈  , which points from node nℎ to node
nk, depends on the right and left Perron vectors of A, as well as on the weight of the edge eℎk. To make �(A) smaller, we may
consider reducing weight(s) associated with the largest coefficients (3). To determine these coefficients, one needs the Perron
vectors u and v.
When the matrix A is symmetric, it is meaningful to require the perturbation of A also be symmetric. We therefore define the

symmetric perturbation matrix
E(S)
ℎk = −aℎk(eℎe

T
k + ekeTℎ ).

Consider the perturbed matrix
Ã = A + "E(S)

ℎk

for some small " > 0. Then a first order approximation of the spectral impact s(�(A))ℎk of the undirected edges eℎk, ekℎ ∈  on the
spectral radius �(A) is given by

s(�(A))ℎk ≈ �ℎk
"

�(A)
,

where we have used the fact that the right and left Perron vectors coincide, and
�ℎk = 2 aℎkuℎuk;

see14, Eq. (21).
Remark 1. Let the adjacency matrix A = [aℎk]nℎ,k=1 ∈ ℝn×n be diagonalizable, i.e., A = XΛX−1, where the columns of
X ∈ ℝn×n are linearly independent eigenvectors of A, and Λ = diag[�1, �2,… , �n] contains the eigenvalues. Then

�(A)k ≤ ‖Ak‖ ≤ �(X)�(A)k, (4)
where �(X) = ‖X‖‖X−1

‖ is the spectral condition number of X. In particular, when A is symmetric, we have �(A)k = ‖Ak‖
for all k.
A walk of length k starting at node ni and ending at node nj is a sequence of k+ 1 nodes nl1 , nl2 ,… , nlk+1 with nl1 = ni and

nlk+1 = nj such that there is an edge eqp that points from node nlp to node nlp+1 for p = 1, 2,… , k; see5, 15. Edges in a walk may
be repeated. If the graph is unweighted, then the entry (i, j) of Ak equals the number of walks of length k from node ni to node
nj . For weighted graphs, the entries of Ak are suitably modified. In view of the bounds (4), it may be a good idea to eliminate
edges in long walks or to reduce the weight of such edges.
Consider the Frobenius matrix norm ‖A‖F =

√

∑n
ℎ,k=1 a

2
ℎk. The inequalities ‖A‖ ≤ ‖A‖F and (4) suggest that in order to

reduce �(A) the most, it may be a good idea to remove nodes of with many edges, or to reduce the weights of edges that emerge
from or end at these nodes. In other words, we would like to remove or reduce the Euclidean norm of rows and/or columns of
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the adjacency matrix whose Euclidean norm is relatively large. This can we achieved by removing specific nodes or by reducing
edge weights.
We conclude this section with a few illustrations for some weighted graphs that are associated with tridiagonal adjacency

matrices. First consider the case when each node represents a person, and all persons wear the same kind of facial mask. The
persons are in a line and each person only can infect the following or preceding person in the line. The adjacency matrix is

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 � O
� 0 �
� 0 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ �O � 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝn×n, (5)

where the edge weight � > 0 depends on properties of the mask. A high-quality mask corresponds to a small value of � > 0.
The graph associated with the matrix (5) is undirected, (strongly) connected, and weighted.
Proposition 1. The Perron root � of the nonnegative symmetric tridiagonal Toeplitz matrix (5) is 2� cos �

n+1
. The Perron vector

u = [u1, u2,… , un]T , suitably scaled, has the entries uk = sin k�
n+1

, 1 ≤ k ≤ n. In particular, when n is odd, the largest entry is
u(n+1)∕2, and when n is even the two largest entries, un∕2 and un∕2+1, have the same size.
Proof. Explicit formulas for eigenvalues and eigenvectors of tridiagonal Toeplitz matrices can be found in, e.g.,19.
Note that the Perron vector in Proposition 1 is independent of the numerical value � ≠ 0 of the entries of (5). Moreover, the

Perron vector suggests that the node n(n+1)∕2 for n odd, and the nodes nn∕2 and n(n+2)∕2 for n even, are the most important nodes
of the graph; see, e.g., Bonacich3. This is in agreement with the intuition that the nodes “in the middle” of the graph are the
best connected nodes and, therefore, the most important ones. According to the estimate (2), edges that connect these nodes to
the graph have the largest spectral impact. Consequently, to decrease the spectral radius �(A) of the matrix (5) maximally, we
should reduce the weights of the edges eℎk, ekℎ ∈  , where

• ℎ = (n + 1)∕2 and k = (n + 3)∕2, or ℎ = (n + 1)∕2 and k = (n − 1)∕2, if n is odd;
• ℎ = n∕2 and k = (n + 2)∕2 if n is even.

Note that setting the edge-weights to zero results in a disconnected graph. It is often meaningful to keep a small positive weight.
This results in an irreducible adjacency matrix. Properties of tridiagonal matrices with some “tiny” positive off-diagonal entries
have been studied by Parlett and Vömel21.
Example 2.1. Let A ∈ ℝ25×25 be the symmetric tridiagonal Toeplitz matrix (5) with � = 1. Thanks to Proposition 1, one easily
computes the spectral radius �(A) = 1.985418 and the unit norm Perron vector u. If one chooses to reduce the weights for the
edges e13,14 and e14,13, as we suggested in the above discussion, then one obtains the perturbed adjacency matrix for a weighted
graph,

Ã = A + "E(S)
13,14 = A − "(e13e

T
14 + e14eT13).

Setting " = 0.1 yields �(Ã) = 1.973080. The spectral impact of reducing the weights for the edges e13,14 and e14,13 is s(�(A))13,14 =
0.006241, and its first order approximation is 2 �u13u14"∕�(A) = 0.007692.
If, instead, one reduces the weights for the edges e1,2 and e2,1 and constructs the perturbed adjacency matrix

Ã = A + "E(S)
1,2 = A − "(e1e

T
2 + e2eT1 ),

with " = 0.1, one has �(Ã) = 1.985055. Here, s(�(A))1,2 = 0.000182 and 2 �u1u2"∕�(A) = 0.000224.
Thus, s(�(A))13,14 can be seen to be significantly larger than s(�(A))1,2 . This example shows the reduction of the spectral radius of the

adjacency matrix to be much larger when the weight of an “important” edge is reduced than when the weight of a less important
edge is reduced by the same amount. This illustrates the importance of well-connected people wearing high-quality face masks,
which correspond to small edge weights. We remark that " > 0 is chosen fairly small in this example so that the estimate (2) is
applicable.
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In a description of an epidemic, every node of a realistic network through which an infectious disease might spread, may
correspond to an individual as well as to a cluster of individuals. For instance, we can assign individuals with similar age
or location to the same group. Such a high-level description may be simpler to analyze than a model that accounts for each
individual. Consider a network in which each node ni corresponds to a place where a cluster of cohabiting people live. This
model takes into account the lockdown protocol adopted by the Italian Government on Easter 2021, during one of the most
delicate phases of the spreading of COVID-19. On Sunday, April 4th, it was permitted to have Easter lunch only with a small
number of friends or relatives. When meeting people who did not live together, it was recommended to wear a face mask indoors,
also. In particular, two cohabiting adults, possibly accompanied by minor children, were allowed to do only one trip in order to
reach a place (within the region) of two cohabiting friends or relatives. Moreover, it was permitted to host at one place up to two
non-cohabiting people, plus minor children. As an example, in a family of mother, father, and a 21 years old child living at place
ni, the parents were permitted to visit two cohabiting relatives or friends at place nj and the child was permitted to receive two
cohabiting relatives or friends at place ni. Therefore, if a trip corresponds to an edge, then a tridiagonal matrix can be seen as
an effective approximation of the adjacency matrix of the “2021 Easter lunch network". Such a simplified model allows one to
analyze the results and verify that the approach is reasonable at least in this simple situation. Moreover, the behavior of such a
model may illustrate different scenarios for decision-makers in public health regarding the lockdown intensity. As an example,
taking into account aerosol transmission of the COVID-19 virus in enclosed spaces, also the length of time spent at a place might
be regulated in a hypothetical lockdown protocol to be adopted, e.g., for Christmas dinner on December 24th, 2021. This would
result in weighting edges according to the duration of a visit. Alternatively, in order to mitigate the infectious disease spread,
the Italian Government hypothetically might not permit a family unit or, better, a cluster of cohabiting people to divide. This
would result in a “2021 Christmas dinner network” where an edge is weighted according to the number of people in a moving
cluster and a node can have in-edges or out-edges.
We now turn to a more accurate model of the role of facial masks. Let node vi represent a person who wears a mask, and

assume that the fraction w(out)
i of viruses penetrates the mask from the outside in unit time, and the fraction w(in)

i penetrates the
mask from the inside in unit time. Let again the adjacency matrix A ∈ ℝn×n be tridiagonal. The edge from vi to vi+1 has the
weightw(in)

i w(out)
i+1 for i = 1, 2,… , n−1, and the edge from vi+1 to vi has the weightw(in)

i+1w
(out)
i for i = 1, 2,… , n−1. This yields

the adjacency matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 w(in)
1 w(out)

2 O
w(in)
2 w(out)

1 0 w(in)
2 w(out)

3
w(in)
3 w(out)

2 ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ w(in)

n−1w
(out)
nO w(in)

n w(out)
n−1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

with 0 < w(in)
j , w(out)

j ≤ 1 for all j; if person k does not wear a mask, then w(in)
k = w(out)

k = 1. This model assumes that all
interactions are of the same duration and that the distance between adjacent people is the same; a rescaling of thew(in)

j andw(out)
jis required to model interactions of different durations and of people being at different distances from each other. In any case,

the matrix (6) typically is nonsymmetric.
We obtain an adjacency matrix that is simpler to analyze by projecting the matrix (6) orthogonally onto the subspace T of

tridiagonal Toeplitz matrices of order n. Let T be the orthogonal projection of the matrix (6) onto T . Then

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 t1 O
t−1 0 t1

t−1 0 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ t1O t−1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝn×n, (7)

where the superdiagonal entry t1 is the average of the superdiagonal entries of the matrix (6), and the subdiagonal entry t−1 is
the average of the subdiagonal entries of (6); see, e.g.,18. When all w(in)

j and w(out)
j are positive, so are t1 and t−1, and it follows

that the matrix (7) is irreducible.
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FIGURE 1 Example 2.2: Eigenvalues of tridiagonal matrix A (blue circle) and eigenvalues of the closest tridiagonal Toeplitz
matrix T (red circles).

Assume for the moment that w(in)
j = w(out)

j > 0 for all j. Then the matrices (6) and (7) are symmetric. It follows from a result
due to Bhatia1 that if the relative distance between the symmetric matrices (6) and (7) is small in the Frobenius norm, then the
relative difference of the spectra of (6) and (7) also is small. In detail, let the matricesM1 ∈ ℝn×n andM2 ∈ ℝn×n be symmetric,
and consider the relative distance between these matrices in the Frobenius norm,

dM1,M2
=

‖M1 −M2‖F

‖M1‖F
.

Order the eigenvalues �j(M1) of M1 and �j(M2) of M2 according to �1(M1) ≥ �2(M1) ≥ … ≥ �n(M1) and �1(M2) ≥
�2(M2) ≥… ≥ �n(M2). Then

√

∑n
i=1 (�i(M1) − �i(M2))2
√

∑n
i=1 �i(M1)2

≤ dM1,M2
.

However, as the following example shows, the spectral radius of M1 may be much smaller than the spectral radius of M2,
also when dM1,M2

is small.
Example 2.2. Let A ∈ ℝ100×100 be a symmetric tridiagonal irreducible matrix with uniformly distributed random entries in the
interval [0, 1]. These entries were generated with the random number generator rand in MATLAB. Let T ∈ ℝ100×100 denote the
closest symmetric tridiagonal Toeplitz matrix to A. We obtain dA,T = 0.49 and

√

∑100
i=1 (�i(A) − �i(T ))2
√

∑100
i=1 �i(A)2

= 0.19,

where the eigenvalues of A and T are ordered in non-increasing order. Figure 1 shows the eigenvalues of A and T as functions
of their index. The extreme eigenvalues of A and T are seen not to be close. In particular, the spectral radius of T is quite a bit
smaller than the spectral radius of A.
The following result is an analogue of Proposition 1 for nonsymmetric tridiagonal Toeplitz matrices.

Proposition 2. The Perron root � of the nonnegative tridiagonal Toeplitz matrix (7) is 2√t−1t1 cos �
n+1

. The right Perron
vector u = [u1, u2,… , un]T , suitably scaled, has the entries uk = (t−1∕t1)k∕2 sin

k�
n+1

, 1 ≤ k ≤ n. The left Perron vector
v = [v1, v2,… , vn]T , suitably scaled, has the entries vk = (t1∕t−1)k∕2 sin k�

n+1
, 1 ≤ k ≤ n.

Proof. Explicit formulas for eigenvalues and eigenvectors of tridiagonal Toeplitz matrices can be found in, e.g.,19.
Remark 2. Symmetrizing the matrix (7), i.e., considering an undirected graph instead of the directed graph represented by the
adjacency matrix (7), gives the symmetric adjacency matrix A = 1

2
(T + T T ) with Perron root

�(A) = 2
(

t−1 + t1
2

)

cos �
n + 1

.
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Thus, the Perron root is determined by the arithmetic mean of t−1 and t1, while the Perron root of the matrix (7) is defined by
the geometric mean of these quantities; cf. Proposition 2.
Example 2.3. Let A ∈ ℝ25×25 be the tridiagonal Toeplitz matrix (7) with t−1 = 1.5 and t1 = 0.5. This matrix may model
a situation where the probability of inhaling infected droplets is three times larger than the probability of exhaling them; e.g.,
people wearing chirurgical masks. Proposition 2 yields �(A) = 1.719422 and the unit norm right and left Perron vectors u and
v. It is easy to see that the edge e12,13 is a maximizer of maxℎ,k �ℎk, where �ℎk = aℎkvℎuk; see (2)–(3). In order to reduce the
weight of e12,13, one constructs the perturbed matrix

Ã = A + "E12,13 = A − "a12,13e12eT13.

Setting " = 0.1, we obtain �(Ã) = 1.713348. Thus, the spectral impact of the perturbation is s(�(A))12,13 = 0.003532; its first orderapproximation
�12,13

"�(�(A))
�(A)

= a12,13v12u13
"�(�(A))
�(A)

= 0.003846

is fairly close.
Assume that there is only one high-quality face mask available. This example shows which person should be wearing it to

reduce the spectral radius the most. Notice that symmetrizing the matrix A would have given both the matrix and the results of
Example 2.1.

3 ESTIMATING AND REDUCING THE SPECTRAL RADIUS

This section discusses several ways to estimate the spectral radius, and the right and left Perron vectors, of a large adjacency
matrix A ∈ ℝn×n. If A just is required to be nonnegative, then there is a nonnegative vector x ∈ ℝn, such that Ax = �(A)x.
However, this vector may not be unique up to scaling; see9, Theorem 8.3.1 and p. 505. In this section, we will assume that A is a
nonnegative irreducible adjacency matrix. Then its right and left Perron vectors are unique up to scaling, and can be scaled to
be of unit norm and have positive entries only. These vectors are used to determine which edge-weights to reduce to obtain a
new adjacency matrix with, hopefully, a significantly reduced spectral radius. If our aim just is to determine the spectral radius
of A, then irreducibility is not required.
Moreover, we analyze the behavior of the Perron root when the adjacency matrix is perturbed by the worst "-size perturbation

for �(A). This approach of approximating the rightmost "-pseudoeigenvalue ofA takes into account the possibility of the entries
ofA being contaminated by error and gives an estimate of the sensitivity of the structural robustness to a worst-case perturbation.
We first describe a computational method that is well suited for large networks, whose associated adjacency matrix is non-

negative and irreducible, but does not have other structure that can be exploited. Subsequently, we will discuss methods that are
able to use certain structural properties.

3.1 Approximation of the spectral radius of a nonnegative irreducible matrix
Let A ∈ ℝn×n be a large nonnegative irreducible adjacency matrix. The approach of this section does not exploit any addi-
tional structure that A may possess. We determine approximations of the right and left Perron vectors of A by the two-sided
Arnoldi method. This method was first described by Ruhe22 and has more recently been studied and improved by Zwaan and
Hochstenbach28.
We carry out the following steps:
• Apply the two-sided Arnoldi method to A to compute the Perron root �(A), and the unit right and left Perron vectors u

and v, respectively, with positive entries.
• Let

E = vuT . (8)
For each edge eℎk ∈  in the graph that represents the network, the corresponding entry of E, i.e., vℎuk, appears in the
first-order approximation (3) of the spectral impact of the edge. The Perron root �(A+ "E) of the matrix A+ "E satisfies

�(A + "E) = �(A) + "v
TEu
vTu

+ O("2)
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for |"| sufficiently small; see Wilkinson26, Chapter 2. We refer to the matrix (8) as a Wilkinson perturbation. This is the worst
perturbation for �(A) in the following sense. For any nonnegative matrix E with ‖E‖ = 1, one has

vTEu
vTu

=
|vTEu|
vTu

≤ ‖v‖‖E‖‖u‖
vTu

= 1
vTu

,

with equality for the matrix (8). Moreover,
�(A + "E) − �(A) ≈ "v

TEu
vTu

= "�(�(A)).

We let " > 0. Note that the spectrum of A+ "E may be considered a very sparse approximation of the "-pseudospectrum
of A in the sense that the "-pseudospectrum is made up of the spectra of all perturbations of A of norm at most "; see
Trefethen and Embree25. We only compute the spectrum for one perturbation, A + "E, of A. The size of " used in the
computations may depend on whether the adjacency matrix is contaminated by errors. For instance, the edge weights may
not be known exactly; see Trefethen and Embree25 for insightful discussions on pseudospectra.

• Typically, the first order approximation
�(A) + "v

TEu
vTu

of �(A + "E) is sufficiently accurate. In the rare occasions when this is not the case, we can compute an improved
approximation by applying the (standard) Arnoldi method described, e.g., by Saad23, or the implicitly restarted (standard)
Arnoldi method described in13 and implemented by theMATLAB function eigs. We note that the perturbed matrixA+"E
is nonnegative and irreducible if this holds for A. Indeed, if all entries of the Perron vectors are positive, then so are all
entries of A + "E for " > 0.

The Perron root �(A + "E) is a rightmost "-pseudoeigenvalue of A. We note that �(A + "E) may be much larger than �(A)
when the Perron root is ill-conditioned, i.e., when vTu is small.
The analysis in Section 2 suggests that in order to reduce �(A) by removing an edge of , we should choose an edge eℎk with a

large weight aℎk that corresponds to a large entry of the matrix vuT in (8); see (2)-(3). Removing an edge corresponds to setting
its edge-weight to zero. We can in the same manner choose which edge-weight to reduce to a smaller positive value in order to
reduce the spectral radius.
Example 3.1. Consider a matrix T ∈ ℝ10×10 of the form (7) with t−1 = 0.1 and t1 = 1. The eigenvalues of T are real and appear
in ± pairs. Thus, there are two eigenvalues of largest magnitude. The positive one is about 0.6. Now we add suitable entries in
the (1, 10) and (10, 1) positions to transform T into a circulant matrix Tc . Then �(Tc) = 1.1 and Tc also has the eigenvalue −1.1.
The remaining eigenvalues are complex-valued.
The large perturbation induced in the spectrum of T by this perturbation of T can be explained by analyzing the structure of

the matrix E in (8), which we construct by using the left and right Perron vectors given in Proposition 2. Figure 2 visualizes
the size of the entries in E. Notice that the largest entries are confined to the bottom left corner. Thus, adding the entry 1 in the
position (10, 1) induces a large perturbation in the Perron root.
When the adjacency matrix A is very large, we may consider replacing the vectors u and v in (8) by the vector e =

1
√

n
[1, 1,… , 1]T and compute �(A) and �(A + " e eT ) by the (standard) Arnoldi or restarted Arnoldi methods to determine the

structural robustness of the graph with adjacency matrix A. This approach was applied in20 to estimate pseudospectra of large
matrices.
The large perturbation in �(A) illustrated in Example 3.1 would not have occurred if the sparsity structure of the matrix

T would have been taken into account, i.e., if one only would allow perturbations of positive edge-weights. We therefore are
interested in determining perturbations "E of A that take the sparsity structure of A into account.

3.2 Approximation of the spectral radius taking the sparsity structure into account
The method in this subsection is suitable when it is desirable that the perturbation "E of the adjacency matrix A has the same
sparsity structure asA. Let  denote the cone of all nonnegative matrices inℝn×n with same sparsity structure asA, and letM|
be the matrix in  that is closest to a given nonnegative matrixM with respect to the Frobenius norm. It is straightforward to
verify that the matrixM| is obtained by replacing all the entries ofM outside the sparsity structure by zero. This approach
takes possible uncertainty of the available edge-weights into account. The analysis in20 leads to the following numerical method:
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FIGURE 2 Example 3.1: log10 of the entries of the matrix (8).

• Apply the two-sided Arnoldi method to A ∈  to compute the Perron root �(A), as well as the unit right and left Perron
vectors u and v, respectively, with positive entries.

• Project vuT into  , normalize the projected matrix to have unit Frobenius norm, and define
E =

vuT |
‖vuT |‖F

. (9)
We refer to the matrix (9) as an -structured analogue of the Wilkinson perturbation. This is the worst -structured
perturbation for �(A); one has, by16, Proposition 2.3,

vTEu
vTu

=
|vTEu|
vTu

=
‖v‖‖vuT |‖F‖u‖

vTu
=

‖vuT |‖F
vTu

.

Hence,
�(A + "E) − �(A) ≈ "v

TEu
vTu

= "� (�(A)),

where
� (�(A)) =

‖vuT |‖F
vTu

denotes the -structured condition number of �(A); see12, 16. We let " > 0. Similarly as above, the spectrum of A+ "E is
a very sparse approximation of the -structured "-pseudospectrum ofA in the sense that this pseudospectrum is evaluated
by computing the spectrum for many-structured perturbations of T of norm at most "; see, e.g.,20. Here we only compute
the spectrum for one perturbation of T .

• If desired, compute �(A+ "E) by the (standard) Arnoldi or restarted Arnoldi methods. We note that the perturbed matrix
A + "E is nonnegative and irreducible if this holds for A, and exhibits the same sparsity structure as A.
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The Perron root �(A+ "E) helps us to estimate the structural robustness of the network. Indeed, it represents an approximate
-structured "-pseudospectral radius of the -structured "-pseudospectrum of the adjacency matrix A ∈  .
We note that �(A + "E) may be much larger than �(A) when the Perron root has a large -structured condition number

� (�(A)).
As mentioned above, in case the network is very large, we may consider replacing the vectors u and v in (9) by the vector e.

An analogous -structured perturbation of the adjacency matrix A is given by
eeT |

‖eeT |‖F
.

We may apply the (standard) Arnoldi or implicitly restarted Arnoldi methods to estimate �(A) and
�
(

A + "
eeT |

‖eeT |‖F

)

.

This approach has been applied in20 to estimate structured pseudospectra of large matrices.

3.3 Approximation of the spectral radius for perturbations of tridiagonal Toeplitz matrices
Structure respecting projections, analogous to the ones discussed in the previous subsection, also can be applied to impose other
structures. This subsection illustrates how they can be used to impose tridiagonal Toeplitz structure. Let T be a nonnegative
tridiagonal Toeplitz matrix (7). We denote by  the cone of all nonnegative tridiagonal Toeplitz matrices with zero diagonal
in ℝn×n and by M| the matrix in  closest to a given nonnegative matrix M ∈ ℝn×n with respect to the Frobenius norm.
It is straightforward to verify thatM| is obtained by replacing the sub- and super- diagonal entries ofM by their respective
arithmetic mean.
To approximate the spectral radius of T ∈  , we carry out the following steps:
• Apply the formulas in Proposition 2 to T to compute the Perron root �(T ) and the unit right and left Perron vectors u and

v, respectively, with positive entries.
• Project vuT into  , normalize the projected matrix to have unit Frobenius norm, and define the matrix

E =
vuT |

‖vuT | ‖F
. (10)

We refer to the matrix (10) as a  -structured analogue of the Wilkinson perturbation. Similarly as above, we have,
by17, Theorem 3.3,

vTEu
vTu

=
|vTEu|
vTu

=
‖v‖‖vuT | ‖F‖u‖

vTu
=

‖vuT | ‖F
vTu

.

It follows that
�(T + "E) − �(T ) ≈ "v

TEu
vTu

= "� (�(T )),
where

� (�(T )) =
‖vuT | ‖F

vTu
denotes the  -structured condition number of �(T ); see12, 17.
We will let " > 0. The spectrum of T + "E is a sparse approximation of the  -structured "-pseudospectrum of T in the
sense that this pseudospectrum is evaluated by computing the spectrum for many  -structured perturbations of T of norm
at most "; see, e.g.,20. Here we only compute the spectrum for one perturbation of T .

• Determine �(T + "E) by applying Proposition 2 to T + "E. The latter matrix is nonnegative and irreducible if this holds
for T , and exhibits the same structure as T .

The Perron root �(T +"E)may be regarded as an approximate  -structured "-pseudospectral radius and provides an estimate
of the structural robustness of the structured network. It may be much larger than �(T ). It is known that when considering the
class  of tridiagonal Toeplitz matrices, the most ill-conditioned eigenvalues with regard to  -structured perturbations are the
eigenvalues of largest magnitude; see, e.g.,19. We remark that an algorithm for computing the  -structured pseudospectrum
of a tridiagonal Toeplitz matrix and its rightmost pseudoeigenvalue is described in4. However, the computational cost of this
algorithm can be quite large for the matrices considered in this paper.
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FIGURE 3 Pseudospectra of the adjacency matrix of the network in Section 4.1.1. The contour levels are from 10−3 to 100.5.
The figure is produced by EigTool.

Finally, replacing u and v in (10) by the vector e as described above is particularly efficient when the considered subspace is
 ; see Section 4.2.2.

4 NUMERICAL TESTS

This section illustrates the performance of the methods discussed when applied to large networks. All computations were carried
out in MATLAB R2021a on a MacBook Pro with a 2GHz Intel Core i5 quad-core CPU and 16GB of RAM.

4.1 Complex networks
4.1.1 Air500
Consider the adjacency matrix A ∈ ℝ500×500 for the network Air500, which describes 24009 flight connections between the
top 500 airports within the United States based on total passenger volume during one year from July 1, 2007, to June 30, 2008;
see2. Thus, the airports are nodes and the flights are edges in the graph determined by the network. The matrix A has the entry
aij = 1 if there is a flight that leaves from airport i to airport j. Generally, but not always, aij = 1 implies that aji = 1. This
makes A close to symmetric.
Apply the computational steps described in Section 3.1. The Perron root �(A) is 82.610276with eigenvalue condition number

�(�(A)) = 1.001668. Let " = 0.5. The Perron root �(A + "E), where E is the matrix in (8), is 83.111096. Thus, the spectral
radius increases by 0.500820, as we could have foreseen since "�(�(A)) = 0.500834. The value �(A + "E) is an accurate
approximation of the "-pseudospectral radius. This is seen by determining the "-pseudospectral radius by theMATLAB program
package Eigtool27. Our approximation of the "-pseudospectral radius agrees with the value determined by Eigtool in all decimal
digits returned by Eigtool. Pseudospectra of A are visualized in Figure 3.
Assume that we are interested in removing a single route so that the structural robustness of the network is increased the

most. Then this route should be an edge that maximizes aℎkvℎuk over ℎ and k; see (2)-(3). For the present network, we find that
the edge e224,24 ∈  should be removed. The adjacency matrix Â so obtained is irreducible with �(Â) = 82.590199. The edge
e224,24 corresponds to flights from the JFK airport in New York to the Hartsfield–Jackson airport in Atlanta.
Finally, we observe that if one replacesE in (8) by the matrix of all ones normalized to have unit Frobenius norm, the increase

of spectral radius �(A) results to be 0.255450. Thus, this perturbation gives a significantly less accurate estimate of the sensitivity
of �(A) to worst-case perturbations.

4.1.2 Airlines
Consider the adjacency matrix A ∈ ℝ235×235 determined by the network Airlines with 235 nodes and 2101 edges. The nodes
represent airports and the directed edges represent flights between them. This network is available at8.
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FIGURE 4 Pseudospectra of the adjacency matrix of the network in Section 4.1.2. Contour curves are for levels from 10−3 to
100. The graph is produced by EigTool.

Computations described in Section 3.1 yield �(A) = 26.545430 and the condition number �(�(A)) = 1.005219. Let " = 0.5.
The Perron root �(A + "E), where E is the matrix (8), is 27.047941. Thus, the spectral radius increases by 0.502511, as we
could have expected since "�(�(A)) = 0.502609. The spectral radius �(A + "E) approximates the "-pseudospectral radius and
agrees with six significant decimal digits with the pseudospectral radius determined by Eigtool. A few pseudospectra of A are
shown in Figure 4.
The route to remove, in order to increase the structural robustness of the network the most, is represented by the edge e51,137 ∈

 . The adjacency matrix, Â, obtained when setting the entry a51,137 of A to zero is irreducible with �(Â) = 26.452922.
Finally, we observe that if one replaces E in (8) by the matrix of all ones, normalized to have unit Frobenius norm, �(A)

increases by 0.223135.

4.1.3 Enron
The Enron e-mail exchange network covers the e-mail communication at the Enron company. The data set consists of over 3 ⋅105
e-mails. The e-mail addresses are the nodes ni of the network; there are 36692 of them. A directed edge from node ni to node nj
indicates that at least one e-mail message was sent from ni to nj ; there are 367662 edges. Let A ∈ ℝ36692×36692 be the adjacency
matrix for this graph. It is close to symmetric. This network is available at24.
Computations described in Section 3.1 yield �(A) = 118.417715 and the condition number �(�(A)) = 1.000000. Let " = 0.5.

The Perron root is �(A+ "E) = 118.917715, where E is the matrix (8). As expected, the spectral radius increases by 0.500000.
No comparison with Eigtool could be made to assess the accuracy of the so determined approximation of the "-pseudospectral
radius, since Eigtool is not able to determine "-pseudospectra of such a large matrix. The spy plot of A is shown in Figure 5. In
this plot positive matrix entries are marked by a dot.
The email-channel to remove is represented by the edge e137,196 ∈  . As for the adjacency matrix Â, obtained when setting

the entry a137,196 of A to zero, one has �(Â) = 118.398705. In fact, it is immediate to see from the spy plot in Figure 5 that the
edge to be removed belongs to a “dense block” of A. Removing this edge yields a relative decrease of order 10−4 in the spectral
radius of the adjacency matrix of the Enron network.
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FIGURE 5 Spy plot of the adjacency matrix of the network in Section 4.1.3.

4.2 Synthetic networks
This subsection considers projections of the adjacency matrix for the Air500 network.

4.2.1 The tridiagonal part of Air500
We set all entries of the adjacency matrix for the Air500 network outside the tridiagonal part of the adjacency matrix to zero.
The number of flight connections is now 144. This yields a nonsymmetric tridiagonal matrix A ∈ ℝ500×500. We carry out the
computations described in Section 3.2, with  the subspace of all tridiagonal matrices with zero-diagonal in ℝ500×500. This
yields the Perron root �(A) = 1.801938 and its -structured condition number is � (�(A)) = 0.613714.
Let " = 0.9. The Perron root �(A + "E), where E is the matrix in (9), is 2.362116. Thus, the spectral radius increases by

0.560178, as we could have foreseen since "� (�(A)) = 0.552342.
Computations similar to those of Subsection 4.1 suggest that in order to increase the structural stability the most by removing

one edge, we should choose the edge e494,493 or the edge e493,494 in  . However, removal of one or both of these edges would
result in a graph with a reducible adjacency matrix. To preserve irreducibility of the adjacency matrix, one may instead schedule
fewer flights on the routes that correspond to the edges e494,493 and e493,494. This reduces the weight associated with these edges.
Finally, we observe that, if one replaces the matrix vuT in (9) by the matrix of all ones, normalized to be of unit Frobenius

norm, then the spectral radius increases by 0.052606. Clearly, this is not an accurate estimate of the actual worst-case sensitivity
of �(A) to perturbations.

4.2.2 Projection of Air500 into a tridiagonal Toeplitz structure
We construct a tridiagonal Toeplitz matrix with zero-diagonal T ∈ ℝ500×500 by averaging the sub-diagonal entries as well as by
averaging the super-diagonals of the matrix in Section 4.2.1. Then we carry out the computations as described in Section 3.3,
and make use of Proposition 2. We obtain �(T ) = 0.288460 and the  -structured condition number � (�(T )) = 0.063357.
Let " = 0.9. Then �(T + "E) = 0.345466, where E is the matrix in (10). Thus, the spectral radius increases by 0.057006.

This is in agreement with "� (�(T )) = 0.057021.
Finally, we observe that, if one replaces the matrix vuT in (9) by the matrix of all ones, scaled to be of unit Frobenius norm,

then �(T ) increases by 0.056995. Thus, the latter perturbation provides a very accurate estimate of the spectral radius when the
matrix vuT in (10) is used.
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5 CONCLUSION

It is important to be able to estimate the structural robustness of a network, and to determine which nodes to remove or weights
to decrease to increase the structural robustness. This paper describes several iterative methods that can be applied to fairly large
networks to gain insight into these issues. Both the sensitivity of the structural robustness to worst-case Wilkinson perturbations
and to structured perturbations are discussed and illustrated.
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