
Krylov Subspace Split Bregman Methods

Majed Alotaibia, Alessandro Buccinib, Lothar Reichela

aDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
bDipartimento di Matematica e Informatica, Università di Cagliari, 09124 Cagliari, Italy

Abstract

Split Bregman methods are popular iterative methods for the solution of
large-scale minimization problems that arise in image restoration and ba-
sis pursuit. This paper investigates the possibility of projecting large-scale
problems into a Krylov subspace of fairly small dimension and solving the
minimization problem in the latter subspace by a split Bregman algorithm.
We are concerned with the restoration of images that have been contami-
nated by blur and Gaussian or impulse noise. Computed examples illustrate
that the projected split Bregman methods described are fast and give com-
puted solutions of high quality.

Keywords: Split Bregman method, Krylov method, Golub-Kahan
bidiagonalization, fixed point algorithm, cross validation

1. Introduction

This paper considers the solution of linear systems of equations

Au ≈ f (1.1)

where A ∈ Rm×n is a large matrix and f ∈ Rm a given error-contaminated
right-hand side. We are interested in computing a vector u ∈ Rn such that
the left-hand side of (1.1) approximates f in a well-specified manner; see
below. In our applications the matrix A is severely ill-conditioned and of
ill-determined rank, i.e., its singular values decay to zero rapidly without a
significant gap. The matrix A may be rank-deficient and we allow m ≥ n as
well as m < n. This kind of matrices arises for instance in image restoration

Email addresses: malota15@kent.edu (Majed Alotaibi),
alessandro.buccini@unica.it (Alessandro Buccini), reichel@math.kent.edu (Lothar
Reichel)

1

problems. We will illustrate the performances of the methods described
when applied to this kind of problems. Nevertheless, the methods described
here also can be used in the context of other applications.

In our image restoration applications, the available image, which is rep-
resented by f , is contaminated by noise and blur. The latter is modeled by
the matrix A. The data vector f can be written as

f = ftrue + e, (1.2)

where the vector e ∈ Rm is the unknown error in f ; we will commonly refer
to e as “noise.” The vector ftrue represents the unknown blur-contaminated,
but noise-free vector, associated with f . In our computed examples, we let
e model white Gaussian noise, random-valued impulse noise, or salt-and-
pepper noise; see Section 5 for more details.

Let utrue denote the desired restoration of f . Thus, the entries of utrue
are pixel values of the image ordered column-wise. Since the matrix A is
severely ill-conditioned, the naive solution A†f , where A† denotes the Moore-
Penrose pseudo-inverse of A, usually gives a meaningless approximation of
utrue due to propagation and amplification of the error e into the computed
solution. An effective approach to deal with this difficulty is to replace (1.1)
by a regularized problem, whose solution is less sensitive to the error in
f . There are several common regularization methods; their choice should
be informed by the statistical properties of the noise e and the available
a-priori knowledge of utrue. When f is corrupted by Gaussian noise, we
consider the minimization problem

min
u
‖Wu‖1 +

µ

2
‖Au− f‖22, (1.3)

and when f is contaminated by impulse noise, we instead solve the mini-
mization problem

min
u
‖Wu‖1 + µ‖Au− f‖1, (1.4)

where ‖ · ‖2 and ‖ · ‖1 denote the Euclidean norm and the 1-norm, respec-
tively, and W ∈ Rr×n, r ≥ n, is a tight framelet analysis operator, i.e., it
satisfies W TW = I; see Section 6 for details. The parameter µ > 0 in (1.3)
and (1.4) is the so-called regularization parameter and controls the sensi-
tivity of the problem to the noise. The choice of norms in the first term
in the minimization problems (1.3) and (1.4) is dictated by the desire to
determine a sparse vector Wu, as it is known that images utrue typically can
be approximated well by a sparse representation in the framelet domain,
i.e., many entries of the vector Wutrue vanish. We would like this also to

2

hold for the computed approximation of utrue. The choice of the norm of the
second term in the minimization problems (1.3) and (1.4) can be justified
by statistical considerations; see, e.g., [3, 7] for discussions.

The minimization problem (1.3) can be solved by the split Bregman
algorithm [7, 9, 12], which is a modification of the iteration method described
by Bregman [2]. The split Bregman method can be applied to the solution
of the constrained minimization problem

min
z
‖z‖1 such that AW T z = f, (1.5)

where W ∈ Rr×n, r ≥ n, is a tight framelet analysis operator. Let z∗ denote
the solution of (1.5). One is then interested in determining u∗ = W T z∗; see
[7].

This paper describes how the solution of large-scale problems of the forms
(1.3) and (1.4) using split Bregman can be sped up by using appropriately
chosen Krylov subspaces. Specifically, when we solve (1.3), we project the
large matrix A onto a matrix of low rank by carrying out a few steps of
Golub-Kahan bidiagonalization. This reduces the computational effort re-
quired to evaluate matrix-vector products. We illustrate this in Section 6.
When we solve (1.4), we consider generalized Krylov subspaces; see, e.g.,
[20]. We would like to stress that the proposed method requires that the

left inverse of W , i.e., a matrix W̃ such that W̃W = I, is easily computed.
Therefore, the operator W cannot be chosen arbitrarily. Nevertheless, in our
experience, framelet operators usually provide very accurate reconstructions
of higher quality than differential operators, such as the total variation op-
erator. Extension of the proposed methods to the case of general W will be
subject of future research.

The choice of the regularization parameter µ in (1.3) and (1.4) is of
vital importance, and an imprudent choice may lead to poor approximations
of utrue. Two methods for determining the regularization parameter will
be used in the computed examples: the fixed point method, described by
Ito et al. [17], and cross validation, discussed, e.g., by Stone [21]. Both
methods can be applied when no information about the norm of the error
e is available. We choose these methods, because they can be applied both
for Gaussian and impulse noise. However, we should mention that these
methods are often referred to as “heuristic”, because they may fail in certain
situations, since they do not use the norm of the error vector e in (1.2).
This is a consequence of the Bakushinskii veto [1]; see, e.g., [11, 18, 19] for
discussions on heuristic methods.

Finally, we describe a two-step method for solving (1.4), which is well

3

suited for the situation when there is a large amount of impulse noise. This
method is schematically similar to the method proposed by Cai et al. [8]. In
the first step, we identify the location of (most of) the noise-contaminated
pixels in the available image f , using the directional weighted median filter
(DWMF) proposed by Dong and Xu [10], and remove these pixels from f .
In the second step, we solve the minimization problem (1.4) using the split
Bregman method with f replaced by this new reduced data vector.

This paper is organized as follows: Section 2 reviews the split Breg-
man method for the problems (1.3) and (1.4). In Section 3, we discuss
the implementation of the projected split Bregman schemes using Krylov
or generalized Krylov subspaces of fairly small dimensions, and Section 4
outlines the determination of the regularization parameter µ for the prob-
lems (1.3) and (1.4). In Section 5, we briefly review the two-step method
that uses filtering for determining the regularization parameter. Computed
examples are presented in Section 6, and concluding remarks can be found
in Section 7.

2. Generalized Split Bregman Methods

We summarize the generalized split Bregman method proposed by Gold-
stein and Osher [12] in a more general setting than the one proposed above.
Comments on how this method differs from the split Bregman scheme by
Cai et al. [7] are also provided. Consider the minimization problem

min
u,d
‖d‖1 + J(u) +

µ

2

∥∥d− F (u)
∥∥2
2
, (2.1)

where F : Rn → Rr and J : Rn → R are non-linear and convex functions,
respectively, d ∈ Rr, µ > 0 is a user-chosen parameter, and ‖F (u)‖1 is a con-
vex functional. We are interested in the situations when J(u) = ‖Au− f‖22
or J(u) = ‖Au− f‖1, and F (u) = Wu.

Define the Bregman distance determined by a convex functional E at v
as

Dp
E(u, v) = E(u)− E(v)− 〈p, u− v〉,

where p ∈ ∂E(v), i.e., p is an element of the set of subgradients of E at
v, and 〈·, ·〉 stands for the standard inner product. The Bregman distance
measures the “distance” between u and v in the sense that Dp

E(u, v) ≥ 0 for
all u, v ∈ Rn, and Dp

E(u, v) ≥ Dp
E(w, v) for any w ∈ Rn on the line segment

between u and v.
Let

E(u, d) = ‖d‖1 + J(u),

4

and let d1 and u1 be suitable initial vectors. The Bregman iteration applied
to the solution of (2.1) iteratively computes, for k = 1, 2, . . . ,(

uk+1, dk+1
)

= arg min
u,d

Dp
E(u, uk, d, dk) +

µ

2

∥∥d− F (u)
∥∥2
2
,

pk+1
u = pku − µ(∇F)T

(
F
(
uk+1

)
− dk+1

)
,

pk+1
d = pkd − µ

(
dk+1 − F

(
uk+1

))
,

(2.2)

where

Dp
E(u, uk, d, dk) = E(u, d)− E(uk, dk)− 〈pku, u− uk〉 − 〈pkd, d− dk〉

and (pk+1
u , pk+1

d) ∈ ∂E(uk+1, dk+1). As shown by Yin et al. [22], when F is
a linear operator, the iteration (2.2) simplifies to(

uk+1, dk+1
)

= arg min
u,d

‖d‖1 + J(u) +
µ

2

∥∥∥F (u)− d+ bk
∥∥∥2
2
,

bk+1 = bk +

(
F
(
uk+1

)
− dk+1

)
.

(2.3)

Problem (2.3) can be solved by separately minimizing over u and d. This
gives the following generalized split Bregman iteration described in [12] with
appropriate initial vectors d1 and b1 and a fixed M ≥ 1

for k = 1, 2, . . .
dk,1 = dk,

for i = 1, 2, . . . ,M,

uk,i = arg min
u

J(u) + µ
2

∥∥∥F (u)− dk,i + bk
∥∥∥2
2
,

dk,i+1 = arg min
d
‖d‖1 + µ

2

∥∥∥∥d− F (uk,i)− bk∥∥∥∥2
2

,

end,

uk+1 = uk,M ,
dk+1 = dk,M+1,

bk+1 = bk +

(
F
(
uk+1

)
− dk+1

)
,

end.

(2.4)

One may compute approximate solutions of higher quality by letting M > 1.
This is illustrated in Section 6. Hence, the inner i-loop can be useful for

5

gaining higher accuracy in some applications. The vector dk,i+1 in (2.4) is
simply computed by applying the shrinkage operator. Thus,

dk,i+1 = shrink

(
F
(
uk,i
)

+ bk, 1/µ

)
,

where
shrink (x, α) = sign(x) max

(
|x| − α, 0

)
, (2.5)

and all operations in (2.5) are component-wise for any vector x.

2.1. The Split Bregman Method for Image Deblurring with Gaussian Noise

The minimization problem (1.3) is equivalent to

min
u,d
‖d‖1 +

µ

2
‖Au− f‖22, with d = Wu. (2.6)

An `2-norm penalty function is added to transform the constrained mini-
mization problem (2.6) to the following unconstrained minimization problem

min
u,d
‖d‖1 +

µ

2
‖Au− f‖22 +

λ

2
‖d−Wu‖22 , (2.7)

where λ > 0 is a user-chosen parameter. However, the minimization problem
(2.7) is not equivalent to (2.6) for any finite value of λ. One approach to de-
termine an approximate solution of (2.6) is to solve (2.7) for a large value of
λ, but numerical instability may arise. Therefore, Goldstein and Osher [12]
suggested to use a moderate value of λ and transform the constraint mini-
mization problem (2.6) into a sequence of unconstrained problems followed
by a Bregman update.

Consider the unconstrained minimization problem (2.7). Since (2.7) is
of the form (2.1), with J(u) = µ

2‖Au−f‖
2
2 and F (u) = Wu, one can use the

generalized split Bregman method discussed above. Hence, iteration (2.4) is
applied to solve problem (2.7). This gives the split Bregman algorithm for
solving (1.3) described by Algorithm 1.

When M = 1, a proof of convergence of the iterates uk determined by
Algorithm 1 to a solution of the minimization problem (1.3) is given in [7].

We can compute uk,i in Algorithm 1 by solving the linear system of
equations (

µATA+ λI
)
uk,i = µAT f + λW T (dk,i − bk).

The vector dk,i+1 in Algorithm 1 is computed by using the shrinkage operator

dk,i+1 = shrink
(
Wuk,i + bk, 1/λ

)
.

6

Algorithm 1: SB-`2

1 Input: matrices A ∈ Rm×n and W ∈ Rr×n, vector f ∈ Rm, integer
M ≥ 1, positive constants λ and µ ;

2 Initialization: Let u1 = 0 and d1 = b1 = 0 ;
3 for k = 1, 2, ... do
4 dk,1 = dk;
5 for i = 1, 2, . . . ,M do

6 uk,i = arg min
u

µ
2‖Au− f‖

2
2 + λ

2

∥∥∥Wu− dk,i + bk
∥∥∥2
2

;

7 dk,i+1 = arg min
d
‖d‖1 + λ

2

∥∥∥d−Wuk,i − bk
∥∥∥2
2

;

8 end

9 uk+1 = uk,M ;

10 dk+1 = dk,M+1;

11 bk+1 = bk +
(
Wuk+1 − dk+1

)
;

12 end

13 Output: uk+1

2.2. The Split Bregman Method for Image Deblurring with Impulse Noise

We borrow the splitting idea of the generalized split Bregman iteration to
solve the minimization problem (1.4), where the `1-norm appears in both the
fidelity and regularization terms. First, consider the following minimization
problem, which is equivalent to (1.4),

min
u,d1,d2

‖d1‖1 + µ‖d2‖1 s.t. d1 = Wu; d2 = Au− f.

We then add two `2-penalty terms and consider the solution of the mini-
mization problem

min
u,d1,d2

‖d1‖1 + µ‖d2‖1 +
λ

2
‖d2 −Au+ f‖22 +

λ

2
‖d1 −Wu‖22 . (2.8)

Letting

d =

[
d1
d2

]
, D =

[
I 0
0 µI

]
,

K =

[
W
A

]
, f̃ =

[
0
f

]
,

(2.9)

7

we can express (2.8) as

min
u,d
‖Dd‖1 +

λ

2

∥∥∥d−Ku+ f̃
∥∥∥2
2
. (2.10)

This formulation is a special case of (2.1). Therefore, the minimization
problem (2.10) can be solved by the generalized split Bregman iteration
(2.4). This gives the split Bregman algorithm for solving the minimization
problem (1.4) described by Algorithm 2.

If we set M = 1, the approach for showing convergence of the iterates uk

determined by Algorithm 2 to a solution of the minimization problem (1.4)
can be shown by the technique used in [7].

Theorem 1. Let u∗ be a solution of the minimization problem (1.4). As-
sume that λ, µ > 0, and let M = 1. Then the iterates uk determined by
Algorithm 2 satisfy

lim
k→∞

‖Wuk‖1 + µ‖Auk − f‖1 = ‖Wu∗‖1 + µ‖Au∗ − f‖1.

Proof. The minimization problem

min
u

∥∥∥∥D (Ku− f̃)∥∥∥∥
1

, (2.11)

where D, K, and f̃ are defined in (2.9), is equivalent to the problem (1.4).
Let u∗ be a solution of (2.11). By the first order optimality conditions, u∗

satisfies
0 = KTDp∗, (2.12)

where p∗ ∈ ∂‖Dd∗‖1, and d∗ = Ku∗−f̃ . Let b∗ = 1
λDp

∗. Using this property
and (2.12), one can easily complete the proof by using the techniques in
[7].

Letting

bk =

[
bk1
bk2

]
and using the definitions (2.9), we compute uk,i in Algorithm 2 by solving
the linear system of equations(

ATA+ I
)
uk,i = AT (f + dk,i2 − b

k
2) +W T (dk,i1 − b

k
1). (2.13)

8

Moreover, dk,i+1
1 and dk,i+1

2 are computed by

dk,i+1
1 = shrink

(
Wuk,i + bk1, 1/λ

)
,

dk,i+1
2 = shrink

(
Auk,i − f + bk2, µ/λ

)
.

Algorithm 2: SB-`1
1 Input: matrices A ∈ Rm×n and W ∈ Rr×n, vector f ∈ Rm, integer

M ≥ 1, positive constants λ and µ ;

2 Construct K,D, and f̃ defined in (2.9);
3 Let u1 = 0 and d1 = b1 = 0 ;
4 for k = 1, 2, ... do
5 for i = 1, 2, ...,M do

6 uk,i = arg min
u

λ
2

∥∥∥Ku− f̃ − dk,i + bk
∥∥∥2
2

;

7 dk,i+1 = arg min
d

‖Dd‖1 + λ
2

∥∥∥d−Kuk,i + f̃ − bk
∥∥∥2
2

;

8 end

9 uk+1 = uk,M ;

10 dk+1 = dk,M+1;

11 bk+1 = bk +
(
Kuk+1 − f̃ − dk+1

)
;

12 end

13 Output: uk+1

3. Projected Split Bregman iteration using Krylov subspaces

This section discusses, in order, the situations when the data vector f is
contaminated by Gaussian noise and by impulse noise.

3.1. Gaussian Noise Case

We propose a new solution method for the minimization problem (1.3)
that projects the problem into a Krylov subspace of fairly small dimen-
sion. Specifically, we compute an approximate solution to the minimization
problem (1.3) in the Krylov subspace

K`

(
ATA,AT f

)
= span

{
AT f,ATAAT f,

(
ATA

)2
AT f, . . . ,

(
ATA

)`−1
AT f

}
.

(3.1)

9

This is achieved by first determining an orthonormal basis for this space
by applying `� m steps of GolubKahan bidiagonalization to the matrix A
with initial vector f ; see [13]. This gives the decompositions

AV` = U`+1B`+1,`, ATU`+1 = V`B
T
`,`, (3.2)

where the matrices U`+1 = [u1, u2, . . . , u`+1] ∈ Rm×(`+1) and V` = [v1, v2, . . . , v`] ∈
Rn×` have orthonormal columns. The first column of U`+1 is f/‖f‖2 and

the first column of V` is AT f/
∥∥∥AT f∥∥∥

2
. The matrices B`+1,` ∈ R(`+1)×` and

B`,` ∈ R`×` are lower bidiagonal, and the matrix B`,` is the leading ` × `
submatrix of

B`+1,` =



α1

β2 α2

β3 α3

. . .
. . .

β` α`
β`+1


,

where all entries αj and βj are positive. Moreover, the columns of V` span
the Krylov subspace (3.1).

We seek an approximate solution of the minimization problem (1.3) in
the range of V` as follows

min
u∈K`(ATA,AT f)

‖Wu‖1 +
µ

2
‖Au− f‖22

= min
y∈R`
‖WV`y‖1 +

µ

2
‖AV`y − f‖22

= min
y∈R`
‖WV`y‖1 +

µ

2

∥∥B`+1,`y − ‖f‖2e1
∥∥2
2
, (3.3)

where e1 = [1, 0, . . . , 0]T denotes the first axis vector. The above deriva-
tion uses the decomposition (3.2), the fact that the columns of U`+1 are
orthonormal, and that UT`+1f = ‖f‖e1. The attraction of seeking a solution
in the range of V` is that the large matrix A is replaced by the small matrix
B`+1,`.

We turn to the solution of the projected minimization problem (3.3),
which is analogous to the minimization problem (1.3). We therefore can
solve (3.3) by the SB-`2 method described in Algorithm 1. This results in

10

the following iterative method

for k = 1, 2, . . .
dk,1 = dk,

for i = 1, 2, . . . ,M,

yk,i = arg min
y∈R`

µ
2

∥∥B`+1,`y − ‖f‖2e1
∥∥2
2

+ λ
2

∥∥∥WV`y − dk,i + bk
∥∥∥2
2
,

dk,i+1 = arg min
d
‖d‖1 + λ

2

∥∥∥d−WV`y
k,i − bk

∥∥∥2
2
,

end,

yk+1 = yk,M ,
dk+1 = dk,M+1,

bk+1 = bk +
(
WV`y

k+1 − dk+1
)
.

(3.4)
At each iteration (3.4), we have

uk+1 = V`y
k+1.

The details of the computations of yk,i and dk,i+1 in (3.4) are similar to their
counterparts in the SB-`2 method in Section 2.1. The summary of these
computations is presented in Algorithm 3. We will refer to this method as
the Split Bregman via GolubKahan method, in brief the SB-GK method.

We point out that for the computation of yk,i in Algorithm 3, we solve
the least-squares problem

min
y

∥∥∥∥∥∥
[
µ1/2B`+1,`

λ1/2I

]
y −

[
µ1/2‖f‖2e1

λ1/2V T
` W

T (dk,i − bk)

]∥∥∥∥∥∥
2

2

rather than solving the normal equations for improved numerical stability.

3.2. Impulse Noise Case

We now present our scheme for solving (1.4) by split Bregman itera-
tion, where we reduce the dimension of the problem by projecting it into a
low-dimensional Krylov-type subspace. However, instead of generating the
solution subspace first, as done in the SB-GK method, we construct an ap-
propriate space during the iterations. We start with a vector v1, apply a
k-iteration of SB-`1 described in Algorithm 2 in the one-dimensional sub-
space span{v1}, and then increase the dimension of the solution subspace
by adding a properly chosen vector v2. At the second iteration, we look for

11

Algorithm 3: SB-GK

1 Input: matrices A ∈ Rm×n and W ∈ Rr×n, vector f ∈ Rm, integers
`,M ≥ 1, positive constants λ and µ ;

2 Let d1 = b1 = 0, y0 = y1 = 0 and k = 1 ;
3 Compute the decomposition (3.2) and store V` and B`+1,` ;

4 while
∥∥∥yk−1 − yk∥∥∥

2
> tol

∥∥∥yk−1∥∥∥
2
do

5 dk,1 = dk;
6 for i = 1, 2, ...,M do
7 Solve for yk,i,(

µBT
`+1,`B`+1,` + λI

)
yk,i = µBT

`+1,`‖f‖2e1 + λV T
` W

T (dk,i − bk);

8 dk,i+1 = shrink
(
WV`y

k,i + bk, 1/λ
)

;

9 end

10 yk+1 = yk,M ;

11 dk+1 = dk,M+1;

12 bk+1 = bk +
(
WV`y

k+1 − dk+1
)

;

13 k = k + 1 ;

14 end

15 uk+1 = V`y
k+1 ;

16 Output: uk+1

12

a solution in span{v1, v2}. We iterate this way and increase the dimension
of the search space by one after each iteration. In detail, we define the ini-
tial vector v1 = AT f and set V1 = v1/ ‖v1‖2. At iteration k of SB-`1, the
columns of Vk = [v1, v2, . . . , vk] form an orthonormal basis for the search
subspace. Compute the QR factorization

AVk = QARA, (3.5)

where the matrix QA ∈ Rm×k has orthonormal columns and the matrix
RA ∈ Rk×k is upper triangular. We compute the vector yk,i by solving the
minimization problem

min
u∈Kk

λ

2

∥∥∥Au− f − dk,i2 + bk2

∥∥∥2
2

+
λ

2

∥∥∥Wu− dk,i1 + bk1

∥∥∥2
2

= min
y∈Rk

λ

2

∥∥∥AVky − f − dk,i2 + bk2

∥∥∥2
2

+
λ

2

∥∥∥WVky − dk,i1 + bk1

∥∥∥2
2

= min
y∈Rk

λ

2

∥∥∥QARAy − f − dk,i2 + bk2

∥∥∥2
2

+
λ

2

∥∥∥WVky − dk,i1 + bk1

∥∥∥2
2
.

The solution yk,i of the last equation satisfies the normal equations(
RTARA + I

)
yk,i = RTAQ

T
A(f + dk,i2 − b

k
2) + V T

k W
T (dk,i1 − b

k
1) (3.6)

with a small k×k matrix. We compute the solution yk,i by solving the least
squares problem

min
y∈Rk

∥∥∥∥∥∥
[
RA
I

]
y −

[
QTA(f + dk,i2 − bk2)

V T
k W

T (dk,i1 − bk1)

]∥∥∥∥∥∥
2

2

,

since the condition number of the matrix in the latter problem is the square
root of the condition number of the system matrix in (3.6). The vector uk+1

can be determined by uk+1 = Vky
k+1.

In Algorithm 2 the vector uk+1 does not need to be computed explicitly,
since one can use yk+1 to compute the vectors dk+1

1 , bk+1
1 , dk+1

2 , and bk+1
2 ,

because the matrices AVk and WVk are stored. We compute the residual
vector associated with the normal equations (3.6) by

r(k+1) = AT
(
AVky

k+1 − f − dk+1
2 + bk+1

2

)
+W T

(
WVky

k+1 + bk+1
1 − dk+1

1

)
.

(3.7)
This vector is the gradient for the unprojected minimization problem asso-
ciated with (3.6). The solution subspace R(Vk), where R(M) denotes the

13

range of M , is expanded by including the vector r(k+1)/‖r(k+1)‖2, i.e., we
let

Vk+1 =

[
Vk,

r(k+1)

‖r(k+1)‖2

]
.

A reorthogonalization of r(k+1) against R(Vk) may be necessary to reduce
the propagation of round-off errors. We refer to R(Vk+1) as a generalized
Krylov subspace; see [20]. One could expand the subspace R(Vk) by some
other vector instead. However, numerical experiments show that the vector
(3.7) is a good choice.

We remark that the QR factorization in (3.5) does not have to be com-
puted from scratch for every k. Instead, it is updated according to

vnew =
r(k+1)

‖r(k+1)‖2
,

AVk+1 = [AVk, Avnew] = [QA, q̃A]

[
RA rA
0T τA

]
,

where
rA = QTA (Avnew) , qA = Avnew −QArA,
τA = ‖qA‖2 , q̃A = qA/τA.

We will refer to the method described as the Split Bregman via general-
ized Krylov subspace method, briefly as the SB-GKS method. Algorithm 4
summarizes the computations.

4. The Choice of Regularization Parameter

This section describes the methods we use to determine the regulariza-
tion parameter µ for (1.3) and (1.4) in the computed examples. We outline
two methods: the Fixed Point method and Cross Validation.

4.1. The Fixed Point method

This section describes the Fixed Point (FP) method proposed by Ito et
al. [17] applied to the solution of (1.3). Let

Jµ(u) :=
µ

2
‖Au− f‖22 + ‖Wu‖1,

where µ is the regularization parameter. Note that in this subsection we
follow the notation of [17]. Therefore, µ here is the reciprocal to the µ in

14

Algorithm 4: SB-GKS

1 Input: matrices A ∈ Rm×n and W ∈ Rr×n, vector f ∈ Rm, integer
M ≥ 1, positive constants λ and µ ;

2 Let d11 = b11 = 0, d12 = b12 = 0, y0 = y1 = 0 and k = 1 ;

3 Compute v = AT f and V1 = v/ ‖v‖2 ;
4 Compute the QR factorization AV1 = QARA ;

5 while
∥∥yk−1 − yk∥∥

2
/ > tol

∥∥yk−1∥∥
2
do

6 dk,11 = dk1 ;

7 dk,12 = dk2 ;
8 for i = 1, 2, ...,M do
9 Solve for yk,i(

RT
ARA + I

)
yk,i = RT

AQ
T
A(f + dk,i2 − bk2) + V T

k W
T (dk,i1 − bk1);

10 dk,i+1
1 = shrink

(
WVky

k,i + bk1 , 1/λ
)

;

11 dk,i+1
2 = shrink

(
AVky

k,i + bk2 − f, µ/λ
)

;

12 end

13 yk+1 = yk,M ;

14 dk+1
1 = dk,M+1

1 ;

15 dk+1
2 = dk,M+1

2 ;

16 bk+1
1 = bk1 +

(
WVky

k+1 − dk+1
1

)
;

17 bk+1
2 = bk2 +

(
AVky

k+1 − f − dk+1
2

)
;

18 r =

AT
(
AVky

k+1 − f − dk+1
2 + bk+1

2

)
+WT

(
WVky

k+1 − dk+1
1 + bk+1

1

)
;

19 Vk+1 =
[
Vk,

r
‖r‖2

]
; AVk+1 =

[
AVk, A

r
‖r‖2

]
; WVk+1 =

[
WVk,W

r
‖r‖2

]
;

20 Update the QR factorization AVk+1 = QARA ;
21 k = k + 1;

22 end

23 uk+1 = Vky
k+1 ;

24 Output: uk+1

15

the rest of this paper. The choice µ in this section is due to the fact that
the FP method is numerically more stable when implemented in this way.

The parameter µ is determined by minimizing the function

Φγ(µ) =
γγ

(1 + γ)1+γ
F̃ 1+γ(µ)

µ
, (4.1)

where γ > 0, and the function F̃ is defined by

F̃ (µ) = inf
u
Jµ(u).

The minimizer of (4.1) is determined using the simple Fixed Point algorithm
with stopping criterion |µj+1 − µj |/|µj | ≤ tol, for a user defined tolerance

Choose µ1 > 0,
For j = 1, 2, . . . ,

Solve uj+1 = arg min
u

µj

2 ‖Au− f‖
2
2 + ‖Wu‖1,

Update µj+1 = 1
γ
‖Wuj+1‖1

1
2
‖Auj+1−f‖22

,

end.

(4.2)

Ito et al. [17] provide a proof of local linear convergence of the above algo-
rithm, however, as pointed out in [17], the algorithm may fail to converge.
Moreover, the FP method is a heuristic rule that may fail to determine a suit-
able value of the regularization parameter also when the method converges.
Nevertheless, in our experiments the FP method typically determines a suit-
able value of the regularization parameter.
A good choice of γ gives a regularization parameter µ that is close to the
optimal one. The parameter γ depends weakly on the noise level. Thus it
can take a wide range of values. There is no known criterion for choosing γ.
The authors in [17] proposed a two-step procedure for choosing γ, but the
method is not reliable. We, therefore, fix the parameter in our numerical
examples.

We propose to implement the FP algorithm as follows. At each iteration
j, the minimization problem in (4.2) is approximately solved by the SB-GK
algorithm. We then compute µj+1 using the approximate solution uj+1.
This process is repeated until the FP algorithm converges. We will refer to
this scheme as the SB-GK-FP method. It is summarized in Algorithm 5.

4.2. Cross Validation

This section discusses how the Cross Validation (CV) method can be
applied for determining a suitable value of the regularization parameter µ in

16

Algorithm 5: SB-GK-FP

1 Input: matrices A ∈ Rm×n and W ∈ Rr×n, vector f ∈ Rm, integers
`,M ≥ 1, positive constants γ, λ and µ ;

2 Let d1 = b1 = 0 and µ1 = µ ;
3 Compute the decomposition (3.2) and store V` and B`+1,` ;
4 while |µj+1 − µj |/|µj | > tol1 do
5 [uj+1, yj+1] = SB-GK

(
B`+1,`,W, f, µ

j ,M, λ, V`
)

;

6 µj+1 = 1
γ

‖Wuj+1‖1
1
2
‖B`+1,`yj+1−‖f‖2e1‖22

;

7 end
8 Output: uj+1

the minimization problem (1.4). This method has previously been applied
successfully to determine the regularization parameter for other minimiza-
tion problems with application to the restoration of images that are con-
taminated by blur and impulse noise; see, e.g., [5]. The CV method splits
the data f into two complementary sets: the training set and the testing
set. Assume for notational simplicity that the testing set is made up of the
first d� m elements of f ∈ Rm. The training set is then defined as

f̃ = [fd+1, fd+2, · · · , fm]T ∈ Rm−d.

Let Ã ∈ R(m−d)×n be obtained by removing the first d rows from the matrix
A. The training set is used for solving the minimization problem (1.4) with
different regularization parameter values, and the testing set is used to val-
idate these values. In actual computations, the elements of the training set
are chosen randomly. Therefore, we propose to implement the CV method
as follows. Consider solving (1.4) with some regularization parameter. Let
I denote a set of d distinct random integers between 1 and n, and let Ã and
f̃ be defined by removing the rows with indices in the set I from A and f ,

respectively. Let
{
µj
}`
j=1

be a set of positive regularization parameters, and
let uµj be given by

uµj := arg min
u∈Rn

{
‖Wu‖1 + µj‖Ãu− f̃‖1

}
.

Define the quantities

rj =

√√√√ d∑
i=1

((
Auµj

)
i
− fi

)2

, 1 ≤ j ≤ `.

17

We identify as a suitable regularization parameter

µĵ , with ĵ = arg min
j
rj .

Let K̂ be a small positive integer. We carry out the above computa-
tions for K̂ different partitionings and average the regularization parameter
value determined by each partitioning. At step 1 ≤ k ≤ K̂, we consider
a randomly selected set of d entries of the vector f as testing data, while
the other m − d entries are used as training data. This is known as the
K̂-fold CV technique; it results in a less biased model, because it ensures
that each entry in f may both appear in a training set and in a testing
set. Each step provides a regularization parameter µ(k) for k = 1, 2, . . . , K̂
denoted by µ(k). The chosen regularization parameter µ∗ is the average of
the parameter values µ(k), i.e.,

µ∗ =
1

K̂

K̂∑
k=1

µ(k).

Finally, we use µ∗ to compute u∗ as

u∗ := arg min
u
‖Wu‖1 + µ∗‖Au− f‖1.

This scheme is summarized in Algorithm 6, where we use Algorithm 4

to compute u
(k)
µj . Let uinitk,j = ÃT f̃ for j = 1, 2, . . . , `, k = 1, 2, . . . , K̂, and

let vinitk,j = ÃT f̃/
∥∥∥ÃT f̃∥∥∥

2
for j = 1, 2, . . . , `, k = 1, 2, . . . , K̂. These choices

allow us to run the SB-GKS algorithm in parallel for different regularization
parameter values.

5. Impulse Noise Filtering

The SB-GKS method is well suited for the restoration of images that
have been contaminated by blur and impulse noise. We recall that f is said
to be affected by random-valued impulse noise, if it has the entries

fi =

{
ai with probability σp,
ftruei with probability 1− σp,

(5.1)

where σp is referred to as the noise level and ai is a number chosen uniformly
at random in the interval [amin, amax], which is the dynamic range of ftruei .
If ai ∈ {amin, amax}, then the impulse noise is called salt-and-pepper noise.

18

Algorithm 6: SB-GKS-CV

1 Input: matrices A ∈ Rm×n and W ∈ Rr×n, vector f ∈ Rm, integers

d, K̂,M ≥ 1, positive constant λ, set of positive regularization

parameters
{
µj
}l
j=1

;

2 for k = 1, 2, . . . K̂ do
3 Construct a set I(k) of d distinct random integers between 1 and n; let

Ã and f̃ be obtained by removing the rows with indices in I(k) from
A and f, respectively;

4 for j = 1, 2, . . . l do

5 u
(k)
µj = SB-GKS

(
Ã,W, f̃ , µj , V

init
k,j

)
;

6 Compute r
(k)
j =

√∑
i∈I(k)

((
Au

(k)
µj

)
i
− fi

)2

;

7 end

8 j∗ = arg min1≤j≤l

{
r
(k)
j

}
;

9 µ(k) = µj∗ ;

10 end

11 Compute µ∗ = 1

K̂

∑K̂
k=1 µ

(k) ;

12 u∗ = SB−GKS(A,W, f,M, λ, µ∗);
13 Output: u∗

19

The quality of the restorations computed by the SB-GKS method is not
satisfactory when the noise level is high, e.g., when σp ≥ 40%. In this case, a
median filter method can be used to detect some of the corrupted pixels in f
and to replace them by the median value of their neighboring pixels. We will
apply the directional weighted median filter (DWMF) proposed by Dong and
Xu [10]. This filter detects a noisy pixel if the minimum value of the sum of
weighted absolute differences between each pixel and its neighbors aligned
in the four main directions exceeds a certain threshold. If the minimum
of the sum of weighted absolute differences is larger than the threshold, the
noisy pixel is replaced by a weighted median of the neighboring pixels values.
The success of noise detections depends on how many neighboring pixels in
the main four directions are not corrupted by noise. For a large value of
σp, there is a high probability that the majority of the surrounding pixels
are noisy. This can be deduced from the definition of the impulse noise
(5.1), as the noisy pixels will be distributed uniformly in an image, with a
high probability that some of them will be clustered in some neighborhood.
Therefore, replacing the noisy pixel by a median value of its neighbors may
produce blurred edges; see Figure 6.8.

We propose to use the DWMFs only for locating (some of) the noisy
pixels. We then remove these pixels from our data f before applying the
SB-GKS algorithm. Let J be a set of d distinct integers between 1 and n.
These integers are the locations of the noisy pixels detected by the DWMF
method. Let Ã and f̃ be defined by removing the rows with index in J from
A and f , respectively. We then apply the SB-GKS method using Ã and f̃
as input to obtain the solution u, i.e.,

u := arg min
u∈Rn

{
‖Wu‖1 + µ‖Ãu− f̃‖1

}
.

We refer to this scheme as the filtered SB-GKS (F-SB-GKS) method.

6. Numerical Examples

We now consider some image deblurring examples to show the perfor-
mances of the algorithms proposed in this paper. We refer the interested
reader to [15] for more details on image deblurring; here we just recall that
the matrix A is severely ill-conditioned, large, and structured, i.e., such
that matrix-vector products with A can be performed cheaply using the fft

algorithm; see, e.g., [15].
We consider two types of noise, Gaussian and impulse noise. In the

first case the entries of e are independent realizations of a Gaussian random

20

variables with zero mean, and we refer to the ratio

σg =
‖e‖2
‖ftrue‖2

(6.1)

as the noise level. Impulse noise is defined in (5.1) and we refer to σp as
noise level in this case. We express the noise levels σg and σp defined in
(6.1) and (5.1), respectively, as percentages.

The dynamic range of f̂i is [0, 255] in our experiments, because each
pixel is stored in 8 bits. Reflexive boundary conditions are imposed for all
test images. We compare the SB-GK and SB-GK-FP methods with the
projected linearized Bregman PLB method described in [4] and the SB-
`2-CG and SB-`1-CG methods defined below. Results for the SB-GKS and
F-SB-GKS methods for high impulse noise levels are presented. We compare
the restored images in terms of the number of iterations, computing time,
and the quality of the restored images measured by the Peak Signal-to-Noise
Ratio (PSNR). The PSNR is defined by

PSNR = 10 log10
2552

m
∑

i,j

(
uresi,j − utruei,j

)2 ,
where uresi,j and utruei,j denote pixel values of the restored and original images
at pixel (i, j), respectively.

The matrix A represents the blurring operator. For the construction of
W , we use the linear B-spline tight frame system that is derived from a
low-pass filter W0 ∈ Rn×n and two high-pass filters W1,W2 ∈ Rn×n. They
are defined by

W0 =
1

4


3 1 0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0 1 3

 , W1 =

√
2

4


−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .

−1 0 1
0 . . . 0 −1 1

 ,

and

W2 =
1

4


1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 . . . 0 −1 1

 .

21

The corresponding regularization matrix W in two space-dimensions is given
by

W =



W0 ⊗W0

W0 ⊗W1

W0 ⊗W2

W1 ⊗W0
...

W2 ⊗W2


,

where ⊗ denotes the Kronecker product. The regularization operator W
is very sparse. This makes the evaluation of matrix-vector products with
W and W T inexpensive. In particular, the computational work of applying
the framelet operators is linear in the number of unknowns. The matrix W
satisfies W TW = I. One may consider other function spaces, however, the
good results achieved with the framelet basis are not guaranteed to carry
over to other function spaces.

In Algorithms 2, 3, and 4, we set the regularization parameter µ to the
value determined experimentally that yields a restored image that is closest
to utrue in terms of PSNR value. The quality of the restored images is
not very sensitive to the choice of λ. The value of λ only influences the
rate of the convergence of the methods. We found empirically that setting
λ = 2 results in (relatively) fast convergence. For the SB-GK method, we
set tol = 1× 10−4 in Algorithm 3. The dimension ` of the Krylov subspace
in the SB-GK method needs not to be large. Using a Krylov subspace of
larger dimension does not improve the accuracy. Here we set ` to a moderate
value, ` = 11.

We also compare the SB-GK and SB-GKS method to the split Bregman
algorithm Algorithms 1 and 2, where we solve the linear system of equations
(13) and (2.13) at each iteration by the Conjugate Gradient method. We
implement the CGLS algorithm as described in [14] with stopping criterion
10−7 and let the initial guess be chosen as the most recently computed
approximate solution uk. We refer to this version of the split Bregman
algorithm to as the SB-`2-CG method for the Gaussian noise case and as
the SB-`1-CG method for the impulse noise case. We set the values of the
regularization parameters in SB-`2-CG and SB-`1-CG to the same values
of µ in SB-GK and SB-GKS, respectively. For the SB-`2-CG, SB-`1-CG,
and SB-GKS methods, we set tol = 5 × 10−4 in Algorithms 1, 2, and 4.
The iterations with CGLS in SB-`1-CG are terminated when the relative
residual error is less than tol = 1 × 10−7. For a fair comparison with SB-
GK, we set the maximum number of iterations of CGLS in SB-`2-CG to

22

11. Note that in most of our experiments the CGLS algorithm converges
to the desired accuracy in less than 11 iterations. This implies that there
is no need to precondition the system. For the SB-GK-FP method, we set
γ = 5, tol1 = 1 × 10−3, and µ = 1 in Algorithm 5. We set the parameters
in Algorithm 6 for the SB-GKS-CV method to K̂ = ` = 8, d =

[
n
200

]
, and

the µj are 8 evenly spaced points between 10 and 90.
For the SB-GKS method, increasing the number of inner iterations, M ,

improves the quality of the computed solution. Also, there is a memory-time
tradeoff when choosing M in the SB-GKS method, i.e., when we increase
M , the memory requirement reduces due to a decrease of the number of
outer iterations. However, the execution time tends to increase due to the
cost of the evaluation of the shrinkage operator at each inner iteration;
see Table 6.4. For the SB-GK and SB-`1-CG methods, M only plays a
role in gaining extra accuracy in the restoration. Based on our numerical
experience, increasing the number of inner iterations M to be larger than 3
does not give a significant improvement in the quality of the restored images.
We set M = 3 in all algorithms.

The proposed methods are compared with the `p-`q adaptive and fixed
minimization majorization methods referred to as AMM-GKS`p-`q and FMM-
GKS`p-`q, respectively; see [16]. We let p = 2 and q = {0.1, 1} for test images
corrupted by Gaussian noise, and p = 0.8 and q = 0.1 as well as p = 1 and
q = 1 for images corrupted by impulse noise. We set the maximum number
of iterations for the AMM-GKS method to 100, and set the tolerance for
both methods to 5× 10−4. Also, we compare the SB-GK-FP method to the
modified cross-validation MM-GKS-MCV method and the generalized cross-
validation MM-GKS-GCV method proposed in [5] and [6], respectively. We
set p = 2 and q = 0.1 for both MM-GKS-MCV and MM-GKS-GCV meth-
ods. The SB-GKS-CV method is also compared to the smoothed version of
the GCV i.e. GCV-Smooth method implemented in [5]. Note that, since the
CV and MCV perform several runs of the MM-GKS algorithm, we will not
report the number of iterations perform, but just the overall computational
cost. All computations are carried out using MATLAB R2020b running on
a Windows 10 laptop computer with a i5-8750H CPU @2.40 GHz and 6GB
of RAM.

Pepper. Figure 6.1 shows an image with 236 × 236 pixels that is blurred
by a PSF that simulates motion blur. White Gaussian noise is added to
the blurred image with a noise level of 2%. The restorations achieved with
the SB-`2-CG, PLB, SB-GK, and SB-GK-FP algoritms are shown in Fig-
ure 6.2. We report the PSNR values, number of iterations, and the CPU

23

time measured in seconds in Table 6.1 for each method. All four methods
yield very accurate restorations. We note that the image restored by the
SB-GK method is slightly smoother than restorations determined by the
PLB and SB-`2-CG method. The SB-GK-FP method determines a suitable
value of µ and achieves a restored image of high quality. Overall, all meth-
ods required only a few iterations to converge and little CPU time. Also,
we compare the restoration of the SB-GK method with the one determined
by the SB-`2 method, where we use the generalized Krylov subspace Vk as a
search space. The construction of Vk is similar to the technique used in the
SB-GKS method. We refer to this method as SB-GK2. For this comparison,
the pepper test image contains 1% white Gaussian noise. The restoration
results are shown in Table 6.2. We notice that SB-GK is faster than SB-GK2
but the PSNR value of the image restored by SB-GK2 is higher. We point
out that the dimension of the search space Vk of SB-GK2 is k = 28, which
is larger than ` = 11 in SB-GK. For the SB-`2-CG method, the PSNR value
of the restored image is small compared to SB-GK and the total number of
iterations and CPU time is higher in the SB-`2-CG method. But for both
AMM-GKS`2-`0.1 and FMM-GKS`2-`0.1, we notice that the PSNR value
is slightly higher but this small improvement in restoration quality is not
enough to justify the much higher computational cost. SB-GK outperforms
AMM-GKS`2-`1 and FMM-GKS`2-`1 in terms of both PSNR and CPU time.
Both MM-GKS-MCV and MM-GKS-GCV determined a reasonable value of
µ, but require a larger computational effort than the SB methods. We can
also observe that the GCV-Smooth method produces a not very accurate
reconstruction. This is due to the fact that the noise that corrupts the data
is purely Gaussian and this algorithm is designed to handle impulse noise;
see [6] for a discussion.

Goldhill. The image of size 246× 246 pixels, shown in Figure 6.3, is blurred
with a PSF that simulates average blur. We added 2% white Gaussian noise
to the image. The restorations obtained with the SB-`2-CG, PLB, SB-GK,
and SB-GK-FP methods are shown in Figure 6.4. The convergence plot is
shown in Figure 6.12. We notice that the restoration determined by the
SB-GK method displays more details of the original image compared to the
restoration determined by the PLB method. The PSNR values, numbers of
iterations, and execution times are reported in Table 6.1 for each method.
Overall, we note that all methods converge quickly. We note that the SB-
GKS-FP method determines a reasonable value of µ. The quality of the
image restored by the SB-`2-CG method is not as high as the image restored
by the SB-GK method. The computation time with SB-`2-CG is much

24

(a) (b) (c)

Figure 6.1: Peppers test case: (a) original pepper image (236 × 236 pixels), (b) PSF
(11× 11 pixels), (c) blurred image and noisy image (2% white Gaussian noise).

(a) (b)

(c) (d)

Figure 6.2: Pepper test problem restorations computed by: (a) SB-`2-CG (b) PLB (c)
SB-GK (d) SB-GK-FP.

25

(a) (b) (c)

Figure 6.3: Goldhill test case: (a) original goldhill image (246×246 pixels), (b) PSF (9×9
pixels), (c) blurred image and noisy image (2% white Gaussian noise).

higher than with SB-GK. AMM-GKS`2-`0.1 and FMM-GKS`2-`0.1 is close
to the proposed methods, but their computation requires more CPU time.
AMM-GKS`2-`1 and FMM-GKS`2-`1 perform poorly compared to SB-GK in
terms of the PSNR value and CPU time. Similarly to the previous example,
the GCV-Smooth algorithm produces a reconstruction with a smaller PSNR
value than the other considered methods.

Clock. An image of size 246× 246 pixels is blurred by a PSF and is shown
in Figure 6.5. We added 20% random-valued impulse noise to the image.
The restorations determined by the SB-`1-CG, SB-GKS, and SB-GKS-CV
methods are shown in Figure 6.6. The PSNR values, number of iterations,
and the CPU time are reported in Table 6.1 for each method. We note that
the SB-GKS method converged fairly quickly and determined a very accurate
restoration. Also, the SB-GKS-CV method succeeded in determining an
appropriate value of µ. Comparing the SB-GKS method with the SB-`1-CG
method, we notice that the quality of the restored images obtained by the
SB-GKS and SB-`1-CG methods is about the same. However, the SB-`1-CG
method required more CPU time, because the CGLS method requires more
matrix-vector product evaluations than the SB-GKS method. Similarly as
above, the MM methods compute slightly more accurate reconstructions in
some examples, however, the computational cost is extremely higher. We
do not report results obtained with MM-GKS-MCV and MM-GKS-GCV as
the methods did not produce accurate reconstructions.

We also compare SB-GKS to F-SB-GKS for the noise levels 30%, 40%,
and 50%. From Table 6.3 and by visual inspection of Figure 6.7, we conclude
that the F-SB-GKS method outperforms the SB-GKS method in terms of
image quality. We also notice that the F-SB-GKS method requires more

26

(a) (b)

(c) (d)

Figure 6.4: Goldhill test problem restorations computed by: (a) SB-`2-CG (b) PLB (c)
SB-GK (d) SB-GK-FP.

27

(a) (b) (c)

Figure 6.5: Clock test case: (a) original clock image (246 × 246 pixels), (b) PSF (9 × 9
pixels), (c) blurred image and noisy image (20% random-valued impulse noise).

(a) (b) (c)

Figure 6.6: Clock test problem restorations computed by: (a) SB-`1-CG (b) SB-GKS (c)
SB-GKS-CV

CPU time than the SB-GKS method, because the DWMF algorithm re-
quired several seconds to detect noisy pixels. We show the restoration of
an example with a noise level of 50% using the DWMF method, where we
replace the noisy pixels by median values of their neighboring pixels in Fig-
ure 6.8(a), and the restoration obtained by the DWMF method followed
by the SB-GKS method in Figure 6.8(b). The DWMF method was able to
correct most of the noisy pixels at the cost of introducing some blotches in
the image as well as blurred edges. As a consequence, the image restored
by the DWMF method followed by the SB-GKS method suffers from many
defects. We can observe that the result obtained by GCV-Smooth is as ac-
curate as the one computed by SB-GKS-CV. However, in SB-GKS-CV the
algorithm runs 64 times, while the GCV-Smooth method runs only once.
Since all the 64 runs of SB-GKS-CV are independent, the CPU time could
be significantly reduced if the j-loop in Algorithm 6 is performed in parallel.

28

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Clock test problem with different level of impulse noise. The first row reports
the blurred and noisy image corrupted by random-valued impulse noise with a noise level
of 30%, 40%, and 50%, arranged from left to right respectively. The second row reports
the reconstruction obtained with SB-GKS and the third row collects the ones computed
by F-SB-GKS.

29

(a) (b)

Figure 6.8: Clock test problem with 50% noise level. The restorations computed by: (a)
DWMF only (b) DWMF followed by SB-GKS

Barbara. An image of size 246× 246 pixels is blurred by the PSF shown in
Figure 6.9. We added 20% of salt-and-pepper noise to the image. The re-
stored images obtained by the SB-`1-CG, SB-GKS, and SB-GKS-CV method
show successful noise suppression; see Figure 6.10. The convergence plot is
shown in Figure 6.12. We report the performances of the SB-GKS and
SB-GKS-CV methods in terms of the execution time and PSNR-values in
Table 6.1. The SB-GKS-CV method produced an image that is close in
quality of the image determined by SB-GKS. The SB-GKS method outper-
formed SB-`1-CG in terms of the CPU time required until convergence. We
obtain similar results as in the previous cases with AMM-GKS and FMM-
GKS, i.e., they give slightly higher PSNR-values in some cases with a much
higher computational cost. Moreover, as in the previous example, we do
not display results for MM-GKS-MCV and MM-GKS-GCV as these meth-
ods did not produce meaningful reconstructions. Table 6.3 and Figure 6.11
illustrate the advantages of the two-step F-SB-GKS method for restoring
images with high impulse noise levels. Finally, we stress that, in this case,
the PSNR value of the image restored by GCV-Smooth is smaller than the
one obtained by SB-GKS-CV.

7. Conclusions

This paper proposes two projected split Bregman schemes with the aid
of Krylov subspaces for several image deblurring models. Methods for de-
termining the regularization parameter are combined with some of these
schemes and result in fully automatic and fast methods for image restora-
tion. Moreover, these methods are faster than the AMM-GKS and FMM-
GKS methods described in [16].

30

(a) (b) (c)

Figure 6.9: Barbara test case: (a) original Barbara image (246 × 246 pixels), (b) PSF
(9× 9 pixels), (c) blurred and noisy image (20% salt-and-pepper noise).

(a) (b) (c)

Figure 6.10: Barbara test problem restorations computed by: (a) SB-`1-CG (b) SB-GKS
(c) SB-GKS-CV.

31

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: Barbara test problem with different level of impulse noise. The first row
reports the blurred and noisy image corrupted by random-valued impulse noise with a
noise level of 30%, 40%, and 50%, arranged from left to right respectively. The second
row reports the reconstruction obtained with SB-GKS and the third row collects the ones
computed by F-SB-GKS.

32

Table 6.1: The PSNR value, number of iterations, and execution time in seconds for each
example.

Example Method PSNR Iterations CPU time (seconds)

Pepper

SB-`2-CG 24.92 48 34.6
PLB 25.9 60 3.95
SB-GK 26.03 10 2.19
SB-GK-FP 25.95 11 18.21
AMM-GKS`2-`0.1 26.82 100 581.43
AMM-GKS`2-`1 25.65 100 455.2
FMM-GKS`2-`0.1 26.64 143 181.15
FMM-GKS`2-`1 25.42 128 137.07
MM-GKS-MCV 26.07 – 6.29× 103

MM-GKS-GCV 26.05 100 478.65
GCV-Smooth 24.48 100 523.41

Goldhill

SB-`2-CG 24.86 71 55.3
PLB 26.52 77 6.9
SB-GK 26.55 9 1.95
SB-GK-FP 25.97 15 21.76
AMM-GKS`2-`0.1 26.98 100 643.57
AMM-GKS`2-`1 26.31 100 583.2
FMM-GKS`2-`0.1 26.73 132 172.3
FMM-GKS`2-`1 26.02 102 131.9
MM-GKS-MCV 23.32 – 6.41× 103

MM-GKS-GCV 26.08 100 650.86
GCV-Smooth 25.19 100 689.12

Clock

SB-`1-CG 30.49 66 49.3
SB-GKS 31.14 72 13.2
SB-GKS-CV 29.9 – 735.5
AMM-GKS`0.8-`0.1 31.79 100 668.07
AMM-GKS`1-`1 30.05 100 492.1
FMM-GKS`0.8-`0.1 28.98 177 228.96
FMM-GKS`1-`1 27.57 143 193.09
GCV-Smooth 29.96 100 636.49

Barbara

SB-`1-CG 24.78 101 69.28
SB-GKS 24.84 91 14.84
SB-GKS-CV 23.84 – 696
AMM-GKS`0.8-`0.1 25.32 100 651.9
AMM-GKS`1-`1 24.36 100 452.55
FMM-GKS`0.8-`0.1 25.17 331 578.34
FMM-GKS`1-`1 24.15 283 417.03
GCV-Smooth 21.04 100 636.49

33

Table 6.2: The PSNR value, number of iterations, and execution time in seconds for the
SB-GK and SB-GK2 algorithms in the Pepper test case. We do not report these results
for the other methods as they are similar.

Method PSNR Iterations CPU time (seconds)

SB-GK 26.16 8 2.22
SB-GK2 26.77 28 8.43

Table 6.3: The PSNR value, number of iterations, and execution time in seconds for
SB-GKS and F-SB-GKS.
Example Method Noise Level PSNR Iterations CPU time (seconds)

Clock

SB-GKS
30% 28.2 63 10
40% 25.45 70 11.33
50% 19.98 72 12.2

F-SB-GKS
30% 33.05 68 15.73
40% 31.24 69 15.97
50% 29.24 59 14.60

Barbara

SB-GKS
30% 24.43 100 20.44
40% 23.38 81 13.67
50% 22.61 86 14.32

F-SB-GKS
30% 25.31 121 26.55
40% 24.8 102 26.08
50% 22.94 101 22.7

Table 6.4: The PSNR value, number of iterations, and execution time in seconds for
SB-GK and SB-GKS with different value of M

Example Method M PSNR Iterations CPU time (seconds)

Goldhill SB-GK
1 26.07 19 1.48
2 26.40 14 1.62
3 26.55 9 1.95

Barbara SB-GKS
1 29.29 106 6.5
2 30.32 76 8.67
3 31.14 72 13.2

34

0 10 20 30 40 50

k

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
 |
|u

k
+

1
-u

k
||

2
/|
|u

k
||

2

(a)

0 10 20 30 40 50 60 70 80 90

k

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
 |
|u

k
+

1
-u

k
||

2
/|
|u

k
||

2

(b)

Figure 6.12: The convergence plot of the restoration of: (a) Goldhill using SB-GK (b)
Barbara using SB-GKS.

Acknowledgments

The authors would like to thank the referees for insightful comments
that helped improve this manuscript. A.B. is a member of the GNCS group
of INdAM and that partially founded his research with the project “Regu-
larization Methods and Models for large scale inverse ill-posed problems”.

References

[1] A. B. Bakushinskii, Remarks on the choice of regularization parameter
from quasioptimality and relation tests, USSR Comput. Math. Math.
Phys., 24 (1984), pp. 181–182.

[2] L. Bregman, The relaxation method of finding the common points of
convex sets and its application to the solution of problems in convex
optimization, USSR Comput. Math. Math. Phys., 7 (1967), pp. 200–
217.

[3] A. Buccini, O. De la Cruz Cabrera, M. Donatelli, A. Martinelli, and L.
Reichel, Large-scale regression with non-convex loss and penalty, Appl.
Numer. Math., 157 (2020), pp. 590–601.

[4] A. Buccini, M. Pasha, and L. Reichel, Linearized Krylov subspace Breg-
man iteration with nonnegativity constraint, Numer. Algorithms, 87
(2021), pp. 1177–1200.

35

[5] A. Buccini and L. Reichel, An `p-`q minimization method with cross-
validation for the restoration of impulse noise-contaminated images, J.
Comput.Appl. Math., 375, (2020), pp. 112–824.

[6] A. Buccini and L. Reichel, Generalized Cross Validation for `p-`q min-
imization, Numer. Algorithms 88, (2021), pp. 1595–1616.

[7] J.-F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame
based image restoration, Multiscale Model. Simul., 8 (2009), pp. 337–
369.

[8] J.-F. Cai, R. Chan, and M. Nikolova, Fast two-phase image deblurring
under impulse noise, J. Math. Imaging Vision, 36 (2010), pp. 46–53.

[9] V. De Simone, D. di Serafino, and M. Viola, A subspace-accelerated
split Bregman method for sparse data recovery with joint `1-type reg-
ularizers, Electron. Trans. Numer. Anal., 53 (2020), pp. 406–425.

[10] Y. Dong and S. Xu, A new directional weighted median filter for removal
of random-valued impulse noise, IEEE Signal Processing Letters, 14
(2007), pp. 193–196.

[11] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse
Problems, Kluwer, Dordrecht, 1996.

[12] T. Goldstein and S. Osher. The split Bregman algorithm for L1-
regularized problems, SIAM J. Imaging Sci., 2, (2009), pp. 323–343.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Johns
Hopkins University Press, Baltimore, 2013.

[14] P. C. Hansen, Discrete Inverse Problems, SIAM, Philadelphia, 2010.

[15] P. C. Hansen, J. Nagy, and D. O’Leary, Deblurring Images: Matrices,
Spectra, and Filtering, SIAM, Philadelphia, 2006.

[16] G. Huang, A. Lanza, S. Morigi, L. Reichel, and F. Sgallari,
Majorization–minimization generalized Krylov subspace methods for
`p−`q optimization applied to image restoration, BIT. Numerical Math-
ematics, 57, (2017), pp. 351–378.

[17] K. Ito, B. Jin, and T. Takeuchi, A regularization parameter for nons-
mooth Tikhonov regularization, SIAM J. Sci. Comput., 33 (2011), pp.
1415–1438.

36

[18] S. Kindermann, Discretization independent convergence rates for noise
level-free parameter choice rules for the regularization of ill-conditioned
problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.

[19] S. Kindermann and K. Raik, A simplified L-curve method as error
estimator, Electron. Trans. Numer. Anal., 53 (2020), pp. 217–238.

[20] J. Lampe, L. Reichel, and H. Voss, Large-scale Tikhonov regulariza-
tion via reduction by orthogonal projection, Linear Algebra Appl., 436
(2012), pp. 2845–2865.

[21] M. Stone, Cross-validatory choice and assessment of statistical predic-
tion, J. Royal Stat. Soc., series B, 36 (1977), pp. 111–147.

[22] W. Yin, S. Osher, D. Goldfarb, and J. Darron, Bregman iterative al-
gorithms for `1-minimization with applications to compressed sensing,
SIAM J. Imaging Sci., 1 (2008), pp. 143–168.

37

