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Abstract. The need to estimate upper and lower bounds for matrix functions of the form trace(WT f(A)V ), where the

matrix A ∈ Rn×n is large and sparse, V,W ∈ Rn×s are block vectors with 1 ≤ s � n columns, and f is a function arises

in many applications, including network analysis and machine learning. This paper describes the shifted extended global

symmetric and nonsymmetric Lanczos processes and how they can be applied to approximate the trace. These processes

compute approximations in the union of Krylov subspaces determined by positive powers of A and negative powers of

A− σIn, where the shift σ is a user-chosen parameter. When A is nonsymmetric, transposes of these powers also are used.

When A is symmetric and W = V , we describe how error bounds or estimates of bounds for the trace can be computed

by pairs of Gauss and Gauss-Radau quadrature rules, or by pairs of Gauss and anti-Gauss quadrature rules. These Gauss-

type quadrature rules are defined by recursion coefficients for the shifted extended global Lanczos processes. Gauss and

anti-Gauss quadrature rules also can be applied to give estimates of error bounds for the trace when A is nonsymmetric

and W 6= V . Applications to the computation of the Estrada index for networks and to the nuclear norm of a large

matrix are presented. Computed examples show the shifted extended symmetric and nonsymmetric Lanczos processes to

produce accurate approximations in fewer steps than the standard symmetric and nonsymmetric global Lanczos processes,

respectively.
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1. Introduction. We introduce shifted extended symmetric and nonsymmetric block Lanczos pro-

cesses. Applications include the analysis of large networks. We first describe this application before

discussing the details of the Lanczos processes.

The analysis of networks finds applications in a number of disciplines including social science, engi-

neering, molecular biology, and traffic planning; see [11, 12, 16, 17, 31]. Typically, one is interested in

determining the most important vertices of a given network, or to identify global properties of a network.

A network is represented by a graphG = {V,E}, which consists of a set of nodes or vertices V = {vi}ni=1

and a set of edges E = {êk = {vi, vj} : vi, vj ∈ V }mk=1 that connect the vertices. In an undirected graph

each edge is a “two-way street”, while in a directed graph at least one edge is a “one-way street”. In a

weighted graph, each edge is assigned a scalar value, which is the weight of the edge; in an unweighted

graph, all weights are unity.

A walk of length k in a graph G is defined as a sequence of vertices and edges such that

v`0
êj1→ v`1

êj2→ v`2
êj3→ . . .

êjk−1→ v`k−1

êjk→ v`k ,
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where the edge êji = {v`i−1 , v`i} emerges from vertex v`i−1 and points to vertex v`i (for a directed graph)

or is between the vertices v`i−1
and v`i (for an undirected graph). A graph G is connected when there is

a walk from any vertex to any other vertex in G. We are concerned with unweighted connected graphs

without self-loops and multiple edges. However, the methods described also can be applied to weighted

graphs.

We can associate an adjacency matrix A = [ai,j ] ∈ Rn×n to a graph G. The entries of the adjacency

matrix for an unweighted connected graph G without self-loops and multiple edges, with n vertices, are

given by

ai,j =


1 if there is an edge from vertex vi to vertex vj (when G is directed)

or between the vertices vi and vj (when G is undirected),

0 otherwise.

The adjacency matrix is symmetric if the graph G is undirected and nonsymmetric otherwise.

The importance of a vertex vi in a graph G is commonly referred to as its centrality. There are several

ways to measure centrality. Recently, matrix functions, and in particular the matrix exponential, have

received considerable attention for measuring centrality. The number of walks from vertex vi to vertex vj
of length k are given by [Ak]i,j . The subgraph centrality of vertex vi determined by the matrix exponential

is defined as

[exp(A)]i,i = 1 + [A]i,i +
[A2]i,i

2!
+

[A3]i,i
3!

+ . . . ;

see [16, 19, 20]. Thus, the subgraph centrality of the vertex vi is a weighted average of all walks from

vi back to itself. Longer walks receive a smaller weight than shorter walks. This corresponds to the

common modeling assumption that short walks are more important than long ones. The sum of all

subgraph centralities of a graph is commonly referred to as the Estrada index of G,

EE(G) :=

n∑
i=1

[exp(A)]i,i =

n∑
i=1

[exp(λi)] = trace(exp(A)), (1.1)

where the λi, i = 1, 2, . . . n, denote the eigenvalues of the matrix A. The normalized subgraph centrality

of the vertex vi is given by

pi = [exp(A)]i,i/EE(G), i = 1, 2, . . . , n,

and is used to determine the relative importance of vertices: the vertex vi is important when pi is

relatively large; see [16, Chapter 5]. For some networks, ln(EE(G)) is desired; see [16, p. 99]. We remark

that the Estrada index also is a useful measure in statistical thermodynamics [18] and in the investigation

of the folding of long-chain molecules [15]. The Estrada index is expensive to compute when the graph

G is large.

It is the purpose of this paper to introduce new methods to determine approximations of the Estrada

index for large graphs. We will describe novel ways to compute upper and lower bounds for the Estrada

index (1.1), or estimates of such bounds, for symmetric and nonsymmetric adjacency matrices for a graph.

The methods described also can be applied in machine learning, when f(t) = ln(t) (see [5, 25, 32]), and

in quantum chromodynamics when computing Schatten p-norms, when f(t) = tp/2, for some 0 < p ≤ 1;

see [6, 34, 36].

Our method for computing upper and lower bounds (or estimates of such bounds) is based on deter-

mining upper and lower bounds (or estimates thereof) for expressions of the form

I(f) := trace(V T f(A)V ), (1.2)
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where A ∈ Rn×n is a large, sparse matrix and V ∈ Rn×s is a block vector with 1 ≤ s � n orthonormal

columns. Assume for now that the matrix A is symmetric and the function f is analytic on the convex

hull of the spectrum of A. Introduce the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λn],

where λ1, λ2, . . . , λn denote the eigenvalues of A and the matrix U ∈ Rn×n of eigenvectors of A is

orthogonal. Here and throughout this paper the superscript T denotes transposition. Then

f(A) = Uf(Λ)UT , f(Λ) = diag[f(λ1), f(λ2), . . . , f(λn)].

Bellalij et al. [7] observed that the expression (1.2) can be written as a Stieltjes integral. We have

I(f) = trace(V T f(A)V ) =

n∑
i=1

f(λi)trace(V̂ Ti V̂i) =

∫
f(λ)dα(λ), (1.3)

where V̂ = UTV , V̂i denotes the ith row of the matrix V̂ , and α(λ) is a nondecreasing real-valued piece-

wise constant function with possible discontinuities at the eigenvalues λi of A; dα(λ) is the associated

measure.

Bellalij et al. [7] applied pairs of Gauss and Gauss-Radau quadrature rules to compute upper and

lower bounds for expressions of the form (1.2) for certain functions f , including the exponential. The

m-point Gauss rule is determined by applying m steps of the global symmetric Lanczos process, which

generates an orthonormal basis for the global Krylov subspace

Km(A, V ) := span{V,AV, . . . , Am−1V } = {p(A)V : p ∈ Πm−1}, (1.4)

where Πm−1 denotes the set of polynomials of degree at most m− 1. Global Krylov subspace techniques

were first proposed by Jbilou et al. [28, 29] for solving linear systems of equations with multiple right-hand

sides.

Application of m steps of the global symmetric Lanczos process [29] to A with initial block vector

V ∈ Rn×s gives the decomposition

AVm = Vm(Tm ⊗ Is) + βm+1Vm+1E
T
m, (1.5)

where ⊗ denotes the Kronecker product. The n× s block columns of the matrix Vm = [V1, V2, . . . , Vm] ∈
Rn×ms, where V1 = V/‖V ‖ and ‖ · ‖ denotes the Frobenius matrix norm, form a basis for the subspace

(1.4) that is orthonormal with respect to the inner product

〈X,Y 〉 = trace(XTY ), (1.6)

i.e.,

〈Vj , Vk〉 = trace(V Tj Vk) =

{
1 j = k,

0 j 6= k,

where we recall that 〈Vj , Vj〉 = ‖Vj‖2. The matrix Tm ∈ Rm×m in (1.5) is symmetric and tridiagonal,

Is ∈ Rs×s denotes the identity matrix, βm+1 ≥ 0, and Em ∈ Rms×s is made up of the columns (m −
1)s + 1, (m − 1)s + 2, . . . ,ms of the identity matrix Ims. We tacitly assume that m is small enough so

that the decomposition (1.5) with the stated properties exists. This is the generic situation.
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The m-point Gauss quadrature rule for the Stieltjes integral (1.3) is given by

Gm(f) := ‖V ‖2eT1 f(Tm)e1, (1.7)

where e1 = [1, 0, . . . , 0]T denotes the first canonical basis vector. The Gauss rule satisfies

I(p) = Gm(p), ∀p ∈ Π2m−1;

see [7] for details.

The associated (m+ 1)-point Gauss-Radau quadrature rule with a specified node ξ can be expressed

as

Rξm+1(f) = ‖V ‖2eT1 f(Tm+1,ξ)e1, (1.8)

where Tm+1,ξ ∈ R(m+1)×(m+1) is determined by modifying the last diagonal entry of the matrix Tm+1 so

that Tm+1,ξ has an eigenvalue at ξ. Here Tm+1 is the matrix associated with the (m + 1)-point Gauss

quadrature rule. The Gauss-Radau quadrature rule satisfies

I(p) = Rξm+1(p), ∀p ∈ Π2m;

see [7].

When the integrand f in (1.3) is 2m + 1 times continuously differentiable and the derivatives f (2m)

and f (2m+1) do not change sign in the convex hull of the spectrum of A, the Radau point ξ can be chosen

to be one of the endpoints of the convex hull so that the quadrature rules Gm(f) and Rξm+1(f) bracket

I(f); see [7] for details. This result follows from the seminal work by Golub and Meurant [23].

When f (2m) or f (2m+1) change sign in the convex hull of the spectrum of A, pairs of Gauss and

Gauss-Radau quadrature rule are not guaranteed to bracket I(f). In this situation it may be attractive

to compute estimates of upper and lower bounds for I(f) by evaluating pairs of Gauss and anti-Gauss

quadrature rules. Anti-Gauss rules were introduced by Laurie [30] to estimate the quadrature error

of Gauss rules applied to the approximation of integrals of a real-valued function with respect to a

nonnegative real-valued measure. Recent applications to the approximation of matrix functions are

described in [1, 2, 8].

If the function f cannot be approximated accurately by a polynomial of low to moderate degree,

then Gauss-type quadrature rules (1.7) and (1.8) typically will not furnish accurate approximations

of the expression (1.2). This situation occurs, for instance, when the function f or one of its low-order

derivatives has a singularity at or close to some eigenvalue of A. Then it may be beneficial to approximate

f by a rational function with a pole at or close to a singularity of f or of one of its derivatives. In fact,

Druskin and Knizhnerman [14] have shown that it also may be beneficial to approximate entire functions

f by rational functions with a pole in the finite complex plane, compared to polynomial approximations.

Therefore, Druskin and Knizhnerman [14] suggested the application of extended Krylov subspaces when

the matrix A is nonsingular. These subspaces are determined by both positive and negative powers of A.

The shifted extended global Krylov subspaces used in this paper generalize the extended Krylov

subspaces applied by Druskin and Knizhnerman [14] by allowing a real or complex shift σ. Thus, we

consider approximation methods for (1.2) that use shifted extended Krylov subspaces of the form

Kσm(A, V ) := span
{
V,AV,A2V, . . . , Am−1V, (A− σIn)−1V, (A− σIn)−2V, . . . , (A− σIn)−mV

}
⊂ Rn×s,

(1.9)
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where the shift σ is distinct from the eigenvalues of A. We assume that m is small enough so that the

block vectors in the right-hand side of (1.9) are linearly independent.

This paper presents Gauss, Gauss-Radau, and anti-Gauss quadrature rules associated with shifted

extended Krylov subspaces (1.9). These rules are used to approximate (1.2). Numerical examples in

Section 6 illustrate that these quadrature rules may yield significantly more accurate approximations

than Gauss and Gauss-Radau rules that are based on the “standard” global Krylov subspaces (1.4).

We also are interested in determining upper and lower bounds for expressions of the form

I(f) := trace(WT f(A)V ), (1.10)

when the matrix A is nonsymmetric and W,V ∈ Rn×s, 1 ≤ s � n, are block vectors that might be

distinct. Our analysis assumes that the matrix A is diagonalizable and has the spectral factorization

A = PDP−1, Λ = diag[λ1, λ2, . . . , λn] ∈ Cn×n, (1.11)

where λ1, λ2, . . . , λn denote the eigenvalues of A and P ∈ Cn×n is a nonsingular matrix of unit eigen-

vectors. However, the application of the numerical methods described does not require existence of the

factorization (1.11). A discussion on the situation when the factorization (1.11) does not exist is provided

by Pozza et al. [33].

The function f(A) can be defined by f(A) = Pf(Λ)P−1. Substituting (1.11) into (1.10), and setting

Ŵ = PTW ∈ Cn×s and V̂ = P−1V ∈ Cn×s, yield

I(f) = trace(WT f(A)V ) =

n∑
i=1

f(λi)trace(ŴT
i V̂i) =

∫
f(λ)dµ(λ), (1.12)

where Ŵi and V̂i denote the ith rows of the matrices Ŵ and V̂ , respectively. Further, dµ(λ) is a measure

with support at the eigenvalues of A.

We will present the shifted extended global nonsymmetric Lanczos process for generating biorthogonal

bases {Vi}2mi=1 and {Wi}2mi=1 for the shifted extended global Krylov subspaces Kσm(A, V ) and Kσm(AT ,W ),

respectively. Thus,

〈Vj ,Wk〉 = trace(WT
k Vj) =

{
1 j = k,

0 j 6= k.

We describe Gauss and anti-Gauss quadrature rules for estimating upper and lower error bounds for

the computed approximation of (1.10). This work extends the quadrature rules discussed by Fenu et

al. [21] to shifted extended Krylov subspaces, and it extends the recursion relations for the extended

global symmetric Lanczos process described in [9, 26] to the shifted symmetric and nonsymmetric Lanczos

processes.

This paper is organized as follows. Section 2 reviews results in [8] on the extended global Lanczos

process applied to a symmetric matrix. We also discuss the connection between the shifted extended

global symmetric Lanczos process and Gauss-type quadrature rules. Section 3 is concerned with the

computation of anti-Gauss quadrature rules associated with the subspace (1.9) when A is symmetric. The

shifted extended global nonsymmetric Lanczos process for generating biorthogonal bases for the spaces

Kσm(A, V ) and Kσm(AT ,W ) is described in Section 4. These bases are expressed with the aid of shifted

orthogonal Laurent polynomials. Section 5 discusses the computation of anti-Gauss-Laurent quadrature

rules. Numerical experiments with applications to network analysis and Schatten p-norm computations

are presented in Section 6 to illustrate the quality of the computed approximations. Section 7 contains

concluding remarks.

5



2. The shifted extended global symmetric Lanczos process. This section discusses the shifted

extended global symmetric Lanczos process and its relation to shifted Gauss-Laurent and Gauss-Laurent-

Radau quadrature rules. While introducing a shift σ 6= 0 is straightforward theoretically, it is important

in applications. The shift affects the coefficients in the recursion relation satisfied by the orthonormal

block vectors that make up a basis for the shifted extended Krylov subspaces (1.9). We require σ to be

real and outside the convex hull of the spectrum of A.

2.1. Preliminaries and notation. We begin by recalling some definitions and notation that will

be used throughout this paper. The Kronecker product of two matrices A = [ai,j ] and B = [bi,j ] is defined

by A⊗B = [ai,jB] and satisfies the following properties:

1. (A⊗B)(C ⊗D) = AC ⊗BD,

2. (A⊗B)T = AT ⊗BT .

Definition 2.1. [10] Let the matrices M = [M1,M2, . . . ,Ms] ∈ Rn×sp and N = [N1, N2, . . . , N`] ∈
Rn×`p be partitioned into block columns Mi and Ni of size n× p, respectively. Then the �-product of the

matrices M and N is given by

MT �N = [〈Nj ,Mi〉]j=1,2,...,`
i=1,2,...,s ∈ Rs×`.

The following proposition gives some properties of the �-product. We refer to this product as the

“diamond product”.

Proposition 2.2. [10] Let A,B,C ∈ Rn×ps, D ∈ Rn×n, L ∈ Rp×p, and α ∈ R. Then

1. (A+B)T � C = AT � C +BT � C,

2. AT � (B + C) = AT �B +AT � C,

3. (αA)T � C = α(AT � C),

4. (AT �B)T = BT �A,

5. (DA)T �B = AT � (DTB),

6. AT � (B(L⊗ Ip)) = (AT �B)L.

2.2. The shifted extended global symmetric Lanczos process. This subsection describes the

application of the extended global symmetric Lanczos process to the shifted matrix A− σIn to generate

an orthonormal basis {Vj}2mj=1 of block vectors Vj ∈ Rn×s for the shifted extended global Krylov subspace

(1.9). This basis is computed by short recurrence formulas as follows:

V1 =
V

α1,1
,

V2 =
Ṽ2
α2,2

, Ṽ2 = (A− σIn)−1V1 − α1,2V1,

(2.1)

where α1,1 = ‖V ‖, α1,2 = 〈(A− σIn)−1V1, V1〉, α2,2 = ‖Ṽ2‖. For j = 1, 2, . . . ,m, we have

h2j+1,2j−1V2j+1 = Ṽ2j+1 = AV2j−1 −
2j∑

i=2j−3
hi,2j−1Vi,

h2j+2,2jV2j+2 = Ṽ2j+2 = (A− σIn)−1V2j −
2j+1∑
i=2j−2

hi,2jVi.

(2.2)
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The coefficients hi,j are determined so that the block vectors V1, V2, . . . , V2m+2 are orthonormal. This

leads to the expressions

hi,2j−1 = 〈AV2j−1, Vi〉, h2j+1,2j−1 = ‖Ṽ2j+1‖,
hi,2j = 〈(A− σIn)−1V2j , Vi〉, h2j+2,2j = ‖Ṽ2j+2‖.

(2.3)

We provide recursion relations for computing the coefficients hi,j below.

Proposition 2.3. Let the coefficients αi,j and hi,j be defined by (2.1), (2.2), and (2.3). They can be

computed as follows:

h1,2 = α2,2,

h2,1 =
1

α2,2
[1− α1,2h1,1 + σα1,2],

h2,3 = −α1,2h1,3
α2,2

.

For j = 2, 3, . . . ,m, we have

h2j−3,2j−1 = h2j−1,2j−3,

h2j−2,2j−1 =
−1

h2j−2,2j−4
h2j−3,2j−4h2j−3,2j−1,

h2j,2j−1 =
1

h2j,2j−2

[
σh2j−1,2j−2 −

2j−1∑
i=2j−3

hi,2j−2hi,2j−1

]
,

h2j−2,2j = h2j,2j−2,

h2j−1,2j =
−1

h2j−1,2j−3
h2j−2,2j−3h2j−2,2j ,

h2j+1,2j =
1

h2j+1,2j−1

[
σh2j−1,2j −

2j∑
i=2j−2

hi,2j−1hi,2j

]
.

Proof. From the relations (2.1) and (2.3), and due to the orthonormality of the block vectors {Vi}2m+2
i=1 ,

we get

h1,2 = 〈(A− σIn)−1V2, V1〉 = 〈(A− σIn)−1V1, V2〉
= 〈α2,2V2 + α1,2V1, V2〉 = α2,2.

The second equation in (2.1) yields

α2,2AV2 = V1 + σα2,2V2 − α1,2AV1 + α1,2σV1,

and it follows that

h2,1 = 〈V1, AV2〉

=
1

α2,2
〈V1, V1 + σα2,2V2 − α1,2AV1 + α1,2σV1〉

=
1

α2,2
[1− α1,2h1,1 + σα1,2]
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and

h2,3 = 〈V3, AV2〉 =
−1

α2,2
〈V3, α1,2AV1〉 = −α1,2h1,3

α2,2
.

We also have

h2j−3,2j−1 = 〈AV2j−1, V2j−3〉 = 〈AV2j−3, V2j−1〉

= 〈h2j−1,2j−3V2j−1 +

2j−2∑
i=2j−5

hi,2j−3Vi, V2j−1〉 = h2j−1,2j−3,

h2j−2,2j−1 = 〈AV2j−1, V2j−2〉 = 〈AV2j−2, V2j−1〉.

Multiplying the second equation in (2.2) by (A− σIn) from the left gives

h2j−2,2j−4AV2j−2 = V2j−4 −
2j−3∑
i=2j−6

hi,2j−4(A− σIn)Vi + σh2j−2,2j−4V2j−2,

which implies that

h2j−2,2j−1 = − 1

h2j−2,2j−4

[ 2j−3∑
i=2j−6

hi,2j−4hi,2j−1

]
.

Since, hi,2j−1 = 0 for i = 1, 2, . . . , 2j − 4, it follows that

h2j−2,2j−1 = − 1

h2j−2,2j−4
h2j−3,2j−4h2j−3,2j−1.

For the coefficient h2j,2j−1, we have

h2j,2j−1 = 〈AV2j−1, V2j〉 = 〈AV2j , V2j−1〉,

and using the expression for AV2j and similar manipulations as above give

h2j,2j−1 =
1

h2j,2j−2

[
σh2j−1,2j−2 −

2j−1∑
i=2j−3

hi,2j−2hi,2j−1

]
,

h2j−2,2j = 〈(A− σIn)−1V2j , V2j−2〉 = 〈(A− σIn)−1V2j−2, V2j〉

= 〈h2j,2jV2j +

2j−1∑
i=2j−4

hi,2j−2Vi, V2j〉 = h2j,2j−2,

h2j−1,2j = 〈(A− σIn)−1V2j , V2j−1〉 = 〈(A− σIn)−1V2j−1, V2j〉.

According to the first relation in (2.2), we can express (A− σIn)−1V2j−1 as

(A− σIn)−1V2j−1 =
1

h2j−1,2j−3

[
V2j−3 −

2j−2∑
i=2j−5

hi,2j−3(A− σIn)−1Vi + σ(A− σIn)−1V2j−3

]
.
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The orthogonality condition and fact that hi,2j = 0 for i < 2j − 2 lead to

h2j−1,2j =
−1

h2j−1,2j−3
h2j−2,2j−3h2j−2,2j ,

h2j+1,2j = 〈(A− σIn)−1V2j , V2j+1〉 = 〈(A− σIn)−1V2j+1, V2j〉

=

〈
1

h2j+1,2j−1

[
V2j−1 −

2j∑
i=2j−3

hi,2j−1(A− σIn)−1Vi + σ(A− σIn)−1V2j−1

]
, V2j

〉

=
1

h2j+1,2j−1

[
σh2j−1,2j −

2j∑
i=2j−2

hi,2j−1hi,2j

]
.

This completes the proof.

Example: Let m = 3. Then the matrix H = [hi,j ] ∈ R8×6 is of the form

H =



h1,1 h1,2 h1,3 0 0 0

h2,1 h2,2 h2,3 h2,4 0 0

h3,1 h3,2 h3,3 h3,4 h3,5 0

0 h4,2 h4,3 h4,4 h4,5 h4,6
0 0 h5,3 h5,4 h5,5 h5,6
0 0 0 h6,4 h6,5 h6,6
0 0 0 0 h7,5 h7,6
0 0 0 0 0 h8,6


All entries denoted by hi,j in the matrix may be nonvanishing. Moreover, entries on the second super-

diagonal equal entries on the second subdiagonal, i.e., hi,i+2 = hi+2,i for i = 1, 2, 3, 4. �

We next discuss some useful properties of the shifted extended global Krylov subspaces. Here and

below we will tacitly assume that the number of steps of the shifted extended global symmetric Lanczos

process is small enough to avoid breakdown. This is the generic situation; breakdown is very rare.

Application of m steps of the shifted extended global symmetric Lanczos process to the matrix A with

initial block vector V1 of unit norm yields the decomposition

AV2m = V2m+1(T̃2m ⊗ Is)
= V2m(T2m ⊗ Is) + V2m+1(

[
t2m+1,2m−1, t2m+1,2m

]
ETm ⊗ Is),

where the matrix Em = [e2m−1, e2m] ∈ R2m×2 is made up of the last two columns of the identity matrix

I2m and

T2m = [ti,j ] = VT2m �AV2m ∈ R2m×2m,

with ti,j = 〈AVj , Vi〉, i, j = 1, 2, . . . , 2m. The matrices

V2m = [V1, V2, . . . , V2m], V2m+1 = [V1, V2, . . . , V2m+1]

are made up of orthonormal block vectors Vj ∈ Rn×s. Also introduce the matrix

T̃2m = VT2m+1 �AV2m ∈ R(2m+1)×2m. (2.4)

The entries of T2m and T̃2m can be expressed in terms of recursion coefficients for the shifted extended

global symmetric Lanczos process as shown below. This makes them easy to compute.
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Proposition 2.4. Let the coefficients hi,j and αi,j be defined by (2.1) and (2.2). The nontrivial

entries of the matrices T2m = [ti,j ] and T̃2m = [ti,j ] can be expressed as

ti,2j−1 = hi,2j−1, for i = 2j − 3, 2j − 2, . . . , 2j + 1, j = 1, 2, . . . ,m,

t1,2 = t2,1,

t2,2 = σ − α1,2

α2,2
t2,1,

t3,2 = −α1,2

α2,2
t3,1.

Moreover, for j = 1, 2, . . . ,m− 1, we have

t2j+1,2j+2 = t2j+2,2j+1,

t2j+2,2j+2 = σ − h2j+1,2j

h2j+2,2j
t2j+2,2j+1,

t2j+3,2j+2 = −h2j+1,2j

h2j+2,2j
t2j+3,2j+1.

Proof. The proof is similar to that of [9, Proposition 3.1].

The orthonormal basis {Vj}2mj=1 for (1.9) can be expressed with the aid of orthogonal shifted Laurent

polynomials, i.e.,

V2j−1 = R2j−2(A)V and V2j = R2j−1(A)V, j = 1, 2, . . . ,m, (2.5)

where R2j−1 and R2j are shifted Laurent polynomials that live in the spaces

R2j−1(x) ∈ ∆−j,j−1 := span{1, (x− σ)−1, x, . . . , xj−1, (x− σ)−j},
R2j(x) ∈ ∆−j,j := span{1, (x− σ)−1, x, . . . , (x− σ)−j , xj}.

Proposition 2.5. Let A be a symmetric matrix and let the coefficients αi,j and hi,j be given by (2.1)

and (2.2). Then the sequence of shifted Laurent polynomials R0, R1, . . . , R2m, determined by (2.5), are

orthonormal with respect to the bilinear form

〈P,Q〉 = trace((P (A)V )TQ(A)V ) =

∫
P (λ)Q(λ)dα(λ),

where dα is the measure defined in (1.3). These shifted Laurent polynomials satisfy a pair of five-term

recurrence relations of the form

h2j+1,2j−1R2j(x) = xR2j−2(x)−
2j∑

i=2j−3
hi,2j−1Ri−1(x),

h2j+2,2jR2j+1(x) = (x− σ)−1R2j−1(x)−
2j+1∑
i=2j−2

hi,2jRi−1(x),

where R1(x) = (1/α2,2)[(x− σ)−1R0(x)− α1,2R0(x)], R0(x) = 1/α1,1, and R−2 = R−1 = 0.

Proof. A similar result is shown in [9, Theorem 2.7]. The proposition can be shown by modifying the

proof presented there.
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2.3. Shifted Gauss-Laurent quadrature rules. The shifted extended global symmetric Lanczos

approximation of the Stieltjes integral (1.2) is given by

Gσ2m(f) = ‖V ‖2eT1 f(T2m)e1 =

2m∑
i=1

f(θi)wi, (2.6)

where θi denotes the ith eigenvalue of T2m and wi = ‖V ‖2u2i,1. Here ui,1 is the first component of the

normalized eigenvector ui of T2m associated with the eigenvalue θi. Using the same techniques as in [9,

Proposition 3.4], we can show that the zeros of R2m are the eigenvalues of T2m. Then, applying (2.6),

we find that

Gσ2m(R2m) = 0. (2.7)

We will show below that (2.6) is a shifted Gauss-Laurent quadrature rule. The following properties help

us to establish this fact.

Proposition 2.6. Let the matrix pairs {V2m,T2m} and {W2m,H2m}, where V2m = [V1, V2, . . . , V2m]

and W2m = [W1,W2, . . . ,W2m], be associated to the shifted extended global Krylov subspace Kσm(A, V )

and the global Krylov subspace K2m(A, (A−σIn)−mV ), respectively, and let P2m = WT
2m�V2m ∈ R2m×2m.

Then the matrices T2m and H2m are similar, i.e., H2m = P2mT2mP
T
2m, where PT2mP2m = I2m. Moreover,

the matrices T2m and H2m satisfy the properties:

1. (T2m − σI2m)m(VT2m � (A− σIn)−mV1) = e1,

2. (H2m − σI2m)me1 = P2m(T2m − σI2m)mPT2me1,

3. ‖(A− σIn)−mV1‖2eT1 f(H2m)(H2m − σI2m)2me1 = eT1 f(T2m)e1.

Further, we have

‖(A− σIn)−mV1‖2 =
1

eT1 (H2m − σI2m)2me1
.

Proof. We first show that PT2mP2m = I2m. By using the properties of the �-product, we obtain

PT2mP2m = (WT
2m � V2m)(VT2m �W2m) = WT

2m � (V2m([VT2m �W2m]⊗ Is)).

Since the shifted extended global subspace can be regarded as a global Krylov subspace, i.e.,

Kσm(A, V ) = K2m(A, (A− σIn)−mV ),

it follows that the columns of the matrix W2m belong to Kσm(A, V ). Therefore,

PT2mP2m = WT
2m �W2m = I2m.

Using the definition of H2m, we obtain

H2m = WT
2m �AW2m = WT

2m � [AV2m(VT2m �W2m ⊗ Is)]
= (WT

2m �AV2m)(VT2m �W2m)

= (WT
2m � V2m)(VT2m �AV2m)(VT2m �W2m) = P2mT2mP

T
2m.

Thus, the matrices T2m and H2m are similar.

An application of a slightly modified form of [9, Lemma 3.8] gives

(A− σIn)−mV1 = V2m[(T2m − σI2m)−me1 ⊗ Is].
11



Multiplying the last equation by VT2m from the left and using properties of the �-product, we obtain

VT2m � (A− σIn)−mV1 = (T2m − σI2m)−me1,

which shows the first assertion.

The second assertion follows by using the fact that H2m = P2mT2mP
T
2m and the orthogonality of the

matrix P2m.

For the third assertion, we have

eT1 (f(H2m)(H2m − σI2m)2me1 = eT1 (H2m − σI2m)m(f(H2m)(H2m − σI2m)me1.

An application of the second assertion shows that the above expression is equal to

eT1 P2m(T2m − σI2m)mf(T2m)(T2m − σI2m)mPT2me1.

On the other hand, we have

(T2m − σI2m)mPT2me1 =
1

‖(A− σIn)−mV1‖
(T2m − σI2m)m[VT2m � (A− σIn)−mV1]

=
e1

‖(A− σIn)−mV1‖
,

where the last equality follows from the first assertion. This concludes the proof of the last assertion.

Theorem 2.7. Let A be a symmetric matrix. Apply m steps of the shifted extended global Lanczos

process with the initial block vector V ∈ Rn×s to A to evaluate the expression (2.6). Then this expression

is a 2m-point shifted Gauss-Laurent quadrature rule associated with the measure dα in (1.3), i.e.,

Gσ2m(f) = I(f) ∀f ∈ ∆−2m,2m−1.

Moreover, if the function f is 4m times continuously differentiable in the convex hull of the spectrum of

A, then the reminder term for this rule is given by

E2m(f) := I(f)− Gσ2m(f) =
d4m

dx4m
(fw)x=θ̃

1

(4m)!

∫ 2m∏
j=1

(x− θj)2w(x)dα(x), (2.8)

where

w(x) :=
1

eT1 (H2m − σI2m)2me1
(x− σ)2m

and the scalar θ̃ lives in the largest open interval contained in the convex hull of the spectrum of A.

Proof. According to Proposition 2.6, we have

Gσ2m(f) = ‖V ‖2eT1 f(H2m)w(H2m)e1.

Therefore, Gσ2m is a 2m-point rational Gauss quadrature rule; see [22]. The remainder term for this rule

is given by

I(f)− Gσ2m(f) =
d4m

dx4m
(fw)x=θ̃

1

(4m)!

∫ 2m∏
j=1

(x− αj)2w(x)dα(x),

where αj is the jth eigenvalues of H2m. The proof is completed since the matrices H2m and T2m are

similar. More details are provided in the proof of [27, Corollary 5.5], which has to be applied to the

matrix A− σIn with the inner product (1.6).
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2.4. Shifted Gauss-Laurent-Radau quadrature rules. A (2m+1)-point shifted Gauss-Laurent-

Radau quadrature rule is obtained by assigning one of the quadrature nodes, denoted by ξ, and deter-

mining the remaining 2m quadrature nodes and the 2m+ 1 weights so that the resulting quadrature rule

is exact for all shifted Laurent polynomials of as high an order as possible. Application of m steps of the

shifted extended global Lanczos process to the matrix A with initial block vector V ∈ Rn×s determines

the matrix T̃2m ∈ R(2m+1)×2m defined by (2.4). The matrix T2m is a leading principal submatrix. We

introduce the (2m+ 1)-point shifted Gauss-Laurent-Radau rule

Rσ,ξ2m+1(f) = ‖V ‖2eT1 f(T2m+1,ξ)e1,

where

T2m+1,ξ :=

[
T2m τ

τT α̃ξ

]
∈ R(2m+1)×(2m+1),

and τ ∈ R2m contains the first 2m entries of the last column of T2m+1. The entry α̃ξ is determined so

that the matrix T2m+1,ξ has an eigenvalue at ξ, where ξ is a chosen node outside the convex hull of the

spectrum of T2m. The parameter α̃ξ is computed similarly as described in [24, p. 561]. Thus, we solve

the equation

T2m+1,ξ

[
x

−1

]
= ξ

[
x

−1

]
, x ∈ R2m,

which can be written as {
T2mx− τ = ξx,

τTx− α̃ξ = −ξ,
⇔

{
x = (T2m − ξI2m)−1τ,

α̃ξ = ξ + τTx.

Therefore, α̃ξ can be expressed in terms of ξ as follows

α̃ξ = ξ + τT (T2m − ξI2m)−1τ.

Theorem 2.8. The (2m+ 1)-point shifted Gauss-Laurent-Radau rule associated with the measure dα

satisfies

Rσ,ξ2m+1(f) = I(f), ∀f ∈ ∆−2m,2m.

Furthermore, if the function f is 4m+1 times continuously differentiable in the convex hull of the spectrum

of A, then the remainder term for this rule is given by

I(f)−Rσ,ξ2m+1(f) =
d4m+1

dx4m+1
(fw)x=θ̃ξ

1

(4m+ 1)!

∫
(x− ξ)

2m∏
j=1

(x− θξ,j)2w(x)dα(x), (2.9)

where θ̃ξ lies in the largest open interval contained in the convex hull of the spectrum of A and ξ. The

scalars θξ,1, θξ,2, . . . , θξ,2m, ξ denote the eigenvalues of T2m+1,ξ, and the function w is defined in Theorem

2.7.

Proof. The proof is analogous to the proof of Theorem 2.7 and [27, Theorem 7.1]. The latter proof

has to be applied to the matrix M = A− σIn with the inner product (1.6).

The remainder terms for the shifted Gauss-Laurent rule (2.8) and the shifted Gauss-Laurent-Radau

rule (2.9) allow us to bound the expression I(f) in (1.2) from above and below if the derivatives (f ·w)(4m)

13



and (f ·w)(4m+1) are of constant sign in the convex hull of the spectrum of A and ξ. For instance, when

the derivatives (f ·w)(4m) and (f ·w)(4m+1) are nonnegative on this interval and ξ is larger than or equal

to the largest eigenvalue of A, the expression I(f) can be bounded according to

Gσ2m(f) ≤ I(f) ≤ Rσ,ξ2m+1(f).

However, when at least one of the derivatives (f · w)(4m) or (f · w)(4m+1) changes sign on the convex

hull of the spectrum of A and ξ, pairs of shifted Gauss-Laurent and shifted Gauss-Laurent-Radau rules

are not guaranteed to produce upper and lower bounds for I(f).

3. Shifted anti-Gauss-Laurent quadrature rules. Laurie [30] introduced anti-Gauss rules for

the estimation of the quadrature error for Gauss rules applied to the integration of real-valued functions

on a real interval. Extensions to (standard) block Krylov subspace methods are described in [1, 2, 21].

This section introduces the (2m+1)-point shifted anti-Gauss-Laurent quadrature rule, denoted by Aσ2m+1,

associated with the shifted Gauss-Laurent rule (2.8). It is characterized by

(I − Aσ2m+1)(f) = −E2m(f), ∀f ∈ ∆−2m,2m+1,

where E2m is the error of the shifted Gauss-Laurent quadrature rule defined in (2.8). This is equivalent

to

Aσ2m+1(f) = (2I − Gσ2m)(f), ∀f ∈ ∆−2m,2m+1.

Therefore, Aσ2m+1(f) may be considered a (2m + 1)-point shifted Gauss-Laurent quadrature rule with

respect to the bilinear form 〈 · , · 〉A determined by the functional (2I − Gσ2m)(f) and given by

〈P,Q〉A := (2I − Gσ2m)(PQ) = 2〈P,Q〉 − ‖V ‖2eT1 P (T2m)Q(T2m)e1. (3.1)

Let R̃0, R̃1, . . . , R̃2m be the first 2m+ 1 shifted orthonormal Laurent polynomials with respect to the

bilinear form (3.1). They satisfy a pair of five-term recurrence relations of the form

h̃2j+1,2j−1R̃2j(x) = xR̃2j−2(x)−
2j∑

i=2j−3
h̃i,2j−1R̃i−1(x),

h̃2j+2,2jR̃2j+1(x) = (x− σ)−1R̃2j−1(x)−
2j+1∑
i=2j−2

h̃i,2jR̃i−1(x)

for j = 1, 2, . . . , where R̃−2 = R̃−1 = 0 and

R̃0(x) = 1/α̃1,1, R̃1(x) = (1/α̃2,2)[(x− σ)−1R̃0(x)− α̃1,2R̃0(x)].

Furthermore,

h̃i,2j−1 = 〈xR̃2j−2, R̃i−1〉A, h̃i,2j = 〈(x− σ)−1R̃2j−1, R̃i−1〉A. (3.2)

The coefficients h̃2j+1,2j−1 and h̃2j+2,2j are determined so that 〈R̃2j , R̃2j〉A = 1 and 〈R̃2j+1, R̃2j+1〉A = 1.

Due to Theorem 2.7, shifted anti-Gauss-Laurent quadrature rules yield the same result as shifted Gauss-

Laurent quadrature rules for all shifted Laurent polynomials in ∆−2m,2m−1, i.e.,

if P and Q are shifted Laurent polynomials such that PQ ∈ ∆−2m,2m−1, then 〈P,Q〉A = 〈P,Q〉. (3.3)
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Using this property in (3.2) gives

h̃i,j = hi,j , i, j = 1, 2, . . . , 2m− 1,

h̃2m,i = h2m,i, i ∈ {2m− 2, 2m− 1},

h̃i,2m = hi,2m, i ∈ {2m− 2, 2m− 1}.

This shows that R̃j(x) = Rj(x) for j = 0, 1, . . . , 2m− 1. In addition, we have

h̃2m+1,2m−1R̃2m(x) = h2m+1,2m−1R2m(x). (3.4)

Using the properties 〈R̃2m, R̃2m〉A = 〈R2m, R2m〉 = 1 and (2.7) gives

h̃22m+1,2m−1 = 2h22m+1,2m−1.

Thus, we can choose h̃2m+1,2m−1 =
√

2h2m+1,2m−1. Substituting this expression into (3.4) yields

R̃2m(x) =
1√
2
R2m(x).

We turn to the determination of the entries of the symmetric pentadiagonal matrix Ta2m+1 = [t̃i,j ] ∈
R(2m+1)×(2m+1) associated with the (2m+ 1)-point shifted anti-Gauss-Laurent rule,

Aσ2m+1(f) = ‖V ‖2eT1 f(Ta2m+1)e1, (3.5)

where t̃i,j = 〈xR̃i−1, R̃j−1〉A for i, j = 1, 2, . . . , 2m+ 1. Recall that ti,j = 〈xRi−1, Rj−1〉. Using (3.3), we

find

t̃i,j = ti,j , for i, j = 1, 2, . . . , 2m.

We obtain from (2.7) that

Gσ2m(R2mR2m−2) = Gσ2m(R2mR2m−1) = Gσ2m(R2mR2m) = 0.

Therefore,

t̃2m+1,2m−1 = 〈xR̃2m, R̃2m−2〉A =
1√
2
〈xR2m, R2m−2〉A

=
1√
2

[2〈xR2m, R2m−2〉 − Gσ2m(R2mR2m−2)]

=
√

2 t2m+1,2m−1.

In the same manner, we get the remaining entries of Ta2m+1,

t̃2m+1,2m =
√

2t2m+1,2m and t̃2m+1,2m+1 = t2m+1,2m+1.

In conclusion, the symmetric pentadiagonal matrix Ta2m+1 associated with the (2m+ 1)-point shifted

anti-Gauss-Laurent rule (3.5) can be obtained from the matrix T2m+1 = VT2m+1 � AV2m+1 associated

with the (2m+ 1)-point shifted Gauss-Laurent rule by multiplying the entries t2m+1,2m−1 and t2m+1,2m

by
√

2, i.e.,

Ta2m+1 =

[
T2m Ψ2m

ΨT
2m t2m+1,2m+1

]
,

where Ψ2m = [0, . . . , 0,
√

2t2m+1,2m−1,
√

2t2m+1,2m]T ∈ R2m. Algorithm 1 describes how an approxima-

tion of (1.3) and an error estimate can be computed by a pair of shifted Gauss-Laurent and anti-Gauss-

Laurent quadrature rules when the matrix A is symmetric. In the spirit of Laurie [30], we approxi-

mate (1.3) by Uapp(f) = (Gσ2m(f) + Aσ2m+1(f))/2 and estimate the error in Uapp(f) by the difference

|Gσ2m(f)−Aσ2m+1(f)|/|Gσ2m(f)|.
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Algorithm 1 Approximation of trace(V T f(A)V ) by pairs of shifted Gauss-Laurent and shifted anti-

Gauss Laurent quadrature rules for a symmetric matrix A.

Input: Symmetric matrix A, initial block V , parameter σ, and function f .

1. Choose tolerance ε > 0 and the maximum number of iterations Imax.

2. α1,1 = ‖V ‖; V1 = V/α1,1;

3. α1,2 = 〈(A− σIn)−1V1, V1〉; Ṽ2 = (A− σIn)−1V1 − α1,2V1;

4. α2,2 = ‖Ṽ2‖; V2 = Ṽ2/α2,2; Ṽ3 = AV1; h1,1 = 〈Ṽ3, V1〉;
5. for j = 1 : Imax

(a) Ṽ2j+2 = (A− σIn)−1V2j ; h2j,2j = 〈Ṽ2j+2, V2j〉;
(b) Compute hi,2j−1 and hi,2j from recursion relations given by Proposition 2.3.

(c) Ṽ2j+1 = Ṽ2j+1 −
2j∑

i=2j−3
hi,2j−1Vi; h2j+1,2j−1 = ‖Ṽ2j+1‖;

(d) if j = 1

t1:2,1 = h1:2,1; t1,2 = t2,1; t2,2 = σ − α1,2t2,1/α2,2;

else

t2j−3:2j,2j−1 = h2j−3:2j,2j−1; t2j−1,2j = t2j,2j−1;

t2j,2j = σ − h2j−1,2j−2t2j,2j−1/h2j,2j−2;

end

(e) Gσ2j(f) = eT1 f(T2j)e1;

(f) V2j+1 = Ṽ2j+1/h2j+1,2j−1;

(g) Ṽ2j+2 = Ṽ2j+2 −
2j+1∑
i=2j−2

hi,2jVi; h2j+2,2j = ‖Ṽ2j+2‖;

(h) if j = 1, t3,1 = h3,1; t3,2 = −α1,2t3,1/α2,2;

else

t2j+1,2j−1 = h2j+1,2j−1; t2j+1,2j = −h2j−1,2j−2t2j+1,2j−1/h2j,2j−2;

end

(i) Ψ2j =
√

2 [0, . . . , 0, t2j+1,2j−1, t2j+1,2j ]
T ;

(j) Ṽ2j+3 = AV2j+1; h2j+1,2j+1 = 〈V2j+1, Ṽ2j+3〉;

(k) Compute Ta2j+1 =

[
T2j Ψ2j

ΨT
2j h2j+1,2j+1

]
and Aσ2j+1(f) = eT1 f(Ta2j+1)e1;

(l) if |Gσ2j(f)−Aσ2j+1(f)|/|Gσ2j(f)| < ε

Uapp(f) = α2
1,1[Gσ2j(f) +Aσ2j+1(f)]/2; Break;

end

(m) V2j+2 = Ṽ2j+2/h2j+2,2j ;

(n) end

Output: Approximation Uapp(f) of trace(V T f(A)V ).

4. The shifted extended global nonsymmetric Lanczos process. This section describes the

recursion relations for the shifted extended global nonsymmetric Lanczos process. This process generates

two biorthogonal bases of block vectors {Vj}2mj=1 and {Wj}2mj=1 for the shifted extended global Krylov

subspaces Kσm(A, V ) and Kσm(AT ,W ). These bases can be computed with short recurrence formulas. We

have

α1,1 = |〈W,V 〉|1/2, V1 = V/α1,1, β1,1 = 〈W,V 〉/α1,1, W1 = W/β1,1,

V̂2 = (A− σIn)−1V1 − α1,2V1, Ŵ2 = (AT − σIn)−1W1 − β1,2W1,

α1,2 = 〈W1, (A− σIn)−1V1〉, β1,2 = 〈V1, (AT − σIn)−1W1〉,
α2,2 = |〈Ŵ2, V̂2〉|1/2, V2 = V̂2/α2,2, β2,2 = 〈Ŵ2, V̂2〉/α2,2, W2 = Ŵ2/β2,2,

(4.1)
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and for j = 1, 2, . . . ,m,

V̂2j+1 = h2j+1,2j−1V2j+1 = AV2j−1 −
2j∑

i=2j−3
hi,2j−1Vi,

Ŵ2j+1 = g2j+1,2j−1W2j+1 = ATW2j−1 −
2j∑

i=2j−3
gi,2j−1Wi,

V̂2j+2 = h2j+2,2jV2j+2 = (A− σIn)−1V2j −
2j+1∑
i=2j−2

hi,2jVi,

Ŵ2j+2 = g2j+2,2jW2j+2 = (AT − σIn)−1W2j −
2j+1∑
i=2j−2

gi,2jWi,

(4.2)

where

hi,2j−1 = 〈AV2j−1,Wi〉, gi,2j−1 = 〈ATW2j−1, Vi〉,
hi,2j = 〈(A− σIn)−1V2j ,Wi〉, gi,2j = 〈(AT − σIn)−1W2j , Vi〉,

and

h2j+1,2j−1 = |α2j+1|1/2 , g2j+1,2j−1 = α2j+1/h2j+1,2j−1, with α2j+1 = 〈Ŵ2j+1, Ŵ2j+1〉,
h2j+2,2j = |α2j+2|1/2 , g2j+2,2j = α2j+2/h2j+2,2j , with α2j+2 = 〈V̂2j+2, Ŵ2j+2〉.

Similarly as for the shifted extended global symmetric Lanczos process, the coefficients hi,j and gi,j
can be computed recursively.

Proposition 4.1. The coefficients hi,j, gi,j , αi,j, and βi,j, defined by the relations (4.1) and (4.2),

can be computed recursively as follows:

h1,2 = α2,2,

h2,1 =
1

β2,2
[1− β1,2h1,1 + σβ1,2],

h2,3 = −β1,2h1,3
β2,2

.

For j = 2, 3, . . . ,m, we have

h2j−3,2j−1 = g2j−1,2j−3,

h2j−2,2j−1 =
−1

g2j−2,2j−4
g2j−3,2j−4h2j−3,2j−1,

h2j,2j−1 =
1

g2j,2j−2

[
σg2j−1,2j−2 −

2j−1∑
i=2j−3

gi,2j−2hi,2j−1

]
,

h2j−2,2j = g2j,2j−2,

h2j−1,2j =
−1

g2j−1,2j−3
g2j−2,2j−3h2j−2,2j ,

h2j+1,2j =
1

g2j+1,2j−1

[
σh2j−1,2j −

2j∑
i=2j−2

gi,2j−1hi,2j

]
,

g2j−1,2j−1 = h2j−1,2j−1,

g2j,2j = h2j,2j .
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These relations also hold when the hi,j and αi,j are replaced by gi,j and βi,j, respectively, and vice versa.

Proof. The relations can be shown similarly as those in Proposition 2.3.

Introduce the pentadiagonal matrix

T̂2m = [ti,j ] = ŴT
2m �AV̂2m ∈ R2m×2m. (4.3)

Here

ti,j = 〈AVj ,Wi〉, i, j = 1, 2, . . . , 2m,

and the matrices V̂2m = [V1, V2, . . . , V2m] and Ŵ2m = [W1,W2, . . . ,W2m] are defined by the recursion

relations for the shifted extended global nonsymmetric Lanczos process,

AV̂2m = V̂2m(T2m ⊗ Is) + V2m+1(τmE
T
m ⊗ Is),

AT Ŵ2m = Ŵ2m(T̂T2m ⊗ Is) +W2m+1(τ̂mE
T
m ⊗ Is),

(4.4)

with Em = [e2m−1, e2m] ∈ R2m×2 and

τ̂m = [t̂2m+1,2m−1, t̂2m+1,2m] := [〈ATW2m−1, V2m+1〉, 〈ATW2m, V2m+1〉],
τm = [t2m+1,2m−1, t2m+1,2m].

The entries of T̂2m, τm, and τ̂m are computed recursively as shown below.

Proposition 4.2. Let the coefficients hi,j, gi,j, αi,j, and βi,j be defined by (4.1) and (4.2). The

matrix T̂2m = [ti,j ] in (4.3) and the coefficients τm and τ̂m in (4.4) can be computed as follows:

ti,2j−1 = hi,2j−1, for i ∈ {2j − 3, 2j − 2, . . . , 2j + 1}, j = 1, 2, . . . ,m,

t1,2 =
1

α2,2

[
1− α1,2(t1,1 − σ)

]
,

t2,2 = σ − α1,2

α2,2
t2,1,

t3,2 = −α1,2

α2,2
t3,1,

t̂3,1 = g3,1,

t̂3,2 = −β1,2
β2,2

t̂3,1,

For j = 1, 2, . . . ,m− 1, we have

t2j+1,2j+2 =
−1

h2j+2,2j

[ 2j+1∑
i=2j−1

hi,2jt2j+1,i − σh2j+1,2j

]
,

t2j+2,2j+2 = σ − h2j+1,2j

h2j+2,2j
t2j+2,2j+1,

t2j+3,2j+2 = −h2j+1,2j

h2j+2,2j
t2j+3,2j+1,

t̂2j+3,2j+1 = g2j+3,2j+1,

t̂2j+3,2j+1 = −g2j+1,2j

g2j+2,2j
t̂2j+3,2j+1.
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Proof. The recursions can be shown in a similar manner as [9, Proposition 3.1]. However, some

adjustments have to be made, because here we apply a nonsymmetric Lanczos process instead of a

symmetric Lanczos process, and the matrix is A− σIn instead of A.

There are two sequences of shifted Laurent polynomials p0, p1, . . . , pm and q0, q1, . . . , qm that are

biorthogonal with respect to the bilinear form

〈P,Q〉 = trace(P (A)V,Q(A)W ) =

∫
P (λ)Q(λ)dµ(λ),

where dµ is the measure in (1.12). These shifted Laurent polynomials satisfy a pair of five-term recurrence

relations of the form

h2j+1,2j−1p2j(x) = xp2j−2(x)−
2j∑

i=2j−3
hi,2j−1pi−1(x),

g2j+1,2j−1q2j(x) = xq2j−2(x)−
2j∑

i=2j−3
gi,2j−1qi−1(x),

h2j+2,2jp2j+1(x) = (x− σ)−1p2j−1(x)−
2j+1∑
i=2j−2

hi,2jpi−1(x),

g2j+2,2jq2j+1(x) = (x− σ)−1q2j−1(x)−
2j+1∑
i=2j−2

gi,2jqi−1(x),

(4.5)

where p1(x) = (1/α2,2)[(x− σ)−1p0(x)− α1,2p0(x)], p0(x) = 1/α1,1, and

q1(x) = (1/β2,2)[(x− σ)−1q0(x)− β1,2q0(x)], q0(x) = 1/β1,1, p−2 = p−1 = q−2 = q−1 = 0.

The associated 2m-point shifted Gauss-Laurent quadrature rule is given by

Gσ2m(f) = 〈V,W 〉eT1 f(T̂2m)e1 =

2m∑
i=1

f(µi)wi, (4.6)

where µi denotes the ith eigenvalue of T̂2m and wi = 〈V,W 〉u2i,1. Here ui,1 is the first component of the

normalized eigenvector ui of T̂2m. This quadrature rule satisfies

Gσ2m(f) = I(f), ∀f ∈ ∆−2m,2m−1.

This can be shown similarly as related results in [27] or in Section 3.

Lemma 4.3. Let the shifted Laurent polynomials p2m and q2m be determined by the recursion relations

(4.5). Then

Gσ2m(p2m) = Gσ2m(q2m) = 0.

Proof. Consider the vectors of shifted Laurent polynomials

~P2m(x) = [p0(x), p1(x), . . . , p2m−1(x)], ~Q2m(x) = [q0(x), q1(x), . . . , q2m−1(x)].

Using (4.4), these vectors can be expressed as

x~P2m(x) = ~P2m(x)T̂2m + p2m(x)τmE
T
m,

x ~Q2m(x) = ~Q2m(x)T̂T2m + q2m(x)τ̂mE
T
m.
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It follows that the 2m zeros of the Laurent polynomials p2m and q2m are the eigenvalues of the matrix

T̂2m. On the other hand, we have in view of (4.6) that Gσ2m(p2m) = Gσ2m(q2m) = 0. This completes the

proof.

5. Shifted anti-Gauss-Laurent quadrature rules for nonsymmetric matrices. This section

extends the construction of the shifted anti-Gauss-Laurent quadrature rules of Section 3 to the situation

when the matrix A is nonsymmetric. Introduce the (2m+1)-point shifted anti-Gauss-Laurent quadrature

rule

Aσ2m+1(f) = 〈W,V 〉
2m+1∑
i=1

eT1 f(T̂a2m+1)e1,

where the matrix T̂a2m+1 = [t̃i,j ] ∈ R(2m+1)×(2m+1) is such that

Aσ2m+1(f) = (2I − Gσ2m)(f), ∀f ∈ ∆−2m,2m+1.

The entries of T̂a2m+1 are given by t̃i,j = 〈xp̃j−1, q̃i−1〉a, where

〈P,Q〉a := (2I − Gσ2m)(PQ) = 2〈P,Q〉 − 〈W,V 〉eT1 P (T̂2m)Q(T̂2m)e1. (5.1)

Let p̃0, p̃1, . . . , p̃2m and q̃0, q̃1, . . . , q̃2m be the first biorthogonal shifted Laurent polynomials with re-

spect to the bilinear form (5.1). These shifted Laurent polynomials satisfy a pair of five-term recurrence

relations of the form

p̃0(x) = 1/α̃1,1, p̃1(x) = (1/α̃2,2)[(x− σ)−1p̃0(x)− α̃1,2p̃0(x)],

q̃0(x) = 1/β̃1,1, q̃1(x) = (1/β̃2,2)[(x− σ)−1q̃0(x)− β̃1,2q̃0(x)],

and

h̃2j+1,2j−1p̃2j(x) = xp̃2j−2(x)−
2j∑

i=2j−3
h̃i,2j−1p̃i−1(x),

h̃2j+2,2j p̃2j+1(x) = (x− σ)−1p̃2j−1(x)−
2j+1∑
i=2j−2

h̃i,2j p̃i−1(x),

g̃2j+1,2j−1q̃2j(x) = xq̃2j−2(x)−
2j∑

i=2j−3
g̃i,2j−1q̃i−1(x),

g̃2j+2,2j q̃2j+1(x) = (x− σ)−1q̃2j−1(x)−
2j+1∑
i=2j−2

g̃i,2j q̃i−1(x),

where p̃−2 = p̃−1 = q̃−2 = q̃−1 = 0 and

h̃i,2j−1 = 〈xq̃2j−2, q̃i−1〉a, h̃i,2j = 〈(x− σ)−1p̃2j−1, q̃i−1〉a,
g̃i,2j−1 = 〈xp̃2j−2, q̃i−1〉a, g̃i,2j = 〈(x− σ)−1p̃2j−1, q̃i−1〉a.

(5.2)

The coefficients h̃2j+1,2j−1, h̃2j+2,2j , g̃2j+1,2j−1, and g̃2j+2,2j are determined so that

〈p̃2j , q̃2j〉a = 1 and 〈p̃2j+1, q̃2j+1〉a = 1.

Using the fact that for two shifted Laurent polynomials P and Q such that PQ ∈ ∆−2m,2m−1, we have

〈P,Q〉a = 〈P,Q〉, and applying the relations (5.2), we obtain

p̃j = pj , q̃j = qj , for j = 0, 1, . . . , 2m− 1,

p̃2m =
1√
2
p2m, q̃2m =

1√
2
q2m.
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These formulas show that the entries of the pentadiagonal matrix T̂a2m+1 associated to the (2m+1)-point

shifted anti-Gauss-Laurent quadrature rule are

t̃i,j = ti,j , for i, j = 1, 2, . . . , 2m

and

t̃2m+1,2m−1 =
√

2t2m+1,2m−1, t̃2m−1,2m+1 =
√

2 t̂2m+1,2m−1,

t̃2m+1,2m =
√

2t2m+1,2m, t̃2m,2m+1 =
√

2 t̂2m+1,2m,

t̃2m+1,2m+1 = t2m+1,2m+1.

In summary, the pentadiagonal matrix T̂a2m+1 is obtained from the matrix T̂2m+1 = ŴT
2m+1 �AV̂2m+1

associated with the (2m+ 1)-point shifted Gauss-Laurent rule as follows

T̂a2m+1 =

[
T̂2m Φ2m

ΨT
2m t2m+1,2m+1

]
∈ R(2m+1)×(2m+1),

where Φ2m = [0, . . . , 0,
√

2 t̂2m+1,2m−1,
√

2 t̂2m+1,2m]T and Ψ2m = [0, . . . , 0,
√

2t2m+1,2m−1,
√

2t2m+1,2m]T .

Algorithm 2 describes how an approximation of (1.3) and an error estimate can be computed by

a pair of shifted Gauss-Laurent and shifted anti-Gauss-Laurent quadrature rules when the matrix A is

nonsymmetric. The computed approximation, Uappf , is the average of approximations of (1.3) determined

by shifted Gauss-Laurent and anti-Gauss-Laurent quadrature rules. Similarly as in Algorithm 1, we

approximate (1.10) by Uapp(f) = (Gσ2m(f) + Aσ2m+1(f))/2 and estimate the error in Uapp(f) by the

difference |Gσ2m(f)−Aσ2m+1(f)|/|Gσ2m(f)|.

6. Numerical experiments. This section presents some numerical results that illustrate the perfor-

mance of the shifted extended Gauss-Laurent-type quadrature rules based on the global shifted extended

symmetric or nonsymmetric Lanczos processes. All experiments were carried out in MATLAB R2015a

on a computer with an Intel Core i-3 processor and 3.89 GB of RAM. The computations were done with

about 15 significant decimal digits.

Upper and lower bounds for trace(f(A)) can be determined as the sum of upper and lower bounds

for trace(ETj f(A)Ej), j = 1, 2, . . . , ns, with ns = b(n + s − 1)/sc, with the initial block vectors Ej =

[es(j−1)+1, . . . , emin{sj,n}] ∈ Rn×s, provided that the integrand f is such that pairs of shifted Gauss-

Laurent and Gauss-Laurent-Radau rules yield upper and lower bounds. This is described for (standard)

Gauss and Gauss-Radau quadrature rules in [7]. We instead apply pairs of shifted Gauss-Laurent and

anti-Gauss-Laurent quadrature rules to determine approximations of upper and lower bounds. Denote

the computed approximations of trace(ETj f(A)Ej) by Ulower,j(A) and Uupper,j(A), respectively. Then

Ulower(A) :=

ns∑
j=1

Ulower,j(A), Uupper(A) :=

ns∑
j=1

Uupper,j(A)

provide approximations for upper and lower bounds for trace(A).

We report the magnitude of the estimated relative error

RelErr(A) =
|Uupper(A)− Ulower(A)|

|Uupper(A)|
. (6.1)

The (standard) Gauss and Gauss-Radau rules described in [7] provide upper and lower bounds for

trace(ETj f(A)Ej) when f(t) = exp(t). In this situation, Uupper,j(A) and Ulower,j(A) denote these bounds.
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Algorithm 2 Approximation of trace(WT f(A)V ) by pairs of shifted Gauss-Laurent and shifted anti-

Gauss-Laurent quadrature rules for a nonsymmetric matrix A.

Input: Nonsymmetric matrix A, initial block vectors V,W , parameter σ and function f .

1. Choose tolerance ε > 0 and the maximum number of iterations Imax.

2. α1,1 = |〈W,V 〉|1/2; V1 = V/α1,1; β1,1 = 〈W,V 〉/α1,1; W1 = W/β1,1;

3. α1,2 = 〈W1, (A− σIn)−1V1〉; Ṽ2 = (A− σIn)−1V1 − α1,2V1;

4. β1,2 = 〈V1, (AT − σIn)−1W1〉; W̃2 = (AT − σIn)−1W1 − β1,2W1;

5. α2,2 = |〈W̃2, Ṽ2〉|1/2; V2 = Ṽ2/α2,2; β2,2 = |〈W̃2, Ṽ2〉/α2,2; W1 = W̃2/β2,2;

6. Ṽ3 = AV1; W̃3 = ATW1; h1,1 = 〈W̃3, V 〉; g1,1 = h1,1;

7. For j = 1 : Imax
(a) Ṽ2j+2 = (A− σIn)−1V2j ; W̃2j+2 = (AT − σIn)−1W2j ;

(b) h2j,2j = 〈W̃2j+2, V2j〉; g2j,2j = h2j,2j ;

(c) Compute hi,2j−1, gi,2j−1, hi,2j ; gi,2j from recursion relations given by

(d) Ṽ2j+1 = Ṽ2j+1 −
2j∑

i=2j−3
hi,2j−1Vi; W̃2j+1 = W̃2j+1 −

2j∑
i=2j−3

gi,2j−1Wi;

(e) h2j+1,2j−1 = |〈W̃2j+1, Ṽ2j+1〉|1/2; g2j+1,2j−1 = 〈W̃2j+1, Ṽ2j+1〉/h2j+1,2j−1;

(f) if j = 1

t1:2,1 = h1:2,1; t1,2 = [1− α1,2(t1,1 − σ)]/α2,2; t2,2 = σ − α1,2t2,1/α2,2;

else

t2j−3:2j,2j−1 = h2j−3:2j,2j−1; t2j−1,2j = −[
2j−1∑
i=2j−3

hi,2j−2t2j−1,i − σh2j−1,2j−2]/h2j,2j−2;

t2j,2j = σ − h2j−1,2j−2t2j,2j−1/h2j,2j−2;

end

(g) Gσ2j(f) = eT1 f(T̂2j)e1;

(h) V2j+1 = Ṽ2j+1/h2j+1,2j−1; W2j+1 = W̃2j+1/g2j+1,2j−1;

(i) Ṽ2j+2 = Ṽ2j+2 −
2j+1∑
i=2j−2

hi,2jVi; W̃2j+2 = W̃2j+2 −
2j+1∑
i=2j−2

gi,2jWi;

(j) h2j+2,2j =
∣∣∣〈W̃2j+2, Ṽ2j+2〉

∣∣∣1/2 ; g2j+2,2j = 〈W̃2j+2, Ṽ2j+2〉/h2j+2,2j ;

(k) if j = 1, t3,1 = h3,1; t3,2 = −α1,2t3,1/α2,2; else

t2j+1,2j−1 = h2j+1,2j−1; t2j+1,2j = −h2j−1,2j−2t2j+1,2j−1/h2j,2j−2;

end

(l) Ψ2j =
√

2 [0, . . . , 0, t2j+1,2j−1, t2j+1,2j ]; Φ2j =
√

2 [0, . . . , 0, t2j−1,2j+1, t2j,2j+1]T ;

(m) Ṽ2j+3 = AV2j+1; W̃2j+3 = ATW2j+1; h2j+1,2j+1 = 〈W̃2j+3, V2j+1〉; g2j+1,2j+1 = h2j+1,2j+1;

(n) Compute T̂a2j+1 =

[
T̂2j Φ2j

ΨT
2j h2j+1,2j+1

]
and Aσ2j+1(f) = eT1 f(T̂a2j+1)e1;

(o) if |Gσ2j(f)−Aσ2j+1(f)|/|Gσ2j(f)| < ε

Uapp(f) = 〈W,V 〉[Gσ2j(f) +Aσ2j+1(f)]/2; Break;

end

(p) V2j+2 = Ṽ2j+2/h2j+2,2j ; W2j+2 = W̃2j+2/g2j+2,2j ;

(q) end

Output: Approximation Uapp(f) of trace(WT f(A)V ).

The first two subsections compare the performance of pairs of shifted Gauss-Laurent and anti-Gauss-

Laurent quadrature rules for symmetric matrices A, as implemented by Algorithm 1, to the performance

of (standard) Gauss and Gauss-Radau quadrature (GQ) rules based on the global Lanczos algorithm

described in [7, Algorithm 2]. In the third subsection, we compare the application of shifted Gauss-
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Laurent and anti-Gauss-Laurent quadrature rules, as implemented by Algorithm 2, to the MATLAB

function expm. The block size of Ej is set to s = 60 and the stopping tolerance ε in Algorithms 1 and 2

is set to 2 · 10−3. The GQ method is terminated analogously.

The shift parameter is set to σ = 1.01λmax or σ = 1.01λmin, where λmax and λmin are estimates of

the largest and smallest eigenvalues of A; we assume here that λmax is positive and λmin is negative.

Several techniques can be applied to determine such estimates, including using Gershgorin’s disks [37],

the irbleigs method [3, 4] for symmetric matrices A, and the MATLAB command eigs, which implements

an implicitly restarted Krylov method [35] and can be applied for symmetric and nonsymmetric matrices,

or the power method. We use the latter method with initial vector v = [1, 1, . . . , 1]T .

The systems of equations with the matrix A− σIn in Algorithm 1 and the systems of equations with

the matrices A − σIn and AT − σIn in Algorithm 2 are solved by using the backslash operator \ of

MATLAB. This operator computes an LU or Cholesky factorization of A− σIn1.

6.1. Application to undirected graphs in network analysis. We compute approximations

of the Estrada index EE(A) for some undirected networks using the shifted Gauss-Laurent-type rules

determined by Algorithm 1. These rules are compared to the Gauss-type quadrature rules based on the

global Lanczos algorithm. These rules are denoted by GQ in the tables and described in [7]. We choose

the prescribed eigenvalue ξ = λmax for GQ. Then we have the bounds

Gm(f) ≤ trace(ETj exp (A)Ej) ≤ Rξm+1(f), f(t) = exp(t).

for every m, where Gm(f) and Rξm+1(f) are defined by (1.7) and (1.8), respectively; see [7] for details.

We consider six real-world undirected networks, which can be found in the SuiteSparse Matrix Collection

[13]. Some details on these matrices are presented in Table 6.1, including the sparsity of each adjacency

matrix, i.e., the ratio between the number of nonzero elements and the total number of elements, n2.

Table 6.2 reports the required CPU time (Time) in seconds, the total number of matrix-vector product

(MVP) evaluations, and the relative error (6.1) achieved with these methods. We also report the total

number of linear systems solved (LSS) in Algorithm 1. The results show Algorithm 1 to be faster and

require a smaller number of MVP evaluations than the GQ algorithm to estimate the Estrada index

EE(G). To illustrate the quality of the computed bounds of trace(V T exp (A)V ) determined by the

shifted anti-Gauss-Laurent quadrature rules, we consider the networks as-22july06 and Erdos972. We

choose block size s = 60 and V = E1. Figure 6.1 displays the computed approximations of upper and

lower bounds for for EE(G) for these networks versus the number of iterations. As can be observed,

standard Gauss-type quadrature rules based on the global Lanczos method require many more steps to

bracket trace(V T exp (A)V ) tightly.

6.2. Application to computing the nuclear norm. The nuclear norm of a general matrix X ∈
Rm×n is defined as

‖X‖∗ =

min{m,n}∑
i=1

σi,

where the σi are singular values of X. It is impractical or unfeasible to use the singular value decom-

position of X to compute the nuclear norm of a large matrix. Computation of the nuclear norm can be

1If the matrix A ∈ Rn×n is symmetric the operator \ first seeks to compute the Cholesky factorization of A− σIn. If

this is not possible, because A−σIn is not positive definite, then an LU factorization is determined by Gaussian elimination

with partial pivoting. The computed factorization is used to solve the linear system of equations with the matrix A− σIn.

23



Table 6.1

Adjacency matrix properties.

Matrix # Nodes # Edges λmax Sparsity Application

Undirected graphs:

Arenas/email 1133 10902 20.74 8.5 · 10−3 interchange network

Pajek/Erdos972 5488 7085 14.45 4.70 · 10−4 collaboration network

SNAP/as-735 7716 13895 46.89 4.45 · 10−4 computer server network

SNAP/Oregon-1 11492 23409 60.33 3.54 · 10−4 road network

Newman/as-22july06 22963 96872 71.61 1.83 · 10−4 structure of internet routers

Newman/cond-mat-2005 40421 351384 47.63 2.15 · 10−4 collaboration network

Directed graphs:

SNAP/p2p-Gnutella08 6301 20777 5.12 5.23 · 10−4 peer to peer network

Pajek/EVA 8497 6726 1.85 9.32 · 10−5 corporate inter-relationships

Pajek/California 9664 16150 7.41 1.73 · 10−4 web search

SNAP/p2p-Gnutella04 10879 39994 4.45 3.38 · 10−4 peer to peer network

Table 6.2

CPU time in seconds, RelErr, number of matrix-vector product evaluations (MVP) and number of linear system solves

(LSS) for computing the Estrada index for several undirected networks.

Matrix
GQ [7] Algorithm 1

Time RelErr MVP Time RelErr MVP LSS

email 2.52 7.36 · 10−4 9830 2.24 2.21 · 10−4 4585 4585

Erdos972 38.79 6.63 · 10−4 47384 30.97 1.84 · 10−4 26360 26360

as-735 59.63 9.30 · 10−4 67416 40.92 6.75 · 10−6 23040 23040

Oregon-1 406.56 9.18 · 10−4 110180 71.98 2.56 · 10−5 34476 34476

as-22july06 1856 9.06 · 10−4 233770 309 4.43 · 10−5 68889 68889

cond-mat-2005 9459 9.40 · 10−4 666397 3160 5.78 · 10−5 206185 206185

considered a trace estimation problems for the symmetric positive semidefinite matrices A = XTX or

A = XXT [36]. The nuclear norm of X can be expressed as

‖X‖∗ =

min{m,n}∑
i=1

σi =

min{m,n}∑
i=1

λ
1/2
i = trace(A1/2),

where the λi are the eigenvalues of A. We consider the same data sets as used in [36]. All matrices were

obtained from [13]. We compare the performance of Algorithm 1 to the performance of the GQ method

[7] when estimating the nuclear norm of the matrices in Table 6.3. The prescribed eigenvalue ξ in the

GQ algorithm is chosen to be ξ = 0. Let ξ = λmin. Then we have the bounds

Rξm+1(f) ≤ trace(V TA1/2V ) ≤ Gm(f), f(t) = t1/2;

see [7] for details. Table 6.3 displays the CPU time (Time) required in seconds, the total number of

matrix-vector product (MVP) evaluations, and the relative error (RelErr) in approximations determined

by these methods. The symbol (−−) signifies that the stopping criterion was not satisfied within 3 hours

of execution time. The table shows Algorithm 1 to be faster and to require fewer matrix-vector product

evaluations than the GQ algorithm.
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Fig. 6.1. Upper and lower bounds or estimates thereof for trace(V T exp (A)V ). Top row: Erdos972 graph. Bottom

row: as-22july06 graph. Left plot: Algorithm 1. Right plot: GQ method [7].
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To illustrate the quality of the computed (approximate) bounds determined by the GQ algorithm

and Algorithm 1, we consider trace(V T
√
XT

1 X1V ) and trace(V T
√
XT

2 X2V ), where X1 and X2 are the

adjacency matrices for the Erdos992 and FA graphs, respectively. The initial block vector V is generated

randomly with uniformly distributed entries in the interval [0, 1]; the matrix has s = 60 columns. Figure

6.2 shows the upper and lower bounds for trace(V T
√
XT

1 X1V ) and trace(V T
√
XT

2 X2V ) produced by

the the GQ method and the estimates of upper and lower bounds determined by Algorithm 1 versus the

number of iterations. The figure demonstrates the effectiveness of Algorithm 1.

6.3. Application to directed graphs in network analysis. We consider the computation of the

Estrada index for some directed graphs that model real-world directed networks. The adjacency matrices

are nonsymmetric. These computations illustrate the performance of the shifted Gauss-Laurent-type

quadrature rules determined by the nonsymmetric Lanczos process and implemented by Algorithm 2.

We use the adjacency matrices p2p-Gnutella08, EVA, California, and p2p-Gnutella04 from [13]. Some

properties on these matrices are given in Table 6.1. In Table 6.4, we show the CPU time required by
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Table 6.3

CPU time in seconds, RelErr, number of matrix-vector product evaluations (MVP) and number of linear system solves

(LSS) for computing the nuclear norm.

Matrix
GQ [7] Algorithm 1

Time RelErr MVP Time RelErr MVP LSS

Erdos992 1400 1.9 · 10−3 279060 274.97 1.33 · 10−4 44080 44080

deter3 134.16 1.8 · 10−3 90396 171.75 7.39 · 10−4 37308 37308

California 554.04 3.6 · 10−3 901864 321.13 2.38 · 10−4 67108 67108

FA −− −− −− 4274 2.76 · 10−4 79299 79299

Fig. 6.2. Upper and lower bounds or estimates thereof for trace(V T
√
AV ). Top row: Erdos992 graph. Bottom row:

FA matrix. Left plot: Algorithm 1. Right plot: GQ method [7].
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Algorithm 2 and the MATLAB function expm. We also show the approximation of the Estrada index

computed by the Algorithm 2. As illustrated by this table, the computational cost for the function expm

is much higher than for Algorithm 2.
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Table 6.4

CPU time in seconds for Algorithm 2 and the MATLAB function expm for computing the Estrada index for several

directed graphs.

Matrix
Algorithm 2 expm

Time Approximation Time

p2p-Gnutella08 35.11 6.12 · 103 165.63

EVA 12.82 8.47 · 103 80.95

California 25.51 1.14 · 104 130.16

p2p-Gnutella04 219.79 1.06 · 104 1616.64

7. Conclusion. This paper describes the extended shifted symmetric and nonsymmetric Lanczos

processes. These algorithms are used to compute shifted Gauss-Laurent-type quadrature rules. The

matrices of recursion coefficients for these Lanczos processes are shown to be pentadiagonal. This results

in computations with short recursion formulas. Applications to the determination of estimates of upper

and lower bounds for the trace of matrix functions are described. Also applications to the computation

of the nuclear norm of a large matrix are described. The computed examples illustrate the effectiveness

of the proposed methods.
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[37] R. S. Varga, Geršgorin and His Circles, Springer, Berlin, 2004.

28


