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1 Introduction

In the above two papers Walter Gautschi, jointly with Henry J. Landau and
Gradimir V. Milovanovié¢, investigate polynomials that are orthogonal with re-
spect to a non-Hermitian inner product defined on the upper half of the unit
circle in the complex plane. For special choices of the weight function, these
polynomials are related to Jacobi polynomials. Their recurrence relation and
properties of their zeros are investigated, and applications to Gauss quadra-
ture are explored. We first discuss the importance of orthogonal polynomials
that satisfy recurrence relations with few terms, and then focus on the special
properties of orthogonal polynomials on the semicircle.

2 Recurrence relations for orthogonal polyno-
mials

Orthogonal polynomials are important in analysis, approximation theory, and
computational mathematics. They provide a convenient basis both to express
and compute polynomial approximants. The n x n matrix determined by the
recursion coefficients for the first n+1 orthogonal polynomials is helpful for com-
puting the nodes and weights of the n-point Gauss quadrature rule. Moreover,
orthogonal polynomials form the foundation for numerous iterative methods in
linear algebra, including the conjugate gradient method for the solution of large
linear systems of equations with a symmetric positive definite matrix, and the
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symmetric Lanczos process for the computation of a few selected eigenvalues
and associated eigenvectors of a large symmetric matrix. Very nice discussions
of the many applications of orthogonal polynomials in scientific computation is
provided by Gautschi in his survey article [8] as well as in his wonderful book
[9]. Further examples of usage of orthogonal polynomials in linear algebra can
be found in the recent book by Golub and Meurant [11].

The symmetric Lanczos process is a manifestation of the Stieltjes proce-
dure for generating the recursion coefficients for polynomials orthogonal with
respect to an inner product on a real interval. These polynomials satisfy a
three-term recurrence relation. The symmetric Lanczos process is the founda-
tion for the conjugate gradient method for the iterative solution of large linear
systems of equations with a symmetric positive definite matrix. The existence
of a recurrence relation for the orthogonal polynomials with few terms reduces
the computational effort and storage requirement for the conjugate gradient
method. The availability of these recurrence relations also reduces the compu-
tational effort required by the symmetric Lanczos process for the computation
of a few selected eigenvalues and associated eigenvectors of a large symmetric
matrix. Analogously, the three-term recurrence relation for orthogonal polyno-
mials is fundamental for the efficiency of the QR algorithm for the computation
of all eigenvalues and possibly eigenvectors of a symmetric matrix. A variant of
this algorithm is commonly applied to compute the nodes and weights of Gauss
quadrature rules associated with a positive measure on a real interval; see, e.g.,
[8, 11]. The use of orthogonal polynomials for data-fitting is natural and the
existence of a three-term recursion relation reduces the computational effort;
see, e.g., Elhay et al. [6] and Gautschi [8].

The above discussion illustrates that the existence of orthogonal polynomials
that satisfy a recurrence formula with few terms is of significant interest in
scientific computation. The aforementioned numerical methods use the three-
term recurrence relations of polynomials that are orthogonal with respect to an
inner product defined by a nonnegative measure on a real interval. Also matrix-
valued polynomials that are orthogonal with respect to a symmetric positive
definite matrix-valued measure satisfy a three-term recurrence relation and find
applications in scientific computation; see, e.g., [2, 11].

Polynomials that satisfy short recurrence relations different from three-term
relations are of interest in computations as well. For instance, Szegd polyno-
mials and the associated reversed polynomials satisfy pairs of short recurrence
relations. Szeg6 polynomials find numerous applications in statistics and signal
processing [14, 16], and their recurrence relations form the basis for an efficient
QR algorithm for computing all eigenvalues, and possibly also all eigenvectors, of
a unitary upper Hessenberg matrix [12, 24]. This QR algorithm can be applied
to compute the nodes and weights of Gauss—Szegd quadrature rules associated
with a positive measure on the unit circle [13, 15]. The short recurrence relations
of Szegé polynomials are important for the development of efficient algorithms
for data-fitting applications as well; see, e.g., [1].

Orthogonal polynomials with respect to most inner products with support
in the complex plane do not satisfy a short recurrence relation or pairs of short



recurrence relations. For this reason the inner product sometimes is replaced
by a bilinear form chosen to obtain families of polynomials that satisfy short
recurrence relations. These polynomials give rise to oblique projection methods,
such as the nonsymmetric Lanczos process, and they can be used in iterative
methods for the solution of large linear systems of equations with a square non-
symmetric matrix, and for the computation of a few eigenvalues and associated
eigenvectors of such a matrix; see, e.g., Brezinski [3] for discussions and appli-
cations. A difficulty with these methods is that the recurrence formulas may
break down and then require a special recovery procedure; see, e.g., Brezinski
et al. [4] and references therein.

In 1985, before the publication of the first paper by Gautschi and Milovanovié
[10] on orthogonal polynomials on the semicircle, only polynomials orthogonal
with respect to an inner product on an interval or on a circle were known to
satisfy recurrence relations with few terms and not to suffer from the possibility
of break down. The results of this paper and of the more complete investiga-
tions [WG1, WG2] therefore were quite surprising. The uncovering of the many
nice properties of orthogonal polynomials on the semicircle was very important
for analysis, approximation theory, and computational mathematics, and has
spurred related work. The following section describes some important proper-
ties of orthogonal polynomials on the semicircle and the last section discusses
some applications and more recent work.

3 Orthogonal polynomials on the semicircle

Let w be a weight function that is positive at infinitely many points in the open
interval (—1, 1), is integrable on this interval, and can be extended to a function
w(z) holomorphic in the open unit half disc Dy = {z € C: |z| < 1, Im(z) > 0};
the function w may be singular at +1. Introduce the inner product
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where ¢ = v/—1 and I is the upper unit semicircle in the complex plane C. Also
define the inner product
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where the bar denotes complex conjugation. All integrals are assumed to exist,
possibly as suitably defined improper integrals. The inner product (2) is posi-
tive definite. Therefore, there is a family of infinitely many monic orthogonal
polynomials {p;}52, such that
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The inner product (1) is non-Hermitian. It therefore is not obvious that there
is a family of infinitely many monic orthogonal polynomials {;}22 such that
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Gautschi et al. [WG2] showed that under the mild restriction
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the orthogonal polynomials 7; exists. Moreover, they can be expressed in terms
of the orthogonal polynomials p;. Specifically, we have

m6(2) = pr(2) — i0p_1pk—1(2), k=0,1,2,..., p-1(2) =0, (3)
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The ¢ (0) denote the values of the associated polynomials
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at the origin, and pp = (1,1) is the zeroth moment with respect to the inner
product (1). Using the fact that the polynomials pj, satisfy a three-term recur-
rence relation, Gautschi et al. [WG2] obtain from (3) that the polynomials 7y
satisfy a three-term recurrence relation of the form

7Tk+1(Z) = (z—iak)wk(z)—ﬁkﬂk,l(z), k:O,l,Q,... 5 (4)

with 7_1(z) = 0 and mp(2) = 1.
The recursion formula (4) indicates that the eigenvalues of the tridiagonal
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are the zeros of my.

If the weight function w satisfies w(z) = w(—z) and w(0) > 0, then the
subdiagonal entries of the matrix Jy are real, and Ji can be transformed to a
real matrix. Moreover, Gautschi et al. [WG2, Theorem 6.2] show that all zeros
of the orthogonal polynomials 7 live in the open upper half of the unit disk in
C except possibly for a single zero on the positive imaginary axis.



Finally, Gautschi et al. [WG2, Theorem 6.2] discuss the special case of
Jacobi- and Gegenbauer-type weight functions. The latter are given by

w(z)= (=222 A -2, 5)
where the fractional powers are understood in terms of their principal branches.
The zeros of the orthogonal polynomials 7, k > 2, associated with a Gegenbauer-
type weight function (5) are shown to be simple, distributed symmetrically with
respect to the imaginary axis, and contained in the open upper unit half disc.
Further results on the zeros of polynomials orthogonal on the semicircle are
presented by Gautschi in [7].

4 Extensions and applications

A fairly natural modification of the work by Gautschi et al. [WG1, WG2] is
to consider an inner product on a subarc of the upper half of the unit cir-
cle. de Bruin [5] investigated properties of polynomials orthogonal with respect
to a possibly non-Hermitian inner product on an arc of the unit circle, sym-
metric with respect to the imaginary axis. Functions of the second kind and
Stieltjes polynomials for such inner products are described by Milovanovi¢ and
Rajkovié [22]. Milovanovié¢ [19] discusses Gauss quadrature rules and provides
error bounds for integrals defined on the semicircle. Relations of polynomials
orthogonal on the semicircle or on a circular arc to polynomials orthogonal with
respect to an inner product on certain contours in C are explored by Milovanovié
and Rajkovié¢ [21]. Applications of orthogonal polynomials on the semicircle to
differentiation is described by Calio et al. [20], and their use in zero-finders are
commented on by Petkovi¢ et al. [23]; see also Milovanovié [17, 18] for discus-
sions on applications. A recent account of the orthogonal polynomials on the
semicircle can be found in Gautschi [9, Section 1.8].
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