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Abstract Regularization of certain linear discrete ill-posed problems, as well
as of certain regression problems, can be formulated as large-scale, possibly
nonconvex, minimization problems, whose objective function is the sum of the
pth power of the `p-norm of a fidelity term and the qth power of the `q-norm of
a regularization term, with 0 < p, q ≤ 2. We describe new restarted iterative
solution methods that require less computer storage and execution time than
the methods described by [Huang et al.,Majorization-minimization generalized
Krylov subspace methods for `p-`q optimization applied to image restoration.
BIT (2017)]. The reduction in computer storage and execution time is achieved
by periodic restarts of the method. Computed examples illustrate that restart-
ing does not reduce the quality of the computed solutions.
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1 Introduction

We are concerned with the solution of linear systems of equations of the form

Ax + η = bδ, (1)
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where the matrix A ∈ Rm×n is ill-conditioned; the singular values of matrices
of interest to us decay to zero with increasing index number with no significant
gap between the small singular values, x ∈ Rn is the unknown signal that we
would like to recover, and bδ ∈ Rm is an available data vector. The vector
η ∈ Rm represents unknown errors in the data vector. This vector may stem
from measurement errors, faulty collection equipment, as well as discretization;
it is often referred to as “noise”. Linear systems of equations (1) of this kind
are commonly referred to as linear discrete ill-posed problems. They arise,
e.g., in image restoration and when discretizing linear ill-posed problems, such
as Fredholm integral equations of the first kind with a smooth kernel; see,
e.g., [13, 18] for discussions on ill-posed problems. Linear discrete ill-posed
problems also arise in regression; see, e.g., [3].

Due to the ill-conditioning of A and the error η in bδ, straightforward solu-
tion of Ax ≈ bδ, e.g., in the least-squares sense typically does not yield a useful
approximation of the desired vector x in (1). We, therefore, will determine an
approximation of this vector by solving an `p-`q minimization problem

x∗ = arg min
x∈Rn

{
1

p

∥∥Ax− bδ
∥∥p
p

+
µ

q
‖Lx‖qq

}
, (2)

where 0 < p, q ≤ 2 and ‖x‖pp =
∑n
j=1 |xj |p. With slight abuse of notation, we

will refer to ‖x‖p as the `p-norm of x for any p > 0, even though it is not a
norm for p < 1. The first term in (2) is referred to as the fidelity term and the
second term as the regularization term. The regularization parameter µ > 0
balances the influence of these two terms on the solution x∗ of (2). The matrix
L ∈ Rs×n often is referred to as a regularization matrix. We will assume that

N (A) ∩N (L) = {0}, (3)

whereN (M) denotes the null space ofM . Violation of this assumption trivially
implies that the solution of (2) is not unique.

When p = q = 2, problem (2) is a Tikhonov regularization problem in
general form; when p ≥ 1 and q ≥ 1, the problem is convex, but non-smooth
if either p = 1 or q = 1. If p < 1 or q < 1, then the problem is non-convex and
non-smooth.

We remark that the model (2) can be extended to allow more than one
fidelity and regularization terms. The use of more than one fidelity term is
straightforward and should be considered when this is likely to yield a solution
x∗ of higher quality than when only one fidelity term is considered. Applica-
tion of two or more regularization terms has been discussed in the context of
Tikhonov regularization (p = q = 2); see, e.g., [2,5,14,16,21]. This sometimes
can result in computed solutions x∗ of higher quality than when only one
regularization terms is used. However, the computational effort required to
determine suitable values of several regularization parameters is much larger
than when determining only one parameter. Hence, use of Tikhonov regular-
ization with more than one regularization term is attractive only if this results
in an approximation of xexact of significantly higher quality than when only one
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regularization term is used. Similarly, the inclusion of more than one regular-
ization term in the model (2) is only attractive when this results in a solution
x∗ of much higher quality than the model with only one regularization term.
We, therefore, will not consider this extension of the model (2) in the present
paper.

The choices of p and q in (2) is important, and briefly discuss how these
parameters should be determined, starting with the parameter p. Let b denote
the unknown noise-free data vector associated with the noise-contaminated
vector bδ, i.e., bδ = b + η. Assume for the moment that b ∈ range(A). Then
there is a vector x0 such that Ax0−bδ = η. This suggests that if η represents
white Gaussian noise, then p = 2 is an appropriate choice. On the other hand,
when η contains impulse noise (defined below), one would like to choose a
“norm” that weighs outliers less than the Euclidean norm; one typically lets
0 < p ≤ 1.

We say that the data vector bδ = [(bδ)1, (b
δ)2, . . . , (b

δ)m]T is corrupted
by impulse noise if

(bδ)j =

{
rj with probability σ,
(b)j with probability 1− σ, j = 1, 2, . . . ,m,

where 0 < σ < 1 and rj is the realization of a random variable with uniform
distribution in the dynamic range of the entries of b. In theory, p = 0 would
be a good choice in the presence of impulse noise in bδ, where the `0-norm
counts the number of nonvanishing entries of a vector. However, the solution
of minimization problems (2) with this norm is NP-hard and, therefore, not
attractive to use in computations. It is popular to use the `1-norm instead of
the `0-norm, because it secures convexity. However, `p-norms with 0 < p < 1
provide better approximations of the `0-norm; see, e.g., [9] for an illustration.
A Bayesian justification for choosing 0 < p < 1 is presented in [3].

We turn to the choice of q. The value of q is informed by a-priori information
about the sparsity of the desired solution x∗ of (2). In imaging problems, the
restored image usually has a sparse representation when expressed in wavelet
or framelet bases, i.e., many of the coefficients in these representations vanish.
In this case, letting 0 < q < 1 usually provides satisfactory restorations; see,
e.g., [8] for an illustration. Moreover, the discrete total variation operator
applied to the desired solution often is sparse; see, e.g., [24] for illustrations.

A proof of the regularization properties of (2) is provided in [6], and a
Bayesian derivation of the model is discussed in [3]. An application to super-
saturated design is described in [4].

This paper presents two new methods for the solution of the minimiza-
tion problem (2). These methods are based on the majorization-minimization
(MM) methods described by Huang et al. [20] and Lanza et al. [24], but require
less execution time and computer memory. The methods described in [20, 24]
are iterative and are based on projecting the problem (2) into generalized
Krylov subspaces of increasing dimension; the dimension is increased by one
in each iteration. However, the MM methods in [20, 24] may require many
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iterations to converge; computed examples reported in [20,24] show that hun-
dreds of iterations may be necessary to satisfy the stopping criterion for some
examples. This large number of iterations results in a solution subspace of
large dimension. For large-scale problems, the storage requirement for a basis
for the solution subspace may be substantial. Moreover, QR factorizations of
tall skinny matrices, with the number of columns equal to the dimension of
the solution subspace, have to be computed or updated in every iteration. The
computational effort required for these computations is significant when the
dimension is large.

Extensive computational experience suggests that, when the dimension of
the solution subspace is large, the last vectors added to the subspace often are
not important for improving the quality of the computed solution. Therefore,
our approach to reducing the memory requirement of the MM algorithms
in [20] is to simply restart the algorithm periodically. We will describe and
illustrate the performance of this approach.

Restarting iterative methods to reduce the memory requirement is not new.
For instance, consider the GMRES method [28], which is a popular iterative
method for the solution of boundary value problems for linear elliptic partial
differential equations. These are discrete well-posed problems. Iterations with
GMRES typically are restarted periodically to reduce the memory requirement
and the computational effort per iteration. The number of iterations required
to determine an approximate solution of satisfactory quality may be larger
when using restarts than without restarting GMRES, because restarting affects
the solution subspace used. However, restarting does not reduce the quality of
the computed solution if sufficiently many iterations are performed.

Restarting iterative methods for the solution of discrete ill-posed problems
is more delicate. The computed solution of (2) depends on the matrices A and
L, the data vector bδ, the regularization parameter µ > 0, and the solution
subspace chosen. The use of an unsuitable subspace can reduce the quality
of the computed solution, independently of how many iterations are carried
out. Restarting affects the solution subspace used and, therefore, may reduce
the quality of the computed solution. The computed examples reported in this
paper illustrate that our restarted methods yield computed solutions of the
same quality as the nonrestarted methods described [20] with less computa-
tional effort.

This paper is organized as follows: Section 2 briefly reviews the MM al-
gorithms described in [20] and Section 3 presents new memory- and CPU
time-saving schemes and shows their convergence properties. We remark that
the convergence proof for the MM algorithms in [20] does not carry over to the
limited memory schemes of the present paper. However, the convergence proof
of the present paper carries over to the methods in [20], and sheds light on their
performance. A few numerical examples with application to image restoration
are described in Section 4, and Section 5 contains concluding remarks.

The focus of this paper is to improve the algorithms described in [20], and
we refer to [20, 24] for discussions of related work. Here we only mention the
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papers by Chan and Liang [10] and Rodriguez and Wohlberg [27] that were
an inspiration for the methods described in [20,24].

2 Majorization-minimization in generalized Krylov subspaces

We review two iterative methods described in [20] for the minimization of (2).
Each iteration consists of a majorization step and a minimization step. In the
majorization step a smoothed `p-`q functional Jε, defined below, is majorized
by a quadratic functional whose value and gradient agree with those of Jε at
the current approximation x(k) of the sought minimum, which we denote by x∗ε.
In the minimization step this majorant is minimized and its unique minimizer
is the new approximation x(k+1) of x∗ε. Two approaches to determine quadratic
majorants are described in [20]. We will outline both.

Majorization step. Introduce the functional

J (x) =
1

p

∥∥Ax− bδ
∥∥p
p

+
µ

q
‖Lx‖qq (4)

associated with the minimization problem (2). We are primarily interested
in the situation when 0 < min{p, q} < 1. Then the functional (4) is neither
convex nor differentiable. The construction of the quadratic majorants requires
the functional to be continuously differentiable. We therefore introduce the
smoothed functional

Jε(x) =
1

p

m∑
j=1

Φp,ε
(
(Ax− bδ)j

)
+
µ

q

s∑
j=1

Φq,ε ((Lx)j)

for some small ε > 0, where

Φs,ε(t) =

{
|t|s for s > 1,(

t2 + ε2
)s/2

for 0 < s ≤ 1,
(5)

is a differentiable function of t. It follows that Jε(x) is everywhere differen-
tiable. We will comment on the choice of ε in Section 4.

Our aim is to determine a solution x∗ε of the problem

min
x∈Rn

Jε(x). (6)

When min{p, q} > 1, the functional Jε(x) is strictly convex and therefore
has a unique minimum. However, when 0 < min{p, q} < 1, the functional (6)
is not convex. The methods outlined seek to determine a local minimum or
stationary point in the latter situation.

Let x(k) be an available approximate solution of the problem (6). The
majorant referred to as “adaptive” in [20] is determined by constructing a
quadratic approximation of each component of Jε(x) at x(k) with positive
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second order derivative as large as possible. Typically, each component is ap-
proximated by a different quadratic polynomial. This determines the adaptive
quadratic tangent majorant QA(x,x(k)) of Jε(x) at x(k). Thus, QA(x,x(k))
satisfies

QA(x(k),x(k)) = Jε(x(k)), (7)

∇xQA(x(k),x(k)) = ∇xJε(x(k)), (8)

QA(x,x(k)) ≥ Jε(x) ∀x ∈ Rn, (9)

x → QA(x,x(k)) is a quadratic functional; (10)

see [20] for details. Here ∇x denotes the gradient with respect to x.
The majorant is constructed by evaluating the residual vectors

v(k) = Ax(k) − bδ, u(k) = Lx(k),

which define the weight vectors

ω
A,(k)
fid =

((
v(k)

)2

+ ε21

)p/2−1

, ωA,(k)
reg =

((
u(k)

)2

+ ε21

)q/2−1

,

where 1 = [1, 1, . . . , 1]T and all the operations are meant element-wise. The
weight vectors determine the diagonal matrices

W
(k)
fid = diag

(
ω
A,(k)
fid

)
and W (k)

reg = diag
(
ωA,(k)

reg

)
.

The adaptive quadratic tangent majorant of Jε at x(k) is given by

QA(x,x(k)) =
1

2

∥∥∥∥(W (k)
fid

)1/2 (
Ax− bδ

)∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

Lx

∥∥∥∥2

2

+ c,

where c ∈ R is a constant that is independent of x.
The minimizer x(k+1) of QA(x,x(k)) is the next approximate solution of

(6). We discuss the computation of an approximation of this minimizer below.
We turn to the construction of the majorant that in [20] is referred to as

“fixed.” This majorant is constructed by determining quadratic polynomial
majorants for each component of Jε(x) at x(k) with the leading coefficients
of all quadratic polynomials chosen to be the same; see [20] for details. This
results in simplifications of the computations, when compared to using the
adaptive majorant. However, the method so obtained may require more iter-
ation steps to satisfy the stopping criterion.

The weight vectors for the fixed majorant are given by

ω
F,(k)
fid = v(k)

(
1−

(
(v(k))

2
+ε21

ε2

)p/2−1
)
,

ω
F,(k)
reg = u(k)

(
1−

(
(u(k))

2
+ε21

ε2

)q/2−1
)
,

(11)
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where all operations are element-wise. We obtain the fixed quadratic tangent
majorant

QF (x,x(k)) = 1
2

(∥∥Ax− bδ
∥∥2

2
− 2

〈
ω
F,(k)
fid , Ax

〉)
+ µ

2 ε
q−p

(
‖Lx‖22 − 2

〈
ω
F,(k)
reg , Lx

〉)
+ c,

of Jε at x(k). Here 〈·, ·〉 denotes the standard inner product and the constant
c ∈ R is independent of x. The functional QF (x,x(k)) satisfies the properties
(7)-(10) with QA(x,x(k)) replaced by QF (x,x(k)); see [20] for details.

Minimization step. We describe how to minimize QA and QF when the matrix
A ∈ Rm×n is large. To reduce the computational effort, we seek to determine
approximate solutions in solution subspaces Vk of dimension k̂, with k ≤ k̂ �
min{m,n}. Let the columns of the matrix Vk ∈ Rn×k̂ form an orthonormal
basis for Vk. We determine approximations of the minima of QA and QF of
the form

x(k+1) = Vky
(k+1), (12)

where y(k+1) ∈ Rk̂.
Let us first consider the adaptive case. We would like to solve

min
x∈Vk

1

2

∥∥∥∥(W (k)
fid

)1/2

(Ax− bδ)

∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

Lx

∥∥∥∥2

2

(13)

and denote the solution by x(k+1). This is equivalent to computing the solution
y(k+1) of

min
y∈Rk̂

1

2

∥∥∥∥(W (k)
fid

)1/2

(AVky − bδ)

∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

LVky

∥∥∥∥2

2

. (14)

Introduce the economic QR factorizations(
W

(k)
fid

)1/2

AVk = QARA, QA ∈ Rm×k̂, RA ∈ Rk̂×k̂,(
W

(k)
reg

)1/2

LVk = QLRL, QL ∈ Rs×k̂, RL ∈ Rk̂×k̂,
(15)

and compute

y(k+1) = arg min
y∈Rk̂

1

2

∥∥∥∥RAy −QTA
(
W

(k)
fid

)1/2

bδ
∥∥∥∥2

2

+
µ

2
‖RLy‖22 ,

where the superscript T denotes transposition. Assuming that

N
((

W
(k)
fid

)1/2

AVk

)
∩N

((
W

(k)
fid

)1/2

LVk

)
= {0},

which typically holds in applications of interest to us, the solution y(k+1) is
unique. The approximate minimizer of QA(x,x(k)) then is given by (12).
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We now enlarge the solution subspace Vk by including the normalized resid-
ual of the normal equations associated with (13). Thus, let

r(k+1) = ATW
(k)
fid

(
Ax(k+1) − bδ

)
+ µLTW (k)

regLx(k+1).

Then the columns of the matrix

Vk+1 =
[
Vk, r

(k+1)/‖r(k+1)‖2
]

furnish an orthonormal basis for the new solution subspace Vk+1. We remark
that the vector r(k+1) is proportional to the gradient of QA(x,x(k)) restricted
to Vk at x = x(k+1). We refer to the solution subspace Vk+1 = range(Vk+1) as
a generalized Krylov subspace. Note that the computation of r(k+1) requires
only one matrix-vector product with AT and LT , since one can use the QR
factorizations (15) and the relation (12) to avoid forming matrix-vector prod-
ucts with the matrices A and L. Moreover, we store and update the “skinny”
matrices AVk and LVk at each iteration to reduce the computational cost. The
initial subspace V1 is usually chosen to contain a few selected vectors and to
be of small dimension. A common choice is V1 = span{ATbδ}. Then k̂ = k.
We will use this choice in the computed examples reported in Section 4.

Summarizing, each iteration of the adaptive approach requires one matrix-
vector product evaluation with each one of the matrices A, L, AT , and LT , as
well as the computation of economic QR factorizations of two tall and skinny
matrices, whose column numbers increase by one with each iteration. The
latter computations can be quite demanding if the matrices A and L are large
and many iterations are required. The algorithm requires storage of the three
matrices Vk, AVk, and LVk. In addition, storage of some representations of the
matrices A and L is needed.

We turn to the fixed approach. The weight vectors are now given by (11),
and we would like to solve the minimization problem

min
x∈Vk

1

2

(∥∥Ax− bδ
∥∥2

2
− 2

〈
ω
F,(k)
fid , Ax

〉)
+
η

2

(
‖Lx‖22 − 2

〈
ωF,(k)

reg , Lx
〉)

(16)

for x(k+1), where η = µεq−p. This problem can be expressed as

min
y∈Rk̂

∥∥∥AVky − bδ − ωF,(k)
fid

∥∥∥2

2
+ η

∥∥∥LVky − ωF,(k)
reg

∥∥∥2

2
. (17)

The solution y(k+1) of (17) yields the solution x(k+1) = Vky
(k+1) of (16).

Introduce the economic QR factorizations

AVk = QARA, QA ∈ Rm×k̂, RA ∈ Rk̂×k̂,

LVk = QLRL, QL ∈ Rs×k̂, RL ∈ Rk̂×k̂.

Substituting these factorizations into (17) yields

y(k+1) = arg min
y∈Rk̂

∥∥∥∥∥
[
RA√
ηRL

]
y −

[
QTA

(
bδ + ω

F,(k)
fid

)
√
ηQTLω

F,(k)
reg

]∥∥∥∥∥
2

2

.
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Once we have computed y(k+1) and x(k+1), we enlarge the solution subspace
by including the residual

r(k+1) = AT
(
Ax(k+1) −

(
bδ + ω

F,(k)
fid

))
+ ηLT

(
Lx(k+1) − ωF,(k)

reg

)
of the normal equations associated with (16). Thus, let vnew = r(k+1)/

∥∥r(k+1)
∥∥

2
.

Then the columns of the matrix Vk+1 = [Vk,vnew] form an orthonormal basis
for the solution subspace Vk+1. We remark that the residual is proportional
to the gradient of QF (x,x(k)) restricted to Vk at x = x(k+1).

Note that, differently from (14), the least-squares problem (17) does not
have a diagonal scaling matrix. We therefore may compute the QR factor-
izations of AVk+1 and LVk+1 by updating the QR factorizations of AVk and
LVk, respectively. This reduces the computational work and leads to that each
new iteration with the fixed approach is cheaper to carry out than with the
adaptive approach. Updating formulas for the QR factorization can be found
in [11,20].

Each iteration with the fixed approach requires one matrix-vector product
evaluation with each one of the matrices A, L, AT , and LT , similarly as for
the adaptive approach. Moreover the memory requirements of the fixed and
adaptive approaches are essentially the same.

The memory requirement for both the adaptive and fixed approaches out-
lined grows linearly with the number of iterations. It follows that when the
matrix A is large, the memory requirement may be substantial when many
iterations are required to satisfy the stopping criterion. This could be a dif-
ficulty on computers with fairly little fast memory. Moreover, the arithmetic
cost of computing QR factorizations in the adaptive approach and for updat-
ing QR factorizations in the fixed approach grows quadratically and linearly,
respectively, with the number of iterations. Therefore, curtailing the growth of
the dimension of the solution subspace used reduces both the memory require-
ment and the arithmetic work per iteration. The following section discusses
an approach to achieve this.

3 Restarted generalized Krylov subspace methods

Assume that only a very limited amount of fast computer memory is available.
Then it may be expedient to bound the dimension of the solution subspaces
used by the MM methods by restarting the algorithms. Let Kmax denote the
maximal permitted dimension of the solution subspaces and assume that for
a certain k, it holds that Vk ∈ Rn×Kmax . To avoid that the dimension of the
solution subspaces increase further, we restart the MM algorithms. In detail,
let x̃ = x(k). We would like to determine x(k+1) as

x(k+1) = Ṽk+1y
(k+1),

where Ṽk+1 ∈ Rn×k̃ has orthonormal columns with k̃ < Kmax and x̃ ∈
range(Ṽk+1). In the computed examples reported in Section 4, we let k̃ = 1,
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i.e., Ṽk+1 = x̃/ ‖x̃‖2. To achieve this, we modify the adaptive and fixed MM
algorithms as described by Algorithms 1 and 2.

Algorithm 1: A-MM-GKS-Restarted

1 Let A ∈ Rm×n, bδ ∈ Rm. Let µ > 0 be a fixed parameter and L ∈ Rs×n be such
that N (A) ∩N (L) = {0}. Fix 0 < p, q ≤ 2, a maximum number of iterations K, a
maximum dimension Kmax, a smoothing parameter ε > 0, and a tolerance τ > 0.
Let x(0) be an initial guess for x†;

2 V0 = ATbδ/
∥∥ATbδ∥∥

2
;

3 Compute and store AV0 and LV0;

4 v(0) = Ax(0) − bδ;

5 u(0) = Lx(0);
6 for k = 0, 1, . . . ,K do

7 ω
A,(k)
fid =

((
v(k)

)2
+ ε2

)p/2−1
;

8 ω
A,(k)
reg =

((
u(k)

)2
+ ε2

)q/2−1
;

9 W
(k)
fid = diag

(
ω
A,(k)
fid

)
;

10 W
(k)
reg = diag

(
ω
A,(k)
reg

)
;

11 Compute the QR factorizations


(
W

(k)
fid

)1/2
AVk = QARA(

W
(k)
reg

)1/2
LVk = QLRL

;

12 y(k+1) = arg miny
1
2

∥∥∥∥RAy −QTA (W (k)
fid

)1/2
bδ
∥∥∥∥2

2

+ µ
2
‖RLy‖22;

13 if k > 1 &
∥∥y(k+1) − y(k)

∥∥
2
< τ

∥∥y(k)
∥∥

2
then

14 break;
15 end
16 if k + 1 ≡ 0 mod Kmax then

17 v(k+1) = AVky
(k+1) − bδ;

18 u(k+1) = LVky
(k+1);

19 x̃ = Vky
(k+1);

20 Set Vk+1 = x̃/ ‖x̃‖2;
21 Compute and store AVk+1;
22 Compute and store LVk+1;

23 else

24 r(k+1) = ATW
(k)
fid

(
AVky

(k+1) − bδ
)

+ µLTW
(k)
reg

(
LVky

(k+1)
)
;

25 vnew = r(k+1)/
∥∥r(k+1)

∥∥
2
;

26 Vk+1 = [Vk,vnew];
27 AVk+1 = [AVk, Avnew];
28 LVk+1 = [LVk, Lvnew];

29 v(k+1) = AVky
(k+1) − bδ;

30 u(k+1) = LVky
(k+1);

31 end

32 end

We turn to convergence properties of Algorithms 1 and 2. Since the analysis
of the two algorithms is identical and does not depend on the construction of
the quadratic tangent majorant, we simply denote this functional by Q(x,xk).
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Algorithm 2: F-MM-GKS-Restarted

1 Let A ∈ Rm×n, bδ ∈ Rm. Let µ > 0 be a fixed parameter and L ∈ Rs×n be such
that N (A) ∩N (L) = {0}. Fix 0 < p, q ≤ 2, a maximum number of iterations K, a
maximum dimension Kmax, a smoothing parameter ε > 0, and a tolerance τ > 0.
Let x(0) be an initial guess for x†;

2 V0 = ATbδ/
∥∥ATbδ∥∥

2
;

3 Compute and store AV0 and LV0;

4 Compute the QR factorizations

{
AV0 = QARA
LV0 = QLRL

;

5 v(0) = Ax(0) − bδ;

6 u(0) = Lx(0);

7 η = µεq−2

εp−2 ;

8 for k = 0, 1, . . . ,K do

9 ω
F,(k)
fid = v(k)

(
1−

(
(v(k))2+ε2

ε2

)p/2−1
)

;

10 ω
F,(k)
reg = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)

;

11 y(k+1) = arg miny

∥∥∥AVky − bδ − ω
F,(k)
fid

∥∥∥2

2
+ η

∥∥∥LVky − ω
F,(k)
reg

∥∥∥2

2
;

12 if k > 1 &
∥∥y(k+1) − y(k)

∥∥
2
< τ

∥∥y(k)
∥∥

2
then

13 break;
14 end
15 if k + 1 ≡ 0 mod Kmax then

16 x̃ = Vky
(k+1);

17 v(k+1) = AVky
(k+1) − bδ;

18 u(k+1) = LVky
(k+1);

19 Vk+1 = x̃/ ‖x̃‖2;
20 Compute and store AVk+1;
21 Compute and store LVk+1;

22 Compute the QR factorizations

{
AVk+1 = QARA
LVk+1 = QLRL

;

23 else

24 r(k+1) = AT
(
AVky

(k+1) − bδ − ω
F,(k)
fid

)
+ ηLT

(
LVky

(k+1) − ω
F,(k)
reg

)
;

25 vnew = r(k+1)/
∥∥r(k+1)

∥∥
2
;

26 Vk+1 = [Vk,vnew];
27 AVk+1 = [AVk, Avnew];
28 LVk+1 = [LVk, Lvnew];

29 v(k+1) = AVky
(k+1) − bδ;

30 u(k+1) = LVky
(k+1);

31 Update QA, QL, RA, and RL as described in [11,20];

32 end

33 end

We introduce some notation that will be used in the following. Let

Vk = span
{
v1, . . . ,vk̂

}
, Vk = [v1, . . . ,vk̂],

and define the indicator function ιk of Vk, i.e.,

ιk(x) =

{
0, x ∈ Vk,

+∞, otherwise.
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We can write

x(k+1) = arg min
x∈Rn

(
Q(x,x(k)) + ιk(x)

)
. (18)

Note that, by construction, x(k) ∈ Vk−1∩Vk for all k = 1, 2, . . . , since at each
iteration we either expand the solution subspace, or restart it including the
previous iterate in it.

We first show that the sequence
{
Jε
(
x(k)

)}
is monotonically decreasing.

Proposition 1 Let x(k), k = 1, 2, . . . , denote the iterates generated by either
Algorithm 1 or Algorithm 2. Assume that condition (3) holds. Then

Jε
(
x(k+1)

)
≤ Jε

(
x(k)

)
.

Proof Recall that x(k) ∈ Vk−1 ∩ Vk for all k = 1, 2, . . . and, therefore,
ιk
(
x(k)

)
= ιk

(
x(k+1)

)
= 0. We obtain

Jε
(
x(k+1)

)
= Jε

(
x(k+1)

)
+ ιk

(
x(k+1)

)
(a)

≤ Q
(
x(k+1),x(k)

)
+ ιk

(
x(k+1)

)
(b)

≤ Q
(
x(k),x(k)

)
+ ιk

(
x(k)

)
= Q

(
x(k),x(k)

)
= Jε

(
x(k)

)
,

where (a) follows from the fact that Q(x,x(k)) is a majorant of Jε(x) and (b)
follows from (18).

Remark 1 It is immediate to see that Proposition 1 carries over to the non-
restarted methods, A-MM-GKS and F-MM-GKS, described in [20]. It is shown
in [20] that

Jε
(
x(k+1)

)
≤ Jε

(
x(k)

)
for k large enough, i.e., for k such that Vk = Rn, but no results are provided for
small values of k. Proposition 1 shows that Jε

(
x(k)

)
decreases monotonically

for all k in the A-MM-GKS and F-MM-GKS methods and, thus, complements
the analysis presented in [20].

We are in the position to show our main result.

Theorem 1 Let x(k), k = 1, 2, . . . , denote the iterates generated by either
Algorithm 1 or Algorithm 2. Assume that condition (3) holds. Then there
exists a convergent subsequence {x(kj)}.

Proof By Proposition 1 we have that, for all k,

Jε
(
x(k)

)
≤ Jε

(
x(0)

)
=: C.
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Since Φs,ε(t) ≤ |t|s, it follows that∥∥∥Ax(k) − bδ
∥∥∥p
p
≤

m∑
j=1

Φp,ε

((
Ax(k) − bδ

)
j

)
≤ pJε

(
x(k)

)
≤ pC

and ∥∥∥Lx(k)
∥∥∥q
q
≤

s∑
j=1

Φq,ε

((
Lx(k)

)
j

)
≤ q

µ
Jε
(
x(k)

)
≤ qC

µ
.

It now follows from [6, Lemma 1] that there is a constant C̃ ∈ R such that,
for all k, ∥∥∥Ax(k) − bδ

∥∥∥2

2
+
∥∥∥Lx(k)

∥∥∥2

2
≤ C̃.

Since we assumed condition (3) to hold, there is a constant Ĉ such that∥∥∥x(k)
∥∥∥2

2
≤ Ĉ for all k = 1, 2, . . . .

Because the sequence {x(k)} is uniformly bounded, it has a convergent subse-
quence

{
x(kj)

}
.

In extensive numerical experiments, we have never observed the need to
choose a convergence subsequence. Our experience suggests that the iterates
x(k), k = 1, 2, . . . , generally are convergent.

4 Numerical examples

This section presents a few numerical examples that illustrate the performance
of the limited memory algorithms described and compares these algorithms to
their standard counterparts presented in [20]. The computed examples show
the algorithms of this paper to determine approximate solutions of similar
quality as the standard algorithms in [20], but to require significantly less
computer memory and less execution time. The regularization matrix L is
chosen to be a discretization of the gradient. This is justified by the fact
that many natural images have a sparse gradient; [24] for discussions of this
regularization approach.

It is essential that the regularization parameter µ be chosen properly for
the accurate approximation of the desired approximate solution x∗ of (1). A
comparison of several techniques for determining µ has recently been presented
in [7]. In this paper, we consider two strategies for determining µ: for Gaussian
noise we apply the Discrepancy Principle (DP) [8]; for other kinds of noise we
use Generalized Cross Validation (GCV) [9]. The DP requires that a fairly
accurate estimate of the norm of the noise be available, while application of
GCV does not require this information. However, the DP allows for a theo-
retical analysis of the regularization properties of the method, while GCV is a
so-called heuristic method that may fail for certain problems; see [22,23,26] for
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discussions on heuristic methods. Finally, we would like to mention that the
parameter µ also can be determined by Cross Validation (CV) and Modified
Cross Validation (MCV) as described in [8]. We will not illustrate the use of
the latter approaches here, since the results easily can be inferred from the
ones presented. In fact, the CV and MCV methods apply the MM methods
several times with different subvectors of bδ and submatrices of A, and com-
pare the computed results to determine a suitable value of the regularization
parameter µ. Therefore, the memory usage of the CV and MCV methods is
the same as when applying MM methods for a fixed parameter µ.

For our numerical experiments, we consider space-invariant image deblur-
ring problems that are modeled by a Fredholm integral equation of the first
kind. Thus, the problems solved are deconvolution problems in two space-
dimensions. The kernel of the integral often is referred to as a Point Spread
Function (PSF); see, e.g., [19] for details on image deblurring. The matrix
A in (1) is a discretization of the integral equation and typically is very ill-
conditioned; it may be numerically rank-deficient.

In the examples we assume that an exact gray scale image is available,
whose pixel values are represented by the vector xexact. The entries of this
vector are integers in the interval [0, 255]. A noise vector η with specified
properties, and the vector bδ which represents a blur- and noise-contaminated
image, is generated by (1) with x replaced by xexact.

We measure the quality of the computed approximations x∗ of the image
xexact by the Peak Signal to Noise Ratio (PSNR) defined by

PSNR(x∗) = 20 log10

(
255
√
n

‖x∗ − xexact‖2

)
.

Here we assume that the entries of the vectors that represent images are in
the interval [0, 255].

We set the maximum number of iteration to 200, the tolerance τ in Algo-
rithms 1 and 2 to τ = 10−4, and the smoothing parameter ε in (5) to 1; see [8]
for comments on the choice of ε for image restoration problems. These param-
eter values also are used for the “standard” implementations described in [20].
For all methods, we use the initializations x(0) = ATbδ and V0 = x(0)/

∥∥x(0)
∥∥

2
.

Finally, we set Kmax = 30 in the restarted methods.
All the numerical experiments reported were carried out in MATLAB

2021b running on a laptop computer with an AMD Ryzen 7 5800HS CPU
and 16GB of RAM.

Satellite. This example considers the restoration of a blurred and noise-conta-
minated version of the Satellite image in Fig. 1(a). We blur this image with out-
of-focus blur; the associated PSF is depicted in Fig. 1(b). Then we add white
Gaussian noise such that ‖η‖2 = 0.02 ‖b‖2, i.e., we add 2% white Gaussian
noise, to obtain the data vector bδ shown in Fig. 1(c). The boundaries are
cropped of the image to simulate real data. Since the image is astronomical,
we impose zero Dirichlet boundary conditions; see, e.g., [12,19] for discussions
on boundary conditions.
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We apply the DP to determine the regularization parameter. Following [8],
we use the DP with the fixed approach. To ensure that it is possible to satisfy
the DP in the first iterations of the MM method we define V0 to be the basis
of the Krylov subspace

K20(ATA,ATbδ) = span
{
ATbδ, (ATA)ATbδ, . . . , , (ATA)19ATbδ

}
obtained with the Golub-Kahan algorithm; see, e.g., [17] for more details.
Therefore, at iteration k the dimension of the GKS will be k + 20.

Note that we can apply GCV only if, at each iteration, the `2-`2 problem
to be solved is of the form

arg min
y

{
1

2

∥∥∥Ây − b̂
∥∥∥2

2
+
γ

2

∥∥∥L̂y
∥∥∥2

2

}
for some matrices Â and L̂. Therefore, we cannot apply GCV with the fixed
approach; see [9].

Computed results are reported in Table 2. We observe that the limited
memory approach provides very similar results as the standard approach from
[20] in terms of the quality of the computed restoration both when the regular-
ization parameter is hand-tuned or chosen with GCV or the DP. However, the
restarted methods require significantly less computation time and computer
memory.

When the regularization parameter is fixed, the CPU times for the fixed
MM method when using the limited memory algorithm and the standard one
are almost the same, even though the dimension of the solution subspace is
much smaller for the limited memory algorithm. This is due to the fact that
at each iteration, the QR factorizations of AVk and LVk are updated and do
not have to be recomputed from scratch. Therefore, the cost of the two al-
gorithms is about the same. However, when the regularization parameter is
determined by the DP, we can observe that the computational cost of the stan-
dard approach from [20] is much higher than for Algorithm 2. We compute
the regularization parameter for the latter approach by first updating the eco-
nomical QR factorizations of AVk and LVk, and then calculate the GSVD of
the pair of upper triangular matrices so obtained. This is a fairly inexpensive
way to evaluate the GSVD of the matrix pair {AVk+1, LVk+1}. Nevertheless,
Table 2 shows the limited memory approach to be faster because of the re-
duced dimension of the solution subspace used. We remark that the GCV
method cannot be used to determine the regularization parameter in the pres-
ence of impulse noise without preprocessing; see [9] for details. Fig. 2 displays
computed restorations.

Finally, Fig. 3 displays the number of bytes used by MATLAB, versus the
iteration number, for the standard and restarted approaches to the adaptive
and fixed MM methods. We observe that the restarted approaches reduce
the memory requirement significantly for both the adaptive and fixed MM
methods. As expected, the curves for the restarted methods oscillate and are
bounded from above.
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Table 1: Role of τ in the Satellite example. We report the PSNR, stopping
iteration, and CPU time for A-MM-GKS with GCV and F-MM-GKS with
DP for different values of τ in the stopping criterion.

τ A-MM-GKS (GCV) F-MM-GKS (DP)
PSNR Iter. CPU time PSNR Iter. CPU time

10−4 29.661 200 491.81 31.819 200 83.755
5 · 10−4 29.661 200 496.23 31.513 101 27.025
10−3 30.211 120 149.298 30.927 52 11.5401
5 · 10−3 28.711 24 6.130 28.345 2 1.6194
10−2 22.359 2 0.2754 28.345 2 1.5937

(a) (b) (c)

Fig. 1: Satellite test case: (a) True image (490× 490 pixels), (b) PSF (27× 27
pixels), (c) Blurred and noisy image with 2% of white Gaussian noise (490×490
pixels).

We now briefly discuss the role of τ in the stopping criterion, and consider
the A-MM-GKS with GCV and F-MM-GKS with DP for this analysis. The
results for the other methods are similar and we therefore do not report them
here. We consider five values of τ , namely τ ∈ {10−4, 5 · 10−4, 10−3, 5 ·
10−3, 10−2}. For each value of τ , we run the two algorithms and report in
Table 1 the obtained PSNR, stopping iteration, and CPU time. We can observe
that, as expected, as τ increases the number of iterations required to satisfy
the stopping criterion decreases. However, we note that, in most cases, the
PSNR decreases significantly. Vast computational experience suggests that
this is usually the case for the MM method and that a value of τ larger than
10−4 usually stops the iterations too soon, and results in poor reconstructions
of the desired solution.

Cameraman. We consider the restoration of a blur- and noise-contaminated
version of the exact image shown in panel (a) of Fig. 4. We blur this image
using the PSF shown in panel (b); the blur simulates hand-shaking. Then we
add 25% of impulse noise (see below) to obtain the blurred and noisy image
depicted in panel (c). The boundaries are cropped to simulate realistic data.
Since the image is generic, we impose reflexive boundary conditions. Due to the
fact that the image that we would like to restore is contaminated by impulse
noise, we cannot use the DP.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Satellite test case reconstructions: (a) A-MM-GKS (hand-tuned param-
eter), (b) A-MM-GKS (GCV parameter), (c) A-MM-GKS Restarted (hand-
tuned parameter), (d) A-MM-GKS Restarted (GCV parameter), (e) F-MM-
GKS (hand-tuned parameter), (f) F-MM-GKS (DP parameter), (g) F-MM-
GKS Restarted (hand-tuned parameter), (h) F-MM-GKS Restarted (DP pa-
rameter).

0 20 40 60 80 100 120 140 160 180 200
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7
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8
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9
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10

Fig. 3: Satellite test case memory usage plots. The horizontal axis reports
the iteration number, and the vertical axis the number of bytes used by the
algorithms (hand-tuned parameters). The solid lines depicts the results of the
standard method, the dashed line the limited memory approach, the gray lines
are refereed to the adaptive majorant, while the black ones are for the fixed
majorant.
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Table 2 reports results for this example. When the parameter µ is hand-
tuned, the quality of the restorations determined by the MM methods and
the restarted methods are high and close. The adaptive limited memory MM
method combined with GCV is fast, but determines a slightly worse restoration
than its “standard” counterpart. Nevertheless, the computed approximation
is still very accurate. For the adaptive approach the restarted algorithms are
significantly faster than the A-MM-GKS method. However, for the fixed ap-
proach, as we discussed above, the computational times are comparable. In
any case, the restarted F-MM-GKS method is still computationally interest-
ing as it requires less memory. Figure 5 displays the computed restorations;
the PSNR-values reported in Table 2 are in agreement with visual perception.

To motivate our choices of p and q, we plot in Fig. 6 the relative restoration
error

RRE(x∗) =
‖x∗ − xexact‖2
‖xexact‖2

obtained for several choices of p and q with the A-MM-GKS restarted method,
where µ was selected with the GCV. We can observe that a clear minimum
of the RRE can be found when both p and q are smaller than 1. Moreover,
we note that in general the RRE decreases with q for fixed p < 1. These
observations are consistent with results presented in [3, 8, 20].

We now would like to discuss how the choices of p and q influence the
computational cost of the algorithm. To do so we fix µ = 1 and run the
A-MM-GKS-Restarted and F-MM-GKS-Restarted methods for several values
of p and q, and record the number of iterations required to reach numerical
convergence. We recall that we stop the iterations as soon as∥∥x(k) − x(k+1)

∥∥
2∥∥x(k)

∥∥
2

≤ τ,

where we set τ = 10−4 in our experiments. We denote the stopping index by
kstop. Fig. 7 displays the computed results. We can see that both methods
behave similarly, although, as it was pointed out in [20], the A-MM method
usually requires fewer iterations to converge. The figure shows both methods
to require the fewest number of iterations to reach numerical convergence
when p = q = 2. When either p or q are decreased, the number of iterations
required generally increases. Moreover, for the fixed approach, we can observe
that when both p and q are small enough, kstop is smaller than when one of
the parameters p or q is close to 2 and the other one is close to 0. This may
be due to the fact that the fixed approach for small values of p or q converges
very slowly and, therefore, the stopping criterion may give a kstop-value that
is too small. This suggests that the value of τ can be reduced when p or q
are close to 0. We would like to point out, however, that in our experience,
even if the iterations are terminated too early, the quality of the computed
reconstructions usually is satisfactory. The same behavior can be observed, to
a smaller extent, in the adaptive case.
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(a) (b) (c)

Fig. 4: Cameraman test case: (a) True image (238×238 pixels), (b) PSF (17×17
pixels), (c) Blurred and noisy image with 25% of impulse noise (238 × 238
pixels).

(a) (b) (c)

(d) (e) (f)

Fig. 5: Cameraman test case reconstructions: (a) A-MM-GKS (hand-tuned
parameter), (b) A-MM-GKS (GCV parameter), (c) A-MM-GKS Restarted
(hand-tuned parameter), (d) A-MM-GKS Restarted (GCV parameter), (e)
F-MM-GKS (hand-tuned parameter), (f) F-MM-GKS Restarted (hand-tuned
parameter).

Peppers. Our last example is concerned with the restoration of a contaminated
version of the peppers image in Fig. 8(a). We blur this image by motion blur
defined by the PSF depicted in Fig. 8(b), add a mixture of 1% white Gaussian
noise and 10% impulse noise, and crop the boundaries. This yields the blur-
and noise-contaminated image shown in Fig. 8(c), which we would like to
restore. Since the image is generic, we assume reflexive boundary conditions.
Similarly as above, we cannot apply the DP to determine the regularization
parameter, because the noise contains impulse noise. We therefore use GCV
to determine a suitable value of this parameter.
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Fig. 6: Cameraman test case: RRE obtained with A-MM-GKS Restarted and
µ determined by the GCV for several values of p and q.

(a) (b)

Fig. 7: Cameraman test case: Number of iterations required to reach conver-
gence with µ = 1 for several values of p and q: (a) A-MM-GKS-Restarted, (b)
F-MM-GKS-Restarted.

Table 2 reports results for the different restoration methods. All methods
considered, except for the A-MM-GKS method paired with GCV, produce
restorations of high quality. The CPU time for the standard methods are deter-
mined by the fact that the maximum number of allowed iterations is reached.
Note that the restarted approaches of the present paper require significantly
less computer memory than the corresponding standard approaches from [20].
The restarted adaptive MM method with the regularization parameter deter-
mined by GCV or hand-tuning yields restorations of high quality much faster
than the corresponding standard method. The accuracy of the computed so-
lutions is confirmed by visual inspection of the computed restorations shown
in Fig. 9.

We would like to point out that since the GCV method is a so-called
heuristic method for determining the regularization parameter, it may fail
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(a) (b) (c)

Fig. 8: Peppers test case: (a) True image (500× 500 pixels), (b) PSF (11× 11
pixels), (c) Blurred and noisy image with 10% of impulse noise and 1% of
white Gaussian noise (500× 500 pixels).

(a) (b) (c)

(d) (e) (f)

Fig. 9: Peppers test case reconstructions: (a) A-MM-GKS (hand-tuned param-
eter), (b) A-MM-GKS (GCV parameter), (c) A-MM-GKS Restarted (hand-
tuned parameter), (d) A-MM-GKS Restarted (GCV parameter), (e) F-MM-
GKS (hand-tuned parameter), (f) F-MM-GKS Restarted (hand-tuned param-
eter).

for some problems; see [13,22] for discussions. However, typically the method
performs well.

Comparison with FISTA. We now compare the A-MM-GKS and F-MM-GKS
methods to FISTA [1], and consider a Computer Tomography (CT) problem.
The matrix A is a discretization of the Radon transform. An unknown two-
dimensional object, formed of different materials with different attenuation
coefficients, is shined on with parallel X-rays at different angles. The intensi-
ties of the X-rays are measured after traveling through the a phantom. The
difference between the intensity at the source and the measured one is the sum
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Table 2: Results for all the computed examples. For each example and consid-
ered method we report the obtained PSNR-values, the CPU time (in seconds)
required for the computations, and the dimension of the search subspaces con-
sidered (for the restarted method we report the maximum dimension allowed
and we write ≤ Kmax).

Example Method Parameter PSNR CPU time Dim. of subspace

Satellite

A-MM-GKS
Hand-tuned 31.070 500.00 200
GCV 29.661 497.42 200

A-MM-GKS Rest.
Hand-tuned 31.395 70.647 ≤ 30
GCV 30.197 70.67 ≤ 30

F-MM-GKS
Hand-tuned 32.428 18.19 112
DP 31.819 89.94 220

F-MM-GKS Rest.
Hand-tuned 33.278 25.85 ≤ 30
DP 31.057 14.01 ≤ 30

Cameraman

A-MM-GKS
Hand-tuned 27.208 103.93 200
GCV 27.174 92.36 200

A-MM-GKS Rest.
Hand-tuned 27.446 13.38 ≤ 30
GCV 25.491 18.182 ≤ 30

F-MM-GKS Hand-tuned 26.433 17.85 200
F-MM-GKS Rest. Hand-tuned 26.270 13.38 ≤ 30

Peppers

A-MM-GKS
Hand-tuned 29.301 535.97 200
GCV 20.863 528.17 200

A-MM-GKS Rest.
Hand-tuned 29.420 57.73 ≤ 30
GCV 24.95 74.64 ≤ 30

F-MM-GKS Hand-tuned 30.198 41.03 200
F-MM-GKS Rest. Hand-tuned 30.113 25.48 ≤ 30

of the attenuation coefficients along each X-ray; see, e.g., [25] for more details
on CT. To construct the operator A, we use the Matlab toolbox IR Tools [15],
using 90 equispaced angles between 0 and π and shining 181 rays per angle. We
assume the noise affecting the data to be white and Gaussian and the phantom
to be sparse. We add 0.05% of white Gaussian noise. Therefore, in (2) we set
p = 2 and L = I, where I denotes the identity matrix of appropriate size. If
we set q = 1, then we can apply FISTA to solve the minimization problem.
Figure 10 dispalys the phantom and the sinogram.

Since FISTA does not provide a way to determine the regularization pa-
rameter, we compute the solution for 10 logaritmicaly spaced values of µ be-
tween 10−3 and 1. Since we observed that FISTA rarely reached convergence
within 200 iterations, we set the maximum number of iterations for FISTA to
2000. FISTA is compared with both A-MM-GKS Restarted and F-MM-GKS
Restarted for the same fixed values of µ, and we also consider the DP and
GCV criteria. Note that, since the solution in this case is scaled to be between
0 and 1, we fix ε = 10−2 in the MM methods.

Our results are reported in Table 3. We can observe that in terms of ac-
curacy, the methods perform similarly, which is to be expected since they are
minimizing the same functional. However, we can see that the MM methods
converge in fewer iterations than FISTA, especially with the fixed approach.
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(a) (b)

Fig. 10: Comparison with FISTA: (a) Phantom (128×128 pixels), (b) Sinogram
with 0.05% of white Gaussian noise (181× 90 pixels).

(a) (b) (c)

Fig. 11: Reconstructions for the comparison with FISTA: (a) FISTA (optimal
parameter), (b) A-MM-GKS Restarted (GCV parameter), (c) F-MM-GKS
Restarted (DP parameter).

Moreover, generally the MM methods yield more accurate reconstructions than
FISTA. The adaptive approach requires roughly 5 times the CPU time than
FISTA, while the fixed approach is comparable in term of overall computa-
tional cost. This seems to suggest that FISTA is more convenient to use than
the MM methods, however, firstly the MM methods allow p 6= 1 and can eas-
ily include a regularization matrix L 6= I. Moreover, if one needs to select the
regularization parameter µ, then this requires to run FISTA several times and
then apply some a-posteriori criterion to determine µ. The MM methods allow
inexpensive determination of µ during the iterations and require just one run
of the algorithm. Therefore, if we compare a single run of either A-MM-GKS
Restarted with the GCV or F-MM-GKS Restarted with the DP to FISTA,
then we can observe that it is computationally cheaper to run either one of
the MM methods once than running FISTA several times with different val-
ues of the regularization parameter. We would like to mention that FISTA
requires a fairly accurate estimate of ‖A‖2. This is done by the normest com-
mand in Matlab and we do not include this in the CPU time for FISTA, as we
assume that this is performed off line. Finally, we report some reconstructions
in Fig. 11. Visual inspection of these computed solutions confirms that the
MM methods yield more accurate reconstructions than FISTA.
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Table 3: Comparison with FISTA. For each considered method we report the
obtained PSNR-values,the number of iterations performed, and the CPU time
(in seconds) required for the computations. We consider 10 logarithmicaly
spaced values of µ between 10−3 and 1 and the DP and GCV criteria for the
determination of the regularization parameter.

Param. FISTA A-MM-GKS Rest. F-MM-GKS Rest.
PSNR Iter. CPU time PSNR Iter. CPU time PSNR Iter. CPU time

µ1 22.529 2000 3.998 26.499 200 10.145 26.827 151 6.946
µ2 23.643 2000 4.088 26.675 200 10.110 27.093 91 4.280
µ3 24.640 2000 4.023 27.052 200 10.163 27.051 61 2.873
µ4 25.341 2000 4.034 27.837 200 10.170 27.219 61 2.841
µ5 26.745 1749 3.529 29.371 200 10.297 27.536 61 2.873
µ6 28.283 1458 2.996 31.593 200 10.109 27.716 82 3.827
µ7 29.287 1274 2.558 33.323 200 10.126 27.513 92 4.268
µ8 30.048 1105 2.265 34.085 200 10.228 27.765 49 2.324
µ9 30.176 1030 2.098 34.053 200 10.212 29.118 36 1.736
µ10 29.283 1072 2.171 33.501 181 9.362 30.354 32 1.544
DP – – – – – – 34.367 61 3.269
GCV – – – 34.688 200 10.331 – – –

5 Conclusions

This paper describes modifications of the Majorization-Minimization algo-
rithms proposed in [20] for the solution of minimization problems of the form
(2). The algorithms in [20] may require many iterations to satisfy a user-
supplied stopping criterion. Since the dimension of the solution subspace of
these algorithms grows linearly with the number of iterations, the storage
requirement of these algorithms may be substantial for large-scale problems.
Moreover, the computational effort required increases linearly or quadratically
with the number of iterations. This can make the algorithms expensive to use
in terms of CPU time. This paper describes an approach to reduce the memory
requirement and the computational effort required by the algorithms in [20].
Our approach restarts the algorithm with a new solution subspace every Kmax

iterations. This secures that the dimension of the solution subspace is bounded
independently of the number of iterations carried out. Numerical examples il-
lustrate that Algorithms 1 and 2 are able to produce high-quality restorations,
and they require less memory and computational time than their counterparts
in [20]. A new convergence proof, that holds for the algorithms of the present
paper, and improves the converge proof in [20] also is supplied.
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