
Citation: Fenu, C.; Reichel, L.;

Rodriguez, G. SoftNet: A package for

the analysis of complex networks.

Algorithms 2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Algorithms for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

SoftNet: A package for the analysis of complex networks
Caterina Fenu 1,† , Lothar Reichel 2,† and Giuseppe Rodriguez 1,,†,*

1 Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale, 72, 09124 Cagliari,
Italy; kate.fenu@unica.it, rodriguez@unica.it

2 Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA; reichel@math.kent.edu
* Correspondence: rodriguez@unica.it; Tel.: +39-070-675-5617 (G.R.)
† These authors contributed equally to this work.

Abstract: Identifying the most important nodes according to specific centrality indices is an important 1

issue in network analysis. Node metrics based on the computation of functions of the adjacency 2

matrix of a network have been defined by Estrada and his collaborators in various papers. This 3

paper describes a MATLAB toolbox for computing such centrality indices using efficient numerical 4

algorithms based on the connection between the Lanczos method and Gauss-type quadrature rules. 5

Keywords: Complex network analysis, centrality measure, matrix function, Lanczos algorithm. 6

1. Introduction 7

Let G be a connected, undirected, unweighted graph with a large number of nodes 8

n and a number of edges significantly smaller than n2. We assume there are no self-loops 9

or multiple edges in G. Networks represented by such kind of graph occur in many 10

applications, such as epidemiology, genetics, telecommunications, and energy distribution; 11

see [7,13,14,30]. It is usual to associate to the graph G a symmetric adjacency matrix 12

A = [Aij] ∈ Rn×n with entries Aij = 1, if nodes i and j are connected by an edge, and 13

Aij = 0, otherwise. 14

It is often meaningful to extract from a large graph numerical values describing global
properties of the graph, such as the ease of traveling between vertices, or the importance of
a chosen node. A walk in a network is an ordered list of nodes such that successive entries
of the list are connected. A well-known fact in graph theory is that the number of walks of
length m ≥ 1 starting at node i and ending at node j is given by [Am]ij, that is, the entry
(i, j) of the m-th power of the adjacency matrix. Let us assume that the coefficients cm in
the matrix-valued function

f (A) =
∞

∑
m=0

cm Am (1.1)

are nonnegative and decay fast enough to ensure convergence of the series. Then, the ease 15

of traveling between the nodes i and j can be measured by [ f (A)]ij, with i 6= j, while the 16

importance of node i can be quantified by [ f (A)]ii. 17

A common choiche (see [13,14,18,19]) is to set the coefficients cm in (1.1) to be nonin-
creasing positive functions of m, with the aim of attributing less importance to long walks
than to short ones. For example, cm = 1/m! [16] yields the matrix exponential

f (A) = exp(A), (1.2)

while setting cm = αm, with 0 < α < (ρ(A))−1, where ρ(A) denotes the spectral radius of
A, leads to the resolvent

f (A) = (I − αA)−1. (1.3)

Let e = [1, 1, . . . , 1]T ∈ Rn and let ei = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn be the axis vector 18

with the ith component equal to 1. As usual, the superscript T denotes transposition. 19
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The following definitions, which are discussed in [13–15,18,19,21], are motivated by the 20

discussion above: 21

• the degree of node i, given by [Ae]i = eT
i Ae, provides a measure of the importance of 22

node i; 23

• the f -subgraph centrality of node i, defined by

[ f (A)]ii = eT
i f (A)ei, (1.4)

furnishes a more sophisticated measure of the importance of node i than its degree; 24

• the f -communicability between nodes i and j,

[ f (A)]ij = eT
i f (A)ej, (1.5)

quantifies the ease of traveling between nodes i and j; 25

• the f -starting convenience of node i, given by

eT f (A)ei

eT f (A)e
, (1.6)

quantifies the ease of traveling from node i to anywhere in the network. This is the 26

sum of the communicabilities from node i to all other nodes, scaled so that the sum of 27

the quantity over all nodes is one. 28

Note that all the centrality measures (1.4)-(1.6) are of the form

uT f (A)v (1.7)

for specific vectors u and v. The purpose of this paper is to present a software package that 29

makes it easy to compute the above defined centrality measures, whose use and methods 30

for their computation have received considerable attention in the literature; see [1,5,6,8– 31

22,25,27] as well as many other references. In these references many real applications are 32

discussed. 33

When the adjacency matrix A is large, i.e., when the graph G has many nodes, direct 34

evaluation of f (A) generally is not feasible. Benzi and Boito [5] applied pairs of Gauss 35

and Gauss-Radau rules to compute upper and lower bounds for selected entries of f (A). 36

This work is based on the connection between the symmetric Lanczos process, orthogonal 37

polynomials, and Gauss-type quadrature, explored by Golub and his collaborators in many 38

publications; see Golub and Meurant [24] for details and references. A brief review of this 39

technique is provided in Section 2. An application of pairs of block Gauss-type quadrature 40

rules to simultaneously determine approximate upper and lower bounds of expressions of 41

the form (1.7) when u and v are “block vectors”, i.e., matrices with many rows and very 42

few columns, is described in [21]. 43

The main drawback of quadrature-based methods is that the computational effort is 44

proportional to the number of desired bounds. Therefore these methods may be expensive 45

to use when bounds for many expressions of the form (1.7) are to be evaluated. This 46

situation arises, for instance, when we would like to determine one or a few nodes with 47

the largest f -subgraph centrality in a large graph, because this requires the computation of 48

upper and lower bounds for all diagonal entries of f (A). 49

A method to produce upper and lower bounds for quantities of the form (1.7) has been 50

proposed in [20]. It is based on that knowledge of a few leading eigenvalue-eigenvector 51

pairs gives bounds for every entry of f (A), with little computational effort in addition 52

to computing the eigenvalue-eigenvector pairs. For example, determining the m most 53

important nodes of a graph, with m much smaller than the number of nodes n, amounts to 54

finding the m nodes with the largest f -subgraph centrality. It is possible to quickly evaluate 55

bounds for all entries [ f (A)]ij if a partial spectral factorization of A is available. Using these 56
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bounds we can determine a set of ` ≥ m nodes containing the m nodes of interest, and 57

compute tighter bounds for the nodes in this set, if necessary, by employing Gauss-type 58

quadrature rules. When ` � n, the complexity of this hybrid algorithm is much smaller 59

than computing upper and lower bounds for all entries [ f (A)]ii, i = 1, . . . , n, by Gauss 60

quadrature. 61

In this work, we present a MATLAB package for the identification of the m most 62

important nodes according to the centrality/communicability indices discussed above, 63

based on two matrix functions, namely, the exponential (1.2) and the resolvent (1.3). Either 64

the f -subgraph centrality, the f -communicability or the f -starting convenience can be 65

computed. The computation can be performed by using one of three different methods: 66

Gauss quadrature, partial spectral factorization, or the hybrid method; the latter two 67

algorithm have been introduced in [20]. 68

This paper is organized as follows. Section 2 recalls how upper and lower bounds 69

for quantities of the form (1.7) can be determined via Gauss quadrature. Approximation 70

via partial spectral factorization of A is discussed in Section 3 and the hybrid method is 71

summarized in Section 4. Section 5 presents the SoftNet package as well as a graphical 72

user interface (GUI) that simplifies its use. A brief description of the code and its use 73

also is provided. Section 6 describes some numerical experiments and Section 7 contains 74

concluding remarks. 75

2. Approximation by Gauss quadrature 76

Let A be a symmetric matrix of order n and suppose that we are interested in comput-
ing bounds for bilinear forms

Fu,v(A) := uT f (A)v, (2.1)

where u and v are given vectors and f is a smooth function defined on an interval [a, b] ⊂ R
that contains the spectrum of A. Since

Fu,v(A) =
1
4
(Fu+v,u+v(A)− Fu−v,u−v(A)),

we can focus on the case u = v. 77

The matrix A has the spectral decomposition A = QΛQT . Then we can write

Fu,u(A) = uTQ f (Λ)QTu = µT f (Λ)µ =
n

∑
i=1

f (λi)µ
2
i =

∫ b

a
f (λ) dµ(λ), (2.2)

i.e., we may regard Fu,u(A) as a Stieltjes integral; see [20,24] for further details. We approxi- 78

mate this integral by Gauss-type quadrature rules as follows. Let u be of unit Euclidean 79

norm. Application of k steps of the Lanczos algorithm to A with initial vector u gives the 80

k× k symmetric tridiagonal matrix Tk. It can be shown that eT
1 f (Tk)e1 is a k-node Gauss 81

quadrature rule Gk for the Stieltjes integral (2.2). A (k + 1)-node Gauss-Radau quadrature 82

formula Ĝk+1 with a fixed node at θ ≥ ρ(A) for approximating the Stieltjes integral also 83

can be defined. This discussion assumes that the Lanczos algorithm does not break down. 84

Breakdown is very rare and allows the computations to be simplified. 85

Under the assumption that the derivatives of f (x) have constant sign on the convex
hull of the support of the measure, which is met by the functions (1.2) and (1.3), and the
Radau node θ is suitably chosen, pairs of Gauss and Gauss-Radau rules furnish lower and
upper bounds of increasing accuracy for the quadratic form (2.2). For the functions (1.2)
and (1.3), and the Radau node θ chosen as described, we have

Gk ≤ Gk+1 ≤ Fu,u(A) ≤ Ĝk+2 ≤ Ĝk+1.
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For a user-chosen accuracy τ, we terminate the iterations with the Lanczos algorithm when

|Gk − Ĝk+1|
|Gk|

≤ τ. (2.3)

The default value in the code is τ = 10−3. 86

The matrix functions are applied to the tridiagonal matrices by using their spectral fac-
torization. Thus, let Tk = WkΛkWT

k be the spectral factorization. Then f (Tk) = Wk f (Λk)WT
k .

When f is the exponential function, we let µ be the largest eigenvalue of Tk and evaluate

e−µeTk = eTk−µI = WeΛk−µIWT (2.4)

instead of eTk to avoid overflow. 87

Regarding the choice of the Radau node θ, we often may let θ = ‖A‖∞. Alternatively, 88

we can use the MATLAB function eigs or the function irbleigs described in [2,3] to 89

determine an estimate of the largest eigenvalue λ1 of A. 90

3. Bounds via partial spectral factorization 91

This section recalls how to derive bounds for expressions of the form (2.1), with
‖u‖ = ‖v‖ = 1, by using a partial spectral factorization of A. Introduce the spectral
factorization

A = QΛQT ,

where the eigenvector matrix Q = [q1, q2, . . . , qn] ∈ Rn×n is orthogonal and the eigen-
values in the diagonal matrix Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n are ordered according to
λ1 ≥ λ2 ≥ · · · ≥ λn. Then

f (A) = Q f (Λ)QT =
n

∑
k=1

f (λk)qkqT
k ,

so that

Fu,v(A) = uT f (A)v =
n

∑
k=1

f (λk)ũk ṽk,

where ũk = uTqk and ṽk = vTqk. Let the first N eigenpairs {λk, vk}N
k=1 of A be known.

Then Fu,v(A) can be approximated by

Fu,v(A) ≈ F(N)
u,v :=

N

∑
k=1

f (λk)ũk ṽk. (3.1)

The following results from [20] shows how upper and lower bounds for Fu,v(A) can be 92

determined with the aid of the first N eigenpairs of A. 93

Theorem 1. Let the function f be nondecreasing and nonnegative on the convex hull of the spectrum
of A and let F(N)

u,v be defined by (3.1). Let λ1 ≥ λ2 ≥ · · · ≥ λN be the N largest eigenvalues of A
and let q1, q2, . . . , qN be associated orthonormal eigenvectors. Then we have

L(N)
u,v ≤ Fu,v(A) ≤ U(N)

u,v , (3.2)

where

L(N)
u,v := F(N)

u,v − f (λN)

(
1−

N

∑
k=1

ũ2
k

)1/2(
1−

N

∑
k=1

ṽ2
k

)1/2

,

U(N)
u,v := F(N)

u,v + f (λN)

(
1−

N

∑
k=1

ũ2
k

)1/2(
1−

N

∑
k=1

ṽ2
k

)1/2

.
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When u = v, we have
F(N)

u,u ≤ Fu,u(A) ≤ U(N)
u,u (3.3)

and
F(N)

u,u ≤ F(N+1)
u,u , U(N)

u,u ≥ U(N+1)
u,u , 1 ≤ N < n. (3.4)

To determine which nodes have the largest f -subgraph centrality (1.4), we use the 94

inequalities (3.3) and (3.4). The N leading eigenpairs {λk, qk}N
k=1 of A and the bounds (3.2) 95

and (3.3) can be used to determine a subset of nodes that contains the vertices with the 96

largest value of the node metric we are considering. 97

Let L(N)
u,v and U(N)

u,v be the lower and upper bounds defined in Theorem 1. Since we 98

seek an approximation of the centrality value for all the nodes of the network, we will 99

either set u = v = ei, as in (1.4), or u = e and v = ei, as in (1.6). So, F(N)
u,v will be a quantity 100

depending on an index i = 1, . . . , n. We will write F(N)
i = F(N)

u,v to simplify the notation 101

when we are computing either F(N)
ei ,ei or F(N)

e,ei . When approximating (1.5), we will fix a value 102

of j and consider F(N)
i = F(N)

ej ,ei for i = 1, . . . , n. 103

Let F (N)
m denote the mth largest value of the vector (F(N)

i )n
i=1. The index sets

S(N)
m =

{
i : U(N)

u,v ≥ F
(N)
m

}
, N = 1, 2, . . . , n. (3.5)

contains the indices of the nodes that can be considered important with respect to the 104

desired centrality index. 105

A computational difficulty to overcome is that we do not know in advance how the
dimension N of the leading invariant subspace span{v1, v2, . . . , vN} of A should be chosen
in order to obtain useful bounds (3.2) or (3.3). We use the restarted block Lanczos method
irbleigs described in [2,3], which computes the leading invariant subspace {λk, qk}`k=1 of
A for a user-chosen dimension `, and allows the extension of such subspace by successively
increasing the value of `. Using irbleigs, we compute more and more eigenpairs of A
until N is such that

|S(N)
m | = m, (3.6)

where |S| denotes the number of elements of the set S. This stopping criterion is referred to 106

as the strong convergence condition. As shown in [20], the set S(N)
m contains the indices of the 107

m nodes with the largest f -subgraph centrality. 108

The criterion (3.6) for choosing N is useful if the required value of N is not too large.
The weak convergence criterion has been introduced to be used for problems for which
a large value of N is required in order to satisfy (3.6), and this makes it impractical to
compute the associated bounds (3.2). The weak convergence criterion is well suited also
for application in the hybrid algorithm described in Section 4. This criterion is designed to
stop increasing N when the values F(N)

u,v do not increase significantly with N. Specifically,
we stop increasing N when the average increment of the values in the vector F(N)

u,v is small
when the Nth eigenpair {λN , qN} is included in the bounds. The average contribution of
this eigenpair to F(N)

u,v , 1 ≤ i ≤ n, is

Fi = f (λN)[ũN ]i[ṽN ]i

(see (3.1)), and we stop increasing N when

1
n

n

∑
i=1

Fi < τ · F (N)
m (3.7)

for a user-specified tolerance τ, whose default value in the code is 10−3. Note that when 109

this criterion is satisfied, but not (3.6), the nodes with index in S(N)
m and with the largest 110
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value F(N)
u,v are not guaranteed to be the nodes with the largest index value we are searching 111

for. 112

Also the weak convergence criterion (3.7) may yield a set S(N)
m with many more than

m indices. In particular, we may not be willing to compute accurate bounds for a specific
node metric by applying the approach of Section 2 to all nodes with index in S(N)

m . We
therefore describe how to determine a smaller index set J , which is likely to contain the
indices of the m most important nodes. We discard from the set S(N)

m indices for which F(N)
u,v

is much smaller than F (N)
m . Thus, for a user-chosen parameter σ > 0, we include in the set

J all indices i ∈ S(N)
m such that

F (N)
m − F(N)

u,v < σ · F (N)
m .

The default value for σ in the software is 10−3. 113

4. The hybrid method 114

We summarize here the algorithm corresponding to the hybrid method. The first step 115

is to compute a partial spectral factorization of the adjacency matrix A. Such a partial 116

factorization makes it possible to determine a set of candidate nodes that contains the 117

most important nodes according to a chosen criterion, e.g., the f -subgraph centrality. The 118

accuracy of upper and lower bounds for the candidate nodes is then improved by a suitable 119

application of Gauss and Gauss-Radau quadrature rules. 120

5. The SoftNet software package 121

The package SoftNet for MATLAB is available at the web page http://bugs.unica. 122

it/cana/software as a compressed archive. Uncompressing it, a directory named SoftNet 123

will be created; in order to use the package the user should add its name to the search 124

path. The package SoftNet consists of 14 MATLAB routines for the identification of the m 125

most important nodes in a network according to different centrality indices. The package 126

also includes the function irbleigs from [2,3], and the following 5 adjacency matrices of 127

real-world networks that can be used to test the software 128

• karate (34 nodes, 78 edges): represents the social relationships among the 34 individ- 129

uals of a university karate club [31]; 130

• yeast (2114 nodes, 4480 edges): describes the protein interaction network for yeast 131

[4,26,32]; 132

• power (4941 nodes, 13188 edges): undirected representation of the topology of the 133

western states power grid of the United States [31,35]; 134

• internet (22963 nodes, 96872 edges): snapshot of the structure of the Internet at the 135

level of autonomous systems from data for July 22, 2006 [31]; 136

• collaborations (40421 nodes, 351304 edges): collaboration network of scientists who 137

posted preprints at www.arxiv.org between January 1, 1995 and March 31, 2005 [29,31]; 138

• facebook (63731 nodes, 1545686 edges): user-to-user links (friendship) from the Face- 139

book New Orleans network, studied in [34] and available at [28]. 140

The package Contest by Taylor and Higham [33] contains different kind of synthetic 141

networks and can be used to generate further numerical tests. We provide a convenient 142

interface to this package. 143

Table 1 lists the 14 MATLAB routines with a description of their purpose. The first 144

group, “Computational Routines,” includes the functions for computing different centrali- 145

ties (subgraph centrality (1.4), communicability (1.5), and starting convenience (1.6)) with 146

respect to two different matrix functions, the exponential (1.2) and the resolvent (1.3). The 147

computations can be performed with three different methods, namely the Gauss quadrature 148

method recalled in Section 2, the low-rank approximation presented in Section 3 and the 149

hybrid method described in Section 4. The section “Auxiliary Routines for the Graphical 150

User Interface” lists some routines required to start and use the graphical user interface. 151

http://bugs.unica.it/cana/software
http://bugs.unica.it/cana/software
http://bugs.unica.it/cana/software
www.arxiv.org
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Table 1. Routines and GUI.

Computational Routines

commgauss Identifies the m most important nodes according to f -
communicability of node i through Gauss quadrature; see Sec-
tion 2.

commhyb Identifies the m most important nodes according to f -
communicability of node i through partial singular value de-
composition (SVD) and Gauss quadrature; see Section 4.

commlr Identifies the m most important nodes according to f -
communicability of node i through partial SVD; see Section 3.

gaussexp Computes the bilinear form uT f (A)v, with f (A) = exp(A)
through Gauss quadrature; see Section 2.

gaussres Computes the bilinear form uT f (A)v, with f (A) = (I − αA)−1

through Gauss quadrature; see Section 2.
sgcengauss Identifies the m most important nodes according to f -subgraph

centrality through Gauss quadrature; see Section 2.
sgcenhyb Identifies the m most important nodes according to f -subgraph

centrality through partial SVD and Gauss quadrature; see Sec-
tion 4.

sgcenlr Identifies the m most important nodes according to f -subgraph
centrality through partial SVD; see Section 3.

stconvgauss Identifies the m most important nodes according to f -starting
convenience through Gauss quadrature; see Section 2.

stconvhyb Identifies the m most important nodes according to f -starting
convenience through partial SVD and Gauss quadrature; see
Section 4.

stconvlr Identifies the m most important nodes according to f -starting
convenience through partial SVD; see Section 3.

Auxiliary Routines for the Graphical User Interface .

vipnodes Starts the graphical user interface.
compute Performs the computations according to the chosen parameters.
choose_contest Allow selection of a synthetic network from the Contest Pack-

age [33].
initialize_gui Initializes the default settings for the graphical user interface.

The computational routines are totally independent from the graphical user interface 152

and can be used by the user from the MATLAB command line. For example, the command 153

[vip, vipsgc] = sgcenlr(A,'exp',10); 154

identifies the 10 most important nodes according to the subgraph centrality when the low- 155

rank approximation is used for the computation. vip and vipsgc are vectors containing 156

the indices of the nodes that are candidates to being the most important nodes and the 157

values of their subgraph centrality, respectively. 158

Identifying the 5 most important nodes of a network whose adjacency matrix is A 159

with respect to the starting convenience can be done by the following lines of code 160

func = 'exp'; % the function to be used 161

nnodes = 5; % the number of nodes to be identified 162

theta = eigs(double(A),1,'LA'); % estimation of the largest eigenvalue 163

opts = struct('gausstolq',1e-5,'gaussmaxn',150,'gaussmu',theta,'show',1) 164

[vip, vipsgc, info, iters, allstconv] = stconvgauss(A,func,nnodes,opts); 165

The third line computes the largest eigenvalue, since its estimation is needed for the 166

computation of the Gauss-Radau rule. The struct opts is initialized on the fifth line, 167

where the tolerance (2.3) for the convergence of Gauss quadrature is chosen, as well as the 168
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maximum number of iterations, and the value µ used for the spectrum shift (2.4). Setting 169

the show variable to 1 displays a waitbar during the computations. 170

The output values are: 171

• vip: indices for the most important nodes; 172

• vipsgc: values of starting convenience for the identified nodes; 173

• info: a vector containing a flag that indicates convergence and shows the number of 174

matrix-vector products; 175

• iters: the number of iterations performed for each node; 176

• allstconv: the values of the starting convenience for each node. 177

Table 2 reports a subset of the options used for tuning the performance of the package; 178

all the options have a default value. Refer to the second column of the table and to the 179

description of the algorithms in [20] for their meaning. The available options are described 180

in the various functions. 181

Table 2. Problem definition and options.

Problem Definition

func function to be used ((1.2) or (1.3))
nnodes number of nodes to be identified

Fields for the opts variable

gausstolq tolerance for Gauss quadrature
gaussmaxn maximum number of iterations
gaussmu approximation of the largest eigenvalue for the spectrum shift
alpha constant for the resolvent
show if 6= 0 shows some information during the computation
sgcmaxva maximum number of stored eigenvectors
sgctoll tolerance for weak convergence
sgcshift if 6= 0 applies spectrum shift

All the functions can be used interactively with the vipnodes graphical user interface, 182

located in the main directory of the package. The GUI starts by typing the command 183

vipnodes in the MATLAB Command Window; see Figure 1. 184

The GUI consists of one input panel, on the left, and an output area, on the right. The 185

former allows the user to set different parameters to perform the computations, the latter 186

shows some information about the loaded network and the results, once the computations 187

are done. A drop-down menu at the top of the window allows the user to perform different 188

tasks as follows: 189

• File. This menu allows the user to load a network in three different ways: load it from 190

a mat file, extract it from the workspace, and create it by the Contest package [33], if 191

the latter is installed. 192

• Export. This menu allows the user to export the results as a mat file, as a text file, or 193

export them to variables in the workspace. 194

• Reset. Reset options and computed results or just the results. 195

• Stop. Interrupt the computations if they take too long time. 196

• Previous results. Display a table with results of the previous computation. 197

The first step to complete in order to carry out the computations is to load an adjacency 198

matrix through the “File” menu on the top left of the main window. Once this task is done, 199

general information about the network are shown, namely the number of nodes, the 200

number of edges and, if the network contains self-loops, the number of removed edges. The 201

parameters are set to their default values, and can be modified by the user. By pressing the 202

"Find nodes" button the computations start. If the user chooses to show the animation (this 203

possibility is not given if computation via Gauss quadrature is selected), a new window 204

"Animation" will appear. It contains a spy plot of the adjacency matrix associated to the 205
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Figure 1. The graphical user interface (GUI).

network with the number of non-zero elements, that is, the number of edges, shown on 206

the bottom of the figure. Below, the spectrum of A is drawn and the graph is updated 207

once a new set of eigenvalues is computed. On the right, an animation with the lower and 208

upper bounds computed in correspondence of each new eigenpair added to the sum (3.2) 209

is shown. If either the strong or weak convergence criteria are satisfied, then the candidate 210

nodes are highlighted with red circles. The title of the last graph reports the number of 211

used eigenpair and the cardinality of the set S(N)
m defined in (3.5). 212

Figure 2 shows a typical Animation window. In this case, the computations aim to 213

identify the 5 most important nodes with respect to the subgraph centrality of the Power 214

network included in the package. The computations were carried out by the low-rank 215

method, with the strong convergence condition. The number of computed eigenpairs is the 216

minimal integer N such that the cardinality of S(N)
5 is 5. 217

Figure 3 shows the same window after identifying the same number of nodes as in 218

Figure 2 by the hybrid method. In this case, the cardinality of the set S(N)
5 is larger than 5, 219

and the final computation to identify the 5 most important nodes is performed by Gauss 220

quadrature. 221

Once the computations are done, the main window shows the following information: 222

• the method used to perform the computation (low-rank with strong convergence, 223

hybrid method or Gauss quadrature); 224

• the line of code that has to be written on the command window to perform the same 225

computation without using the graphical user interface; 226

• whether the strong or weak convergence criteria are satisfied (if one of them was 227

selected); 228

• the number of used eigenpairs (if either the low-rank or hybrid methods have been 229

used for the computations); 230

• the number of VIP nodes identified (if either the low-rank or hybrid methods have 231

been used); 232

• the elapsed time; 233

• a table with the index of the identified nodes and the value of the corresponding 234

centrality index. 235
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Figure 2. The animation window after the identification of the 5 most important nodes for the Power
network by the low-rank approximation method.

Figure 3. The animation window after the identification of the 5 most important nodes for the Power
network by the hybrid method.
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Figure 4. Main window after the identification of the 5 most important nodes for the Power network
by the low-rank approximation method.

Figure 4 shows the main window once the computations related to Figure 2 have been 236

carried out. Figure 5 shows the same window after the hybrid method has been used. 237

Note that the lists of nodes produced by the two methods is the same, but the values of 238

the centrality index are slightly different. This happens because the value of the subgraph 239

centrality computed by the low-rank approximation is estimated as an average of the 240

lower and upper bounds computed by the method, while the value computed by Gauss 241

quadrature is more accurate. 242

6. Numerical experiments 243

This section provides some numerical experiments to explore the performance of the 244

centrality indices used in the software, namely the f -subgraph centrality and the f -starting 245

convenience. In particular, we compare them to the following well-known centrality 246

indices: 247

• degree: the number of edges adjacent to a node; 248

• betweeness: the number of shortest paths that pass through the node; 249

• closeness: the reciprocal of the sum of the length of the shortest paths between a node 250

and all other nodes in the graph; 251

• eigenvector: a score is assigned to each node taking into account connections with 252

nodes that have high scores; 253

• pagerank: a variant of the eigenvector centrality. 254

The computation of the centrality indices listed above has been done by the centrality 255

function included in Matlab. An example of its usage it is the following: 256

centr = 'betweenness'; % the centrality to be used 257

nnodes = 5; % the number of nodes to be identified 258

G = graph(A); % converts the adjacency matrix A in to the graph G 259

values = centrality(G,centr); % computes all the centralities of graph G 260

[∼, node_ind] = sort(values,'descend'); % sorts all the centralities 261

disp(node_ind(1:nnodes)); % displays the index for the nodes with the largest centrality 262

The string centr can be set to degree, betweenness, closeness, eigenvector and 263

pagerank. 264
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Figure 5. Main window after the identification of the 5 most important nodes for the Power network
by the hybrid method.

Table 3. Ranking of the 5 most important nodes for the karate network identified by the centrality
function of Matlab, the f -subgraph centrality, and f -starting convenience.

degree betw clos eigvec pagerank exp-sgc res-sgc exp-stc res-stc
34 1 1 34 34 34 34 34 34
1 34 3 1 1 1 1 1 1

33 33 34 3 33 33 33 3 33
3 3 32 33 3 3 3 33 3
2 32 9 2 2 2 2 2 2

The first network we analyze is the famous Zachary’s karate club network [31]. The 265

most important nodes of the network are node 1 and node 34, which stand for the instructor 266

and the club president, respectively. 267

Each column of Table 3 reports the ranking of the 5 most important nodes obtained by 268

using the centrality indices listed above, namely degree, betweenness, closeness, eigenvec- 269

tor, and pagerank centralities, compared with the ranking obtained by the exp-subgraph 270

centrality, the res-subgraph centrality, the exp-starting convenience, and the res-starting 271

convenience. The value used for α in (1.3) is 0.95 · (ρ(A))−1. We remark that for this 272

example, the ranking is not very sensitive to the choice of the parameter α. 273

It is worth noting that all the centrality indices correctly identify nodes 1 and 34 as 274

the most important ones. The list of the 5 most important nodes contains the same indices 275

except for the betweeness centrality, which includes in the list node 32, and the closeness 276

centrality, which determines that node 32 and 9 are among the 5 most important nodes. 277

The second example we are going to consider is the Facebook network included in the 278

package. The graph has 63731 nodes and 1545686 edges. Neither the exponential nor the 279

resolvent of the adjacency matrix A can be evaluated in a straightforward manner due to 280

the large size of the matrix. We therefore apply the hybrid algorithm described in Section 4 281

to find the 10 most important nodes in the network. 282

Table 4 reports in each column the ranking of the 10 most important nodes according to 283

the centrality indices described above and computed by the centrality function of Matlab. 284

Table 5 reports the ranking of the 10 most important nodes obtained by the exp-subgraph, 285
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Table 4. Ranking of the 10 most important nodes for the facebook network identified by the
centrality function of Matlab.

degree betweenness closeness eigenvector pagerank
2332 554 2332 9904 554
471 471 471 2322 471
554 2332 23 5170 2332
2322 23 554 5157 23
451 451 1463 2362 451
23 280 207 3943 2208

2208 1463 280 7765 1463
9904 207 451 133 423
1463 84 1996 2332 280
3943 1996 2805 1902 207

Table 5. Ranking of the 10 most important nodes for the facebook network identified by the f -
subgraph centrality and f -starting convenience.

sgcen_exp sgcen_res(.95) sgcen_res(.1) stconv_exp stconv_res(.95) stconv_res(.1)
9904 9904 2332 9904 9904 2332
2322 2322 471 2322 2322 471
5170 5170 451 5170 5170 451
5157 3943 2208 5157 3943 2208
2362 2362 9904 2362 2362 9904
3943 7765 3943 3943 7765 3943
7765 5157 133 7765 5157 133
133 2332 423 133 2332 423
2332 1902 7765 2332 1902 7765
1902 133 14253 1902 133 14253

the res-subgraph, the exp-starting convenience and the res-starting convenience. The value 286

used for α in (1.3) is 0.95 · (ρ(A))−1 and 0.1 · (ρ(A))−1. 287

It can be seen that the considered centrality indices generally produce different rank- 288

ings. This confirms that they measure different features of the nodes in a network. It is 289

remarkable to observe that in this example the exp-subgraph centrality and the exp-starting 290

convenience produce the same list than the eigenvector centrality. 291

7. Discussion 292

This article introduces the SoftNet toolbox written in MATLAB, designed to compute 293

the most important nodes of a network by some centrality indices based on the computation 294

of matrix functions. The methods used to perform the computation were introduced in [20]. 295

The use of the toolbox is illustrated by examples. 296
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