
Sparse Approximation of Complex Networks

Omar De la Cruz Cabrera∗. Jiafeng Jin∗ Lothar Reichel∗

Abstract

This paper considers the problem of recovering a sparse approximation A ∈ Rn×n of an unknown

(exact) adjacency matrix Atrue for a network from a corrupted version of a communicability matrix

C = exp(Atrue)+N ∈ Rn×n, where N denotes an unknown “noise matrix”. We consider two methods for

determining an approximation A of Atrue: (i) a Newton method with soft-thresholding and line search,

and (ii) a proximal gradient method with line search. These methods are applied to compute the solution

of the minimization problem

arg min
A∈Rn×n

{
‖ exp(A)−C‖2F + µ‖vec(A)‖1

}
,

where µ > 0 is a regularization parameter that controls the amount of shrinkage. We discuss the effect

of µ on the computed solution, conditions for convergence, and the rate of convergence of the methods.

Computed examples illustrate their performance when applied to directed and undirected networks.

1 Introduction

Many complex phenomena can be usefully modeled as networks. A network can be represented by a

graph G = 〈V, E〉, which consists of a set of vertices or nodes V = {v1, v2, . . . , vn}, and a set of edges

E = {e1, e2, . . . , em} that connect the vertices. Edges may be directed (and model one-way streets) or

undirected (and model two-way streets). Detailed expositions of the study of complex networks and their use

as models are provided by, e.g., Estrada [9] and Newman [16]. Here we only mention that network models

often are able to capture essential properties of a given complex phenomenon while being simple enough to

be amenable to quantitative analysis.

We say that node vi is directly connected to node vj if there is a single edge from node vi pointing to

node vj . In this situation, node vj is said to be adjacent to node vi. In case the edge between these nodes

is undirected, node vj also is directly connected to node vi, and vi also is adjacent to node vj . An implicit

assumption in network models is that of transitivity or indirect connection: if node vi is directly connected

to node vj by a single edge, and vj is directly connected to node vk by another single edge, then we can

expect that vi will “influence” vk somewhat, even if there is no edge between these nodes. This way, even

if only fairly few of all pairs of nodes are connected by a single edge, the resulting relationships among all

nodes may be quite complex.

Node vi is said to be indirectly connected to node vj if the latter node can be reached from the former

by following at least two edges, which may be directed, from vi. We observe that complicated pairwise node

relationships can be established by using a fairly small amount of information. To some extent, the success

of a network as a model may result from the ability to capture many pairwise relationships by means of quite

few explicit direct connections.

∗Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA.

Email: odelacru@kent.edu (O. De la Cruz Cabrera), jjin3@kent.edu (J. Jin), reichel@math.kent.edu (L. Reichel)

1

In many applications, the direct connections between the nodes of a network are explicitly known, i.e., one

knows all the edges starting or ending at every node. A question of interest then is how “well connected” each

node is. A typical example is a road network: the intersections are regarded as nodes and the edges model

road segments between intersections. The problem is to quantify how easy, or difficult, it is to reach one

node in the network from other nodes. Several methods for quantifying all the pairwise “communicability”

relationships between nodes are based on using the matrix exponential or other matrix functions.

Let e(vi → vj) denote an edge from node vi to vj ; where the edge may be directed or undirected. A

sequence of edges (not necessarily distinct)

{e(v1 → v2), e(v2 → v3), . . . , e(vk → vk+1)} (1)

forms a walk of length k. If the edges in a walk are distinct, then the walk is referred to as a path.

Introduce the adjacency matrix Atrue = [a
(true)
ij]ni,j=1 ∈ Rn×n associated with a graph G and assume that

the graph is unweighted. The matrix Atrue then has the property that a
(true)
ij = 1 if node vj is adjacent to

node vi.

The adjacency matrix Atrue is sparse in most applications, i.e., the matrix has many more zero entries

than entries one. The matrix is symmetric if for each edge there is also an edge in the opposite direction.

The graph determined by such an adjacency matrix is said to be undirected. If at least one edge of a graph

is directed, then the graph is referred to as directed. We will assume that the network associated with Atrue

is connected and that there are no loops and multiple edges. Then all diagonal entries of Atrue vanish.

Estrada and Rodriguez-Velazquez [10] define for graphs with a symmetric adjacency matrix the commu-

nicability matrix

C = [cij]
n
i,j=1 = exp(Atrue).

The entry cij , i 6= j, denotes the communicability between the nodes vi and vj . A relatively large value

generally implies that it is easy for the nodes vi and vj to communicate. Estrada and Rodriguez-Velazquez [10]

measure the importance of the node vi by the subgraph centrality cii. Related measures of communicability

and node importance can be defined when the adjacency matrix Atrue is nonsymmetric; see [6] for a discussion.

Consider the power series expansion

exp(Atrue) = I + Atrue +
A2

true

2!
+

A3
true

3!
+ (2)

Let Ak
true = [a

(k,true)
ij]ni,j=1. Then a nonvanishing entry a

(k,true)
ij indicates that there is at least one walk of k

edges from node vi to node vj . The denominators in the terms of the expansion (2) ensure that the expansion

converges and that terms
Ak

true

k! with k large contribute only little to exp(Atrue), i.e., they contribute very

little to the communicability and node importance. It follows that short walks typically are more important

than long ones. This is in agreement with the fact that messages propagate better along short walks than

along long ones.

We consider the process of determining node importance using the communicability matrix as the “for-

ward” problem. In many applications, one is interested in the “inverse” problem: data about communicability

for all pairs of nodes are available (possibly contaminated by noise), and the task is to infer which nodes

are directly connected, rather than indirectly connected. A typical application in which this inverse problem

arises is in gene regulatory networks: the nodes represent genes in the genome of a particular organism and

edges represent regulatory relationships, in which the activity of one gene increases or decreases the activity of

another gene by a specific molecular mechanism. Pairwise measures of correlation are assumed to be known.

A high (absolute) correlation between two genes might be due to direct or indirect regulatory effects, or due

to noise. Elucidating which pairwise relationships are direct can be important to understand the behavior

2

of a system. We therefore are interested in inferring direct connections between pairs of nodes in a network

from the associated (possibly noise-contaminated) communicability matrix.

Thus, suppose that there is an underlying network with known nodes v1, . . . , vn, but that the edges are

not known. Assume, moreover, that for all i, j ∈ {1, . . . , n}, we are given a measure of communicability cij

from node vi to vj ; this measure may be affected by noise. Our goal is to infer which nodes are directly

connected. Our modeling assumption is that

C = [cij]
n
i,j=1 = exp(Atrue) + N, (3)

where Atrue = [a
(true)
ij]ni,j=1, with a

(true)
ij ∈ {0, 1}, is an unknown adjacency matrix to be determined and the

matrix N ∈ Rn×n models the error (also referred to as noise) in the matrix C.

In the noise-free case, one can in theory compute the matrix logarithm Atrue of C exactly. One would

expect the computed matrix to be sparse since Atrue is sparse. However, even a small amount of perturbation

in the data C typically makes the matrix log(C) dense. The perturbation may be present in the available

data in the form of noise, or be introduced in the form of round-off errors during the computations. Moreover,

if Atrue is nonsymmetric, the computed matrix logarithm may have complex entries. It follows that some

kind of regularization is necessary to determine an accurate approximation of Atrue. Since our interest lies

in determining a sparse adjacency matrix, we will use a penalized optimization approach to regularize the

problem.

We propose the use of a sparse approximate matrix logarithm as a way to determine edges between

adjacent nodes in a network with relatively few edges. Consider the minimization problem

arg min
A∈Rn×n

{
1

2
‖ exp(A)−C‖2F + µ‖vec(A)‖1

}
, (4)

where the matrix C ∈ Rn×n is known and denotes the available imperfect data that has been tainted by an

unknown error N; (cf. (3)). Let Ctrue be the unknown noise-free communicability matrix associated with

C; thus, Ctrue = exp(Atrue), where Atrue is the desired adjacency matrix. The trailing term in (4) is a

regularization term, where the function vec stacks the columns of the matrix A in a vector. The solution

A of (4) furnishes an approximation of Atrue. The parameter µ > 0 is a regularization parameter which

balances the relative influence of the two terms in (4). Throughout this paper ‖ · ‖F denotes the matrix

Frobenius norm and ‖ · ‖1 stands for the vector 1-norm.

We will use Newton’s method described by Higham et al. [11, p. 285] or the proximal gradient (PG)

method [1] to determine a solution of (4). The regularization term in (4) is known to promote sparsity of the

computed solution A. This term can be implemented with soft-thresholding. We therefore refer to Newton’s

method applied to the solution of (4) as Newton’s method with soft-thresholding (NST).

This paper is organized as follows. Section 2 collects some useful properties of matrix functions. We

describe the NST method with line search in Section 3, where we also consider convergence properties.

Section 4 reviews the PG method with line search and discusses its convergence properties. Computed

illustrations for some small and moderately large networks are presented in Section 5. Concluding remarks

are provided in Section 6. We explain in the appendix why the MATLAB function logm is not useful for

determining a sparse approximation of Atrue from the communicability matrix C.

2 Some properties of matrix functions

This section reviews some properties of matrix functions and their derivatives. These properties will be

used in the sequel.

3

2.1 The Fréchet derivative of a matrix function

Consider a matrix function f : A ∈ Rn×n → f(A) ∈ Rn×n, which we assume to be differentiable. Let

E ∈ Rn×n. We have

f(A + E) = f(A) + Lf (A,E) + o(‖E‖p), (5)

where the norm ‖ · ‖p is any matrix norm, and Lf (A,E) denotes the Fréchet derivative of f at A in the

direction E; see, e.g., [11] for details. For notational convenience, we will sometimes denote Lf (A,E) by

∂f(A)/∂E.

2.2 Fréchet derivatives of the matrix trace

Let A = [aij]
n
i,j=1 ∈ Rn×n. Then the matrix A and its transpose, AT , have the same trace

Tr{A} =

n∑
i=1

aii = Tr{AT }.

Consider the matrices X = [xij]
n
i,j=1 ∈ Rn×n, Y = [yij]

n
i,j=1 ∈ Rn×n, and Z = [zij]

n
i,j=1 ∈ Rn×n. Then

Tr{X + Y} = Tr{X}+ Tr{Y}

and

Tr{XYZ} = Tr{YZX} = Tr{ZXY} =

n∑
i=1

n∑
j=1

n∑
k=1

xijyjkzki;

see, e.g., [15]. The Fréchet derivative in the direction A of the matrix trace satisfies the following properties

(i)
∂ Tr{X + Y}

∂A
=
∂ Tr{X}
∂A

+
∂ Tr{Y}
∂A

,

(ii)
∂ Tr{XYZ}

∂A
=
∂ Tr{YZX}

∂A
=
∂ Tr{ZXY}

∂A
,

(iii)
∂ Tr{XY}

∂A
=
∂ Tr{XcY}

∂A
+
∂ Tr{XYc}

∂A
,

where the matrices X, Y, and Z are functions of A, and Xc and Yc are treated as constant matrices; see [3]

for further information.

3 The Newton method

This section discusses the use of Newton’s method with soft-thresholding (NST) and line search to compute

a solution of (4). We derive the NST method from the classical Newton method. The latter is considered,

e.g., by Dieci [8] and Higham [11]. Subsection 3.1 describes the method, while its convergence is considered

in Subsection 3.2.

4

3.1 Newton’s method with soft-thresholding and line search

Introduce the matrix function f(A) = exp(A)−C ∈ Rn×n. Then eq. (4) can be expressed as

min
A∈Rn×n

{
1

2
‖f(A)‖2F + µ‖vec(A)‖1

}
. (6)

Let A0 be an initial approximate solution of (6). Then the iterations with the NST method (without line

search) can be expressed as
Lf (Ak,Ek) = −f(Ak),

Ãk+1 = Ak + Ek, k = 0, 1, . . . ,

Ak+1 = Sµ(Ãk+1).

(7)

The step Ek is determined in the first line; see below for details. Moreover, Sµ denotes the soft-thresholding

operator. It is applied entry-wise to Ãk+1 and is for a real argument a defined as

Sµ(a) =

sign(a)(|a| − µ), if |a| > µ,

0, otherwise.
(8)

Here µ is the regularization parameter in (4). It is well known that the `1-penalty term in (4) is equivalent

to application of the soft-threshold operator (8) element-wise.

To determine the step Ek, we use eq. (5) without the remainder term. We obtain for f(Ak) = exp(Ak)−C,

Lf (Ak,Ek) ≈ exp(Ak + Ek)− exp(Ak)

≈ Ek +
AkEk + EkAk

2!
+

A2
kEk + AkEkAk + EkA

2
k

3!
+ . . .

=

∞∑
`=1

1

`!

`−1∑
j=0

Aj
kEkA

`−1−j
k .

(9)

The application of Newton’s method requires the determination of the Newton step Ek in (7) in each iteration.

We proceed as follows when the matrices Ak and Ek do not commute: Using (9), we approximate the first

equation of (7) by
∞∑
`=1

1

`!

`−1∑
j=0

Aj
kEkA

`−1−j
k = C− exp(Ak).

This expression can be written in the form

∞∑
`=1

1

`!

`−1∑
j=0

(A`−1−j
k)T ⊗Aj

kvec(Ek) = vec(C− exp(Ak)), (10)

where ⊗ denotes the tensor product. The infinite sum is truncated when the terms are small. Generally,

the system matrix in the above expression is nonsingular; otherwise the Moore-Penrose pseudoinverse can be

used.

In the special case when Ak and Ek commute, eq. (9) simplifies to

Lf (Ak,Ek) = exp(Ak)Ek = Ek exp(Ak) = exp

(
Ak

2

)
·Ek · exp

(
Ak

2

)
.

PROPOSITION 1. ([11, Chapter 4] Assuming that the matrices Ak and Ek commute. Then Lf (Ak,Ek) =

Lf (Ak)Ek = EkLf (Ak), where Lf (Ak) is given by f ′(Ak), and f ′(Ak) denotes the derivative of the scalar

function f evaluated at Ak.

5

Assume that the matrices Ak and Ek commute, we will use the formula

Ek = exp

(
−Ak

2

)
·C · exp

(
−Ak

2

)
− I

to determine the Newton step Ek in eq. (7) in computed examples of Section 5. Then Ek is symmetric when

C is symmetric, which implies that Ak+1 is symmetric.

Newton’s method based on the computations (7) might not converge, because the Newton step matrix

Ek may be of too large norm. This difficulty can be remedied by implementing a line search in direction

Ek. Newton’s method with a line search yields a globally convergent iterative method at least for sufficiently

smooth functions f ; see [7, Chapter 6]. Algorithm 3.1.1 describes Newton’s method with a line search based on

backtracking. The method is referred to as Newton’s method with soft-thresholding and line search (NST-LS).

Properties of the Newton method with backtracking and for smooth functions f , without soft-thresholding,

are discussed in [7, Chapter 6].

Algorithm 3.1.1 The NST-LS method for the situation when the matrices C and A0 commute

Input: C ∈ Rn×n, regularization parameter µ > 0, initial approximate solution A0 ∈ Rn×n, backtracking

parameter β > 0

Output: A (the computed approximation of Atrue)

for k = 1, 2, . . . until convergence do

Ek−1 = exp(−Ak−1/2) ·C · exp(−Ak−1/2)− I;

tk−1 = 1;

while f(Ak−1 + tk−1Ek−1) > f(Ak−1) + 0.5 · tk−1‖Ek−1‖2 do

tk−1 = βtk−1;

end while

Ãk = Ak−1 + tk−1Ek−1;

Ak = Sµ(Ãk) ;

end for

Throughout this paper ‖ · ‖ denotes the spectral norm.

We set β = 0.8. Since the matrix C is contaminated by the error matrix N, (cf.(3)), the matrices C and

A0 commute only rarely. However, if A0 and Atrue commute, and the noise matrix N is of norm much smaller

than C, then Algorithm 3.1.1 yields good results; see Section 5. The NST-LS method for the situation when

the matrices C and A0 are not close to commuting matrices is more difficult to implement. It requires the

evaluation of an approximation of the solution of the linear system of equations (10). We omit the details.

3.2 Convergence of the NST method

In some circumstances, it is possible to prove the existence of a useful fixed point for the NST iteration

built for C = exp(A) + N. In general, this fixed point is not the matrix A itself, but rather a “shrunken”

version of A, in which the entries with value zero are correct but the entries with value 1 in A are reduced

by a factor of 1− µ, and are also individually perturbed by a small amount.

It should be noted that, if N is small enough, the Newton iterations (without thresholding) may converge

to the (real) matrix logarithm of C. However, the result will in general not be sparse. In this section we

show that the soft-thresholded iteration of the NST method will under suitable conditions recover the exact

sparsity pattern of A.

6

The matrix A models an unweighted network, which may be directed or undirected. Thus, A has entries

0 or 1, and is not necessarily symmetric. The noise matrix N will be regarded as fixed, except in Corollary 1,

where it is assumed to be random. Also, define C = exp(A) + N.

A simple one-sided version of the NST method will be used, and we will not use line search but, instead,

use a fixed step size of 1; thus, the iteration is given by

Ak+1 = Sµ (Ak − I + exp(−Ak)C) . (11)

We seek to prove a statement of the form: If the noise N is small enough, then there exists µ > 0 such that

the iterations (11) have a fixed point of the form (1−µ)A + B with A = [aij] ∈ Rn×n and B = [bij] ∈ Rn×n,

where bij = 0 whenever aij = 0 and |bij | < µ for all i, j. First, we state a condition that suffices for the

existence of the postulated fixed point.

PROPOSITION 2. Assume that 0 < µ ≤ 1/2, and assume that there exists a matrix G = [gij] ∈ Rn×n

that satisfies:

1. |gij | < µ for all i, j,

2. G = B + D, with B = [bij] ∈ Rn×n and D = [dij] ∈ Rn×n such that:

(a) bij = gij and dij = 0, whenever aij = 1, and

(b) dij = gij and bij = 0, whenever aij = 0,

3. we have that F(G) = 0, where

F(G) := exp(−((1− µ)A + B))C− I− µA−D.

Then (1− µ)A + B is a fixed point for the iteration (11).

Proof. Suppose such G = B + D exists, satisfying |gij | < µ for all i, j. The Newton iteration step applied to

(1− µ)A + B results in

(1− µ)A + B− I + exp(−((1− µ)A + B))C.

If we subtract F(G) = 0, then we change nothing, yet we obtain that the result equals

A + B + D = A + G.

Now, applying the soft-thresholding step, we obtain

Sµ (A + G) = (1− µ)A + B.

Indeed, for each i, j: if aij = 0, then |aij + gij | = |gij | < µ and the result of soft-thresholding is 0, which

equals (1− µ)aij + bij ; if aij = 1, then aij + gij > 1− µ ≥ µ (because we assumed µ ≤ 1/2), so the result of

soft-thresholding is aij + gij − µ = 1− µ+ gij = (1− µ)aij + bij .

This proposition reduces our problem to finding a root for the function F, that is, solving a nonlinear

system of n2 equations in n2 variables, and establishes that the root G is small (in the sense that |gij | < µ

for all i, j).

A remark on notation: When necessary, we will make explicit the dependence of F on µ and N by writing

Fµ,N. Also, we will abuse notation and use F(G) to refer to the map from Rn2

to Rn2

obtained by flattening

the matrices.

7

Consider the matrix K = [krs] ∈ Rm×m defined as follows. Recall that the edges of the network are given

by e1, . . . , em; each edge corresponds to one entry with value 1 in A. Let krs be the partial derivative of

(F(G))i′j′ with respect to Gij evaluated at G = 0, and then evaluated at N = 0 and µ = 0, where er is the

edge connecting node vi to vj , and es is the edge connecting vi′ to vj′ . In other words, K is the submatrix

of the Jacobian matrix of (a flattened version of) F, evaluated at G = 0, corresponding to the entries that

equal 1 in A, and then evaluated at N = 0 and µ = 0.

THEOREM 1. If the matrix K defined above is nonsingular, then there exists η > 0 such that, whenever

‖N‖F < η, there exists µ > 0 and a matrix B = [bij] ∈ Rn×n satisfying bij = 0 when aij = 0 and |bij | < µ

otherwise, so that (1− µ)A + B is a fixed point for the NST iteration in equation (11).

Proof. Consider the map H : Rn×n × Rn×n × R→ Rn×n × Rn×n × R given by

H(G,N, µ) = (Fµ,N(G),N, µ) .

The Jacobian matrix JH ∈ R(2n2+1)×(2n2+1) has the block structure

JH(0,0, 0) =

K 0 0 0

W1 −In2−m 0 0

W2 W3 In2 0

z1 z2 0 1

 .
The first block in the second column is zero because changing nonzero elements of D does not change the

values of the entries of F(G) corresponding to nonzero entries of B. The other zero blocks result from the

fact that changing values in G does not affect the values of N or µ, and N and µ do not affect each other.

Since JH(0,0, 0) is block triangular, its determinant equals det(K)(−1)n
2−m. By our hypothesis about

K, the matrix JH(0,0, 0) is nonsingular, and since H(0,0, 0) = (0,0, 0), by the Inverse Function Theorem,

there are neighborhoods U ,V of (0,0, 0) in Rn×n×Rn×n×R such that H : U → V is invertible, H−1 : V → U
is differentiable, and the Jacobian matrix of H−1 evaluated at (0,0, 0) equals (JH(0,0, 0))

−1
.

We claim now that the bottom row of (JH(0,0, 0))
−1

equals [0,0,0, 1]. To prove this, we first need to

establish that the blocks z1 and z2 of JH(0,0, 0) are both zero. We do this by computing ∂
∂µFµ,N(G) and

evaluating the result at 0. This yields

∂

∂µ
Fµ,N(G) =

(
∂

∂µ

(
exp(−((1− µ)A + B))

))
C−A.

We now expand exp(−((1− µ)A + B)) as a power series, and differentiate term by term. Since A and B do

not necessarily commute, the resulting power series does not simplify; however, when evaluating at (0,0, 0),

all terms that contain a factor of µ or B vanish, and the remaining terms add up to A exp(−A). Since N

also is evaluated as zero, C reduces to exp(A), and we obtain(
∂

∂µ
Fµ,N(G)

)
(0,0, 0) = A exp(−A) exp(A)−A = 0.

Having that blocks z1 and z2 of JH(0,0, 0) are both zero, we can now show that the bottom row of

(JH(0,0, 0))
−1

equals [0,0,0, 1]. JH(0,0, 0) is block triangular, with one block of size 2n2 × 2n2 at the top

left, and a block of size 1 × 1 at the bottom right; therefore, (JH(0,0, 0))
−1

has the same block structure,

and its bottom row must equal [0,0,0, 1].

Having that the bottom row of (JH(0,0, 0))
−1

equals [0,0,0, 1] means that, as µ increases from 0, the

entries in F−1(0) grow slower than µ. Thus, we can pick µ0 > 0 such that |gij | < µ0, for all i, j, with

G = F−1(0), and such that (F−1(0),0, µ0) ∈ U . That is, the intersection of the open sets U and

{(G,N, µ) ∈ Rn×n × Rn×n × R : |gij | < µ0, for all i, j}

8

is nonempty and open. Let V ′ denote the image of this open set under H; V ′ is open and contains the point

(0,0, µ0). There exists an open ball W ⊂ Rn×n centered at 0, such that if N ∈ W then (0,N, µ0) ∈ V ′.
Finally, letting η be the radius of the ball W, we get that G = F−1(0) and µ0 satisfy the hypotheses of

Proposition 2, so a fixed point of the specified form exists, where the matrix B is extracted from G.

If we would like the noise term to be random, then we can obtain the following result.

COROLLARY 1. Suppose that the matrix K defined above is nonsingular, and assume that the entries of

N are independent random variables with mean 0 and variance σ2. With high probability, provided that σ2 is

small enough, there exists µ > 0 and a matrix B = [bij] ∈ Rn×n such that bij = 0 when aij = 0 and |bij | < µ

otherwise, so that (1− µ)A + B is a fixed point for the NST iteration in eq. (11).

That is, for all ε > 0 there exists δ > 0 such that if σ2 < δ, then the probability of the conclusion above

holding is greater than 1− ε.

Proof. Let A be such that K is nonsingular, and let ε > 0. Since E(n2ij) = σ2 for all i, j, we have E‖N‖2F =

n2σ2. By Markov’s inequality,

P
(
‖N‖2F ≥ η2

)
≤ n2σ2

η2
,

where η > 0 is the number whose existence is guaranteed in the statement of Theorem 1. Taking δ = εη2

n2 ,

we conclude that σ2 < δ implies that P (‖N‖F < η) > 1 − ε. Thus, the probability that the conclusion of

Theorem 1 holds also is at least 1− ε.

The following result applies Theorem 1.

THEOREM 2. Let A be the adjacency matrix of a directed graph with no directed cycles (that is, a directed

acyclic graph, DAG). Then the conclusions of Theorem 1 and of Corollary 1 hold.

Proof. It suffices to show that the matrix K defined above is nonsingular. Let the edge er in the graph point

from vi to vj . We say that an edge es detours er if es is part of a (directed) walk that starts at vi and ends

at vj . Clearly, every edge detours itself. We claim that, since the graph is acyclic, given two distinct edges

er and es, they cannot both detour each other. Indeed, assume that er points from vi to vj and es points

from vk to vl, and that both detour each other. Assume, without loss of generality, that vi 6= vk. Let w1

be a walk that starts at vi, ends at vj , and contains es, and let w2 be a walk that starts at vk, ends in vl,

and contains er. Then we can take the initial segment of w1 that starts at vi and ends vk, and join it to the

initial segment of w2 that starts at vk and ends at vi, obtaining a directed cycle. (If vi = vk, then we must

have vj 6= vl, and a similar argument can be made to obtain a cycle, using final segments of the walks.)

The entries of K are obtained by computing partial derivatives, evaluated at 0, of the entries of F(G), but

only for those entries that correspond to edges (i.e., values of 1 in A). From the definition of F (see eq. (11)),

we see that this corresponds to perturbing one of the entries of B away from zero by a small amount, and

measuring the change in the entries of the output. Let the matrix δBr ∈ Rn×n have all entries zero except

for the entry (i, j), which has a small nonzero value δx, where er points from vi to vj .

We claim that the only entries that change from F(0) to F(δBr) correspond to edges es that are detoured

by er. Indeed, notice first that I, µA, and D are all constants, so the only change can happen in the term

exp(− ((1− µ)A + δBr)) exp(A). Expanding the two power series and multiplying term by term, we end up

with three types of term: Those that do not contain a factor of δBr, those that contain exactly one factor

of δBr, and those that contain two or more factors of δBr. The terms in the first group cancel out when we

9

compute F(δBr) − F(0), and the terms in the last group vanish when we divide F(δBr) − F(0) by δx and

let δx→ 0. This only leaves the terms in the second group, which are of the form

1

d1!d2!
Ad1δBrA

d2 . (12)

There also could be factors of 1 − µ, but this expression is evaluated at µ = 0. Therefore, these factors

disappear.

Consider now an edge es in the graph, pointing from vk to vl. The (k, l)th entry of the matrix Ad1δBrA
d2

accumulates the weights of walks of length d1+d2+1 that start at vk and end at vl, having er as its (d1+1)st

edge; for each such walk, its weight is given by 1× 1× · · · × 1× (1 + δx)× 1× · · · × 1 = 1 + δx. Therefore,

the perturbation of er affects the entry of F(δBr) only if er detours es. In other words, the entry krs of K

is nonzero only if er detours es. Since we can re-order the edges e1, . . . , em in such a way that er detours es

only if r ≤ s, we can make the matrix K upper triangular.

It only remains to verify that the elements on the diagonal are all nonzero. Indeed er detours itself; but

also the term in equation (12) with d1 = d2 = 0, which is δBr, has coefficient 1, while all the other terms

have the coefficient 1
d1!d2!

. Even though they may have different signs, the smaller terms are not enough to

cancel the leading terms.

In conclusion, K is upper triangular and its diagonal elements are nonzero. Hence, K is nonsingular, and

Theorem 1 (and Corollary 1) can be applied.

REMARK 1. The proof of Theorem 2 only used the fact that in a DAG two distinct edges cannot both

detour each other. It is easy to prove that a directed graph with this property must be a DAG.

REMARK 2. Experiments suggest that the conclusion of these theorems holds for more general classes of

graphs. A proof might require a more delicate analysis.

4 The proximal gradient method

The proximal gradient (PG) method furnishes an alternative to Newton’s method for solving eq. (4).

We first briefly review the PG method and then discuss the incorporation of a line search. The section is

concluded with some comments on convergence properties of this method. Beck [2, Chapter 10] describes the

PG method, and we refer to this reference for further details.

Consider the minimization problem (4) and define the function

f(A) =
1

2
‖ exp(A)−C‖2F . (13)

Let A0 ∈ Rn×n be an arbitrary approximate solution of (4). Then the PG method produces a sequence of

improved approximate solutions Ak, k = 1, 2, . . . , defined by

Ak+1 = prox(Ak − tk∇Af(Ak), µ), k = 0, 1, . . . , (14)

where tk and ∇Af(·) stand for the step size and search direction, respectively, and prox(·) denotes the

proximal operator, i.e.,

prox(A, µ) = arg min
X∈Rn×n

{
1

2
‖A−X‖2F + µ‖vec(X)‖1

}
; (15)

see [2, Chapter 10]. The prox operator can be implemented with soft-thresholding; see (8).

10

In order to use eq. (14) to determine an approximation of the solution of (4), we have to compute the

gradient of the function (13). Note that

f(A) =
1

2
Tr

{
(exp(A)−C)T (exp(A)−C)

}
=

1

2
Tr

{
exp(A)T exp(A)

}
− Tr

{
exp(A)TC

}
+

1

2
Tr

{
CTC

}
.

Thus, we have to minimize
1

2
Tr

{
exp(A)T exp(A)

}
− Tr

{
exp(A)TC

}
over A ∈ Rn×n. To this end, we determine the gradients of Tr

{
exp(A)TC

}
and Tr

{
exp(A)T exp(A)

}
with respect to A.

THEOREM 3. Let A = [aij] ∈ Rn×n and C = [cij] ∈ Rn×n. Then

∇A

{
Tr

{
exp(A)TC

}}
=

∞∑
`=1

1

`!

`−1∑
r=0

(
ArCTA`−r−1

)T
.

In the special case when AT and C commute, we have

∇A

{
Tr

{
exp(A)TC

}}
= exp

(
A

2

)T
·C · exp

(
A

2

)T
.

Proof. The power series expansion

exp(AT)C =

∞∑
`=0

(AT)`C

`!

yields

Tr

{
exp(A)TC

}
=

∞∑
`=0

1

`!
Tr

{
(AT)`C

}
.

For ` = 0, we have ∇A Tr{C} = 0. Direct computations for ` = 1 give

Tr{ATC} =

n∑
j=1

n∑
i=1

aijcij

and, therefore,

∇A Tr{ATC} = C.

For ` = 2, we first compute the gradient of Tr{(AT)2C} using the cyclic permutation and product rules

described in Subsection 2.2. This way we obtain

∇A Tr{(AT)2C} = ATC + CAT .

Carrying out the computations for ` > 2 yields

∇A Tr

{
(AT)`C

}
=

`−1∑
r=0

(
ArCTA`−r−1

)T
and, therefore,

∇A

{
Tr

{
exp(A)TC

}}
=

∞∑
`=1

1

`!

`−1∑
r=0

(
ArCTA`−r−1

)T
.

11

When the matrices AT and C commute, the above expression simplifies to

∇A

{
Tr

{
exp(A)TC

}}
= exp

(
A

2

)T
·C · exp

(
A

2

)T
.

THEOREM 4. Let A ∈ Rn×n. Then

∇A

{
Tr

{
exp(A)T exp(A)

}}
= 2

∞∑
`=1

1

`!

`−1∑
r=0

(
Ar exp(A)TA`−r−1

)T
. (16)

In the special case when A is symmetric, this expression simplifies to

∇A

{
Tr

{
exp(A)T exp(A)

}}
= 2 exp(2A). (17)

Proof. Application of the product rule introduced in Subsection 2.2 and some straightforward but tedious

computations yield (16). When A is symmetric, expression (16) simplifies to (17).

In view of the above results, proximal gradient iteration can be expressed as
Gk =

∞∑
`=1

1

`!

`−1∑
r=0

(
Ar
k

(
exp(Ak)T −CT

)
A`−r−1
k

)T
,

Ãk+1 = Ak − tkGk,

Ak+1 = Sµ(Ãk+1).

(18)

When Atrue is symmetric, the matrix (3) is close to symmetric if ‖N‖F � ‖ exp(A)‖F . Moreover, if we

choose the initial approximate solution A0 to be symmetric and to commute with C, then eq. (18) can be

written as
Gk ≈ exp

(
Ak

2

)(
exp(Ak)−C

)
exp

(
Ak

2

)
,

Ãk+1 = Ak − tkGk,

Ak+1 = Sµ(Ãk+1).

(19)

We use Algorithm 4.0.1 below to approximate the gradient of the trace Tr{exp(A)TY}. Here Y = C or

Y = exp(A). Define the relative difference

r := ‖Gnew −Gold‖F /‖Gold‖F , (20)

where Gold and Gnew denote approximations determined by carrying out m and m + 1 steps, respectively,

of an iterative method.

12

Algorithm 4.0.1 Compute an approximation of ∇A{Tr{exp(A)TY}}
Input: A,Y ∈ Rn×n

Output: G: approximation of the ∇A{Tr{exp(A)TY}}
Gold = 0;

Gnew = Y;

k = 1;

while r > 10−4 do (r is defined by (20))

k = k + 1;

Gold = Gnew;

for i = 1, . . . , k do

Gnew = Gnew +
1

k!

(
Ai−1YTAk−i

)T
;

end for

end while

Similarly as the NST method, the PG method might diverge if the step sizes t are too large. We therefore

equip Algorithm 4.0.1 with a backtracking line search method. The backtracking is based on two parameters

α and β, where 0 < α ≤ 0.5 and 0 < β < 1. Boyd and Vandenberghe [4, Section 9.2] suggest to choose

β ∈ [0.1, 0.8]. We let α = 0.5. The general procedure is to start with tk = 1, and then update tk by βtk while

f(Ak − tk∇Af(Ak)) > f(Ak)− 0.5 · tk‖∇Af(Ak)‖2.

Algorithm 4.0.2 describes the PG method with backtracking line search (PG-LS).

Algorithm 4.0.2 PG-LS

Input: C, µ, and β ∈ [0.1, 0.8]

Output: Ak+1 : the approximation of Atrue

Starting with A0

for k = 1, 2, . . . until convergence do

Use Algorithm 4.0.1 to estimate the gradient Gk (If A0 = AT
0 and A0A = AA0, then use the first row

of eq. (19) to estimate Gk.)

tk = 1

while f(Ak − tkGk) > f(Ak)− 0.5 · tk‖Gk‖2 do

tk = βtk

end while

Ãk+1 = Ak − tkGk

Ak+1 = Sµ(Ãk+1)

end for

We comment on the convergence of the PG method. Beck [2, Chapter 10] provides a convergence analysis

of this method when applied to minimize composite functions of the form

arg min
A∈Rn×n

{f(A) + µh(A)}, (21)

where f is a smooth function that has a Lipschitz continuous gradient, h is a proper closed convex function

that is not required to be smooth, and µ > 0 is a regularization parameter. When the function f is not

13

convex, Beck shows convergence of the norm of the gradient mapping to zero and that all limit points of the

sequence {Ak} are stationary points of problem (4). When f is convex, the rate of convergence of the iterates

generated with the PG-LS method is O(1/k), where k denotes the number of iterations.

We conclude this section by noting that it may be attractive to combine the NST-LS and PG-LS methods

into a hybrid method that first applies the PG-LS method to determine a fairly accurate approximate solution

of (4), and then improves this approximate solution by applying the NST-LS method. We refer to this hybrid

method as PGNST-LS. Its performance is illustrated in the following section.

5 Numerical experiments

This section presents some computed examples with small and large networks to illustrate the performance

of the algorithms described in Sections 3 and 4, as well of some other related methods. The computations are

carried out using MATLAB R2021a on a laptop computer with the Mac OS Big Sur 11.6 operating system,

an M1 chip, and 16 GB of memory. The Celegansneural data set used in Example 5.3 and Western US power

data set used in Example 5.4, are available for download from the web site [5]; the matrices in Example 5.2

and the Appendix are generated with the CONTEST toolbox [17].

We terminate the iterations with the Algorithms 3.1.1 and 4.0.2 as soon as two consecutive iterates are

sufficiently close, i.e., as soon as
‖Ak+1 −Ak‖F
‖Ak‖F

< 10−4, (22)

where Ak and Ak+1 denote approximations determined by carrying out k and k + 1 steps, respectively, of

the algorithms. When using the hybrid PGNST-LS method mentioned at the end of the previous section, we

first determine an approximate solution with the PG-LS method by terminating Algorithm 4.0.2 as soon as

‖Gk+1 −Gk‖F
‖Gk‖F

< 0.1, (23)

where Gk and Gk+1 denote gradient approximations obtained by carrying out k and k+1 steps, respectively.

Then we use the corresponding computed approximate solution as the initial initial approximate solution for

the NST-LS method. We terminate the computations with the latter method as soon as the stopping criterion

(22) is satisfied.

The norm of the communicability matrix C generally is much larger than the norm of the associated

adjacency matrix A. Therefore, the first term in the minimization problem (4) dominates and the second

term has little influence on the computed solution. To remedy this fact, we replace the matrix C by the

scaled matrix

C̃ = exp

(
log(C)

log(ρ(C))

)
, (24)

where ρ(C) denotes the Perron root of C. This scaling has proved to perform well for both small and large

matrices C. The computed solution is scaled correspondingly. We note that the Perron root can easily be

computed by the MATLAB functions eig or eigs for small and large matrices, respectively.

The computation of log(C) in (24) requires some care for certain matrices C. If C = exp(Atrue) is

computed in exact arithmetic, then, of course, log(C) = Atrue. However, due to the error term N in (3)

and round-off errors introduced during the evaluation of log(C), the computed matrix log(C) may be quite

different from Atrue and might contain complex-valued entries. We replace any non-real entry of log(C) by

the closest real number (i.e., by its real part), and use this approximation of C in the right-hand side of (24).

Numerous computed examples indicate that this replacement often is not required.

14

We will refer to the exact adjacency matrix of the network as the “true solution”, and denote the approxi-

mate solution computed by the NST-LS method, as the “NST-LS solution”. The computed solution depends

on the choice of the regularization parameter µ > 0. A large value of µ results in a network with few edges,

in fact the network might not be connected when µ is too large; a small value of µ > 0 yields a network with

many edges. The desired number of edges in the computed graph depends on the application and has to be

decided by the user. In the computed examples reported in this section, we calculate solutions with µ-values

in the interval [0.015, 0.55] with a granularity of 1000 points. The iterations are terminated when the error

defined by (25) is smaller than a user-specified tolerance, which in all the examples of this paper is set to

10−3 or when 1000 iterations have been carried out.

We seek to determine an adjacency matrix A with entries zero or one. However, the computed solution

of (4) has nonvanishing entries that are different from one. We set entries of the solution A of (4) that are

greater than µ to one, and other nonvanishing entries to zero. This defines the matrix Aprojected. We define

the error

Error =
‖vec(Aprojected −Atrue)‖1

n2
, (25)

where the denominator equals the number of entries of Atrue.

Among the µ-values used in our examples, we denote the value that yields a solution A that is closest to

Atrue by µoptimal. We will compare the networks determined with µ = µoptimal with networks obtained for

some other choices of µ.

5.1 A small network

1 2 3

4

567

8

Figure 1: Graph for Example 5.1.

15

EXAMPLE 5.1. Consider the directed graph with 8 nodes shown in Figure 1. The associated communi-

cability matrix, which is corrupted by 1% white Gaussian noise is given by

C = Ctrue + N =

1.3050 −0.0081 1.0200 1.2673 2.8164 0.2746 2.0381 1.0685

1.1383 1.0025 0.5311 1.1118 1.9821 0.1167 1.5287 1.4951

1.1176 −0.0141 1.5113 0.5693 1.7592 1.1143 1.3505 0.5239

0.2311 0.0025 0.7273 1.5807 1.8514 0.2119 1.3090 0.0603

0.5158 −0.0019 1.1283 0.1528 1.5321 0.5248 0.4174 0.1917

0.2324 0.0140 0.7648 0.5645 1.8720 1.2355 1.3042 0.0327

0.2240 −0.0056 0.7518 1.1913 1.8575 0.2399 1.6510 0.0525

0.2815 0.0074 0.9921 1.7642 2.6028 0.2890 1.8480 1.0654

,

where N denotes the “noise matrix.” We rescale the matrix C according to (24) to obtain the rescaled matrix

C̃.

µ Number of iterations CPU time Error

NST-LS soln. µoptimal = 0.015 6 0.003 0

NST-LS soln. µ = 0.0025 6 0.002 3.4375× 10−1

NST-LS soln. µ = 0.25 8 0.004 0

PG-LS soln. µoptimal = 0.015 59 0.117 0

PG-LS soln. µ = 0.0025 62 0.052 4.6875× 10−2

PG-LS soln. µ = 0.25 38 0.022 1.8750× 10−1

PGNST-LS soln. µoptimal = 0.015 13 (PG)+3 (NST) 0.016 0

PGNST-LS soln. µ = 0.0025 26 (PG)+3 (NST) 0.026 3.4375× 10−1

PGNST-LS soln. µ = 0.25 5 (PG)+7 (NST) 0.007 0

Table 1: Example 5.1: Comparison of the approximate solutions determined by the NST-LS, PG-LS, and

PGNST-LS algorithms in terms of the values of µ, the number of iterations, CPU time required (in seconds),

and the error (25).

16

Figure 2: Example 5.1: Comparison of the true and the approximate solutions determined by the NST-LS,

PG-LS, and PGNST-LS algorithms for several µ-values. The heading of each subplot shows the µ-value used

and the bottom indicates the number of nonzero entries (which have been projected to 1).

Table 1 and Figure 2 show all the methods to determine the true solution when µoptimal = 0.015. A much

smaller value of µ gives a computed solution with more edges than in Atrue, while a much larger value of µ

gives a computed solution with fewer edges than in Atrue. Clearly, the choice of the regularization parameter

µ > 0 is important.

5.2 Three additional methods that may be applied to recover a network

5.2.1 The proximal Newton method

Lee et al. [13] introduced the proximal Newton method for the minimization of expressions of the form

(4). Let A0 ∈ Rn×n denote the initial approximate solution. Then the proximal Newton method determines

a sequence of adjacency matrices {Ak}k=1,2,... as follows:Yk = prox

(
Ak−1 −H−1k−1∇f(Ak−1), µ

)
, where Hk−1 = ∇2f(Ak−1),

Ak = Ak−1 + tk(Yk −Ak−1).

17

Here prox(·) is the proximal operator (15), and the step size tk is determined by backtracking. To carry out the

computations with the proximal Newton method, we have to reshape the matrices Ak−1 and ∇f(Ak−1) ∈
Rn×n into the vectors vec(Ak−1) ∈ Rn2

and vec(∇f(Ak−1)) ∈ Rn2

, respectively. Then we have Hk−1 =

∇(vec(∇f(A))) ∈ Rn2×n2

. To determine an approximation of Hk−1, we evaluate the Fréchet derivative of

∇vec(f) with respect to all the elements aij , for i, j = 1, , 2 . . . , n. This may be expensive. Denote the

computed approximation by vec(Ak). The vector obtained is then reshaped into a matrix. We refer to the

proximal Newton method with backtracking as the PN-LS method. We remark that for large-scale networks,

in the situation when A is symmetric, a Krylov method introduced by Kandolf et al. [12, Algorithm 2] can

be applied to approximate the Fréchet derivative.

Recall that

G = ∇f(Ak) ≈ exp

(
Ak

2

)
︸ ︷︷ ︸

f1

(
exp(Ak)−C

)
︸ ︷︷ ︸

f2

exp

(
Ak

2

)
︸ ︷︷ ︸

f1

.

To approximate the Fréchet derivative of G in the direction E, we use the product rule

G(A + E) = f1(A + E)f2(A + E)f1(A + E)

=

(
f1(A) + Lf1(A,E) + o(‖E‖p)

)(
f2(A) + Lf2(A,E) + o(‖E‖p)

)(
f1(A) + Lf1(A,E) + o(‖E‖p)

)
= f1(A)f2(A)f1(A) + Lf1(A,E)f2(A)f1(A) + f1(A)Lf2(A,E)f1(A) + f1(A)f2(A)Lf1(A,E) + o(‖E‖p).

This expression implies that

LG(A,E) = Lf1f2f1 + f1Lf2f1 + f1f2Lf1 .

We refer to this method as the PNKKRS-LS method.

5.2.2 Proximal gradient methods with alternative thresholding operators

Liu and Barber [14] describe how the proximal gradient method can be applied with `q-thresholding.

They also introduce the concept of a proximal gradient method with reciprocal thresholding. Both these

thresholding methods are aimed at minimizing composite functions of the form (4). Liu and Barber [14]

consider minimization problems

arg min
A∈Rn×n

{f(A) + µh(A)},

where f is given by (13), h is a regularization operator, and µ > 0 is a regularization parameter; cf. (21).

Liu and Barker [14] choose

h(A) = ‖vec(A)‖2/3.

This choice can be implemented as

Ak+1 = Ψ`2/3

(
Ak − tk∇f(Ak)

)
,

where tk > 0 is the step size and Ψ(·) represents the generalized thresholding operator. It can be written in

closed form

Ψ`2/3(aij) =

sign(aij) ·
(|z|+√ 2|aij |

|z| − |z|2

2

)3

, |aij | >
4
√

48

3
µ3/4

0, otherwise,

for i, j = 1, 2, . . . , n, where

z =
2√
3
µ1/4

(
cosh

(
1

3
arccosh

(
27

16
µ−3/2(aij)

2

)))1/2

;

18

see [18]. We refer to this solution approach as the PGLQT-LS method.

The reciprocal thresholding operator, defined by Liu and Barber [14], is given by

ΨRT
S (aij) =

sign(aij) ·
(

1

2
|aij |+

1

2

√
|aij |2 − τ2

)
, if aij ∈ S

0, otherwise,

where S represents the set consisting of the s largest entries of the matrix A, and τ denotes the thresholding

level such that τ = maxaij /∈S |aij |. This approach is independent of the choice of µ. However, we will use

the value µoptimal to determine the projection of the computed solution onto the matrix with entries 0 and

1. We refer to this scheme as the PGRT-LS method. The following example compares the methods outlined

above to the ones described in the previous sections of this paper.

EXAMPLE 5.2. Consider the preferential attachment model, whose adjacency matrix Atrue can be gen-

erated by code pref(n, d) in the CONTEST toolbox, where n denotes the dimension of the matrix, and d

denotes the minimal node degree. We choose n = 80 and d = 4, and obtain a symmetric adjacency matrix

Atrue ∈ R80×80 with 554 nonzero elements. The communicability matrix C is obtained by adding 1% white

Gaussian noise to the true communicability matrix Ctrue = exp(Atrue). We rescale C according to (24) to

obtain the scaled matrix C̃. The initial approximate solution for both the PN-LS and PNKKRS-LS methods

is A0 = C̃. Furthermore, we adjust µoptimal by increments and decrements of 10% to assess the significance

of determining µ close to µoptimal.

Table 2 displays the µ-values, the number of iterations, the required CPU time (in seconds), and the error

in the computed approximate solution for the methods in our comparison. The table shows the PGLQT-

LS method to determine more accurate approximate solutions than the approximate solutions determined

with soft- and reciprocal thresholding, but the former method requires many more iterations to satisfy the

stopping criterion (22) than the NST-LS method. Moreover, Table 2 shows the PG-LS method to determine

approximate solutions with smaller error than the NST-LS method for several values of µ. However, it is

important to note that this method demands many more iterations to satisfy the stopping criterion (22) than

the NST-LS method. Among the four Newton-type methods, the PN-LS method attains the smallest error

for the best value of µ used in the computations. However, this method may be impractical for large values of

n due to the high computational cost associated with the evaluation of the Hessian matrix. We also note that

the CPU time for the PNKKRS-LS method is not very different from that for the PN-LS method because

the Arnoldi algorithm needs to be applied four times for each loop in the PNKKRS-LS method. Finally, we

remark that the NST-LS method yields slightly less accurate results, but at a much lower computational cost

than the other three Newton-type methods. Figure 3 illustrates that the approximations are close to the true

solution when µ is well chosen, and the approximations become less sparse than the true solution when µ is

small. Table 2 shows the NST-LS algorithm to require the least computing time of the six algorithms in our

comparison.

19

µ Number of iterations Elapsed time (in seconds) Error

PGRT-LS soln. µoptimal1 = 0.015 1000 23.604 1.5625× 10−4

NST-LS soln. µoptimal2 = 0.02464 8 0.582 9.3750× 10−4

NST-LS soln. µ = 0.9 · µoptimal2 7 0.033 1.0938× 10−3

NST-LS soln. µ = 1.1 · µoptimal2 8 0.041 1.0938× 10−3

PG-LS soln. µoptimal3 = 0.015 52 3.080 6.2500× 10−4

PG-LS soln. µ = 0.9 · µoptimal3 56 3.355 6.2500× 10−4

PG-LS soln. µ = 1.1 · µoptimal3 51 2.821 4.6875× 10−4

PGNST-LS soln. µoptimal4 = 0.02464 29 (PG)+6 (NST) 37.941 9.3750× 10−4

PGNST-LS soln. µ = 0.9 · µoptimal4 31 (PG)+6 (NST) 1.740 1.0938× 10−3

PGNST-LS soln. µ = 1.1 · µoptimal4 27 (PG)+6 (NST) 1.326 1.0938× 10−3

PN-LS soln. µoptimal5 = 0.015536 12 493.368 6.2500× 10−4

PN-LS soln. µ = 0.9 · µoptimal5 8 192.766 4.3750× 10−3

PN-LS soln. µ = 1.1 · µoptimal5 7 165.476 1.5625× 10−3

PNKKRS-LS soln. µoptimal6 = 0.015 7 215.836 9.3750× 10−4

PNKKRS-LS soln. µ = 0.9 · µoptimal6 7 214.855 6.0938× 10−3

PNKKRS-LS soln. µ = 1.1 · µoptimal6 6 178.844 1.5625× 10−3

PGLQT-LS soln. µoptimal7 = 0.015 77 6.427 0

PGLQT-LS soln. µ = 0.9 · µoptimal7 81 7.465 0

PGLQT-LS soln. µ = 1.1 · µoptimal7 74 5.902 4.6875× 10−4

Table 2: Example 5.2: Comparison of several algorithms for a few values of µ in terms of the number of

iterations, required CPU time (in seconds), and the error (25).

20

Figure 3: Example 5.2: Comparison of the true and approximate solutions for several methods and µ-values.

The heading of each subplot shows the µ-value and the bottom indicates the number of ones in each solution.

5.3 Large-scale networks

EXAMPLE 5.3. The network Celegansneural is represented by a weighted directed graph with 297 nodes

that corresponds to the number of neurons in the C.elegans worm. Directed edges represent synaptic con-

nections between neurons. We are interested in inferring which nodes are connected directly rather than

indirectly. We convert the weighted graph to an unweighted one by replacing the nonzero weights of the

edges by one. Additionally, we add 1% white Gaussian noise to Ctrue to obtain C, and then rescale C by

eq. (24) to get C̃. We adjust µoptimal by increments and decrements of 10% to assess the sensitivity of the

solution to the value of µ.

The µ-values, the number of iterations, the CPU times (in seconds) required for computing the results

with the different methods, and error in the computed approximate solutions are reported in Table 3. The

PG-LS method produces results with a fairly small error for several choices of µ, but this method requires

many more iterations to satisfy the stopping criterion (22) than the NST-LS method. Figure 4 shows that

when µ is (too) small, the computed solutions are denser than the true solution. When employing the NST-

21

LS method, a 10% increase in the µoptimal also gives a solution that is close to Atrue. We remark that the

sensitivity of the solution of (4) to the value of µ depends on the network at hand.

µ Num. of iterations Elapsed Time (in seconds) Error

NST-LS soln. µoptimal1 = 0.018749 7 3.854 8.7293× 10−4

NST-LS soln. µ = 0.9 · µoptimal1 7 0.423 1.3944× 10−3

NST-LS soln. µ = 1.1 · µoptimal1 7 0.483 4.9882× 10−4

PG-LS soln. µoptimal2 = 0.015 106 377 2.4941× 10−4

PG-LS soln. µ = 0.9 · µoptimal2 121 442 2.6074× 10−4

PG-LS soln. µ = 1.1 · µoptimal2 95 312 2.6074× 10−4

PGNST-LS soln. µoptimal3 = 0.018749 25 (PG)+8 (NST) 1739 8.7293× 10−4

PGNST-LS soln. µ = 0.9 · µoptimal3 24 (PG)+8 (NST) 213 1.3944× 10−3

PGNST-LS soln. µ = 1.1 · µoptimal3 27 (PG)+9 (NST) 301 4.9882× 10−4

Table 3: Example 5.3: Comparison of several algorithms in terms of different values of µ, the number of

iterations, required CPU time (in seconds), and the error (25).

Figure 4: Example 5.3: Comparison of the true and computed approximate solutions by several algorithms

for different µ-values. The heading of each subplot shows the corresponding µ-value and the bottom indicates

the number of ones in each solution.

22

EXAMPLE 5.4. We consider the Western US power network, which is represented by an unweighted

undirected graph comprising 1454 nodes and 5300 edges. Every node represents a power plant and the edges

represent transmission lines. We introduce 0.5% white Gaussian noise to the communication matrix Ctrue.

This gives the noise-contaminated communication matrix C. The latter matrix is rescaled to obtain the

matrix C̃; see (24). We determine the regularization parameter µ by modifying µoptimal in increments or

decrements of 10% to assess sensitivity of the computed solution to changes in the value of µoptimal.

For this example, the gradient approximations in the stopping criterion (23) are large. As a result, the

hybrid PGNST-LS method requires many steps to satisfy this criterion. This makes the application of this

method expensive. We therefore increase the right-hand side of (23) to 0.15. Moreover, the norm of the

approximate solution Atemp obtained with the PG-LS method is large. Therefore, the NST-LS method fails

to converge. To circumvent this difficulty, we rescale Atemp as

Ã =
Atemp

‖Atemp‖

and use Ã as the initial approximate solution for the method of NST-LS. Table 4 shows the µ-values, the

number of iterations, the CPU times (in seconds) needed by the different methods, as well as the error in the

computed approximate solutions. The Newton-type methods can be seen to determine the true solution for

several values of µ, while the approximate solutions computed with the PG-LS methods yield relatively large

errors, because the computed solutions have fewer edges than Atrue. Figure 5 shows a graphical comparison.

µ Num. of iterations Elapsed Time (in seconds) Error

NST-LS soln. µoptimal1 = 0.015 5 13.45 0

NST-LS soln. µ = 0.9 · µoptimal1 5 13.94 0

NST-LS soln. µ = 1.1 · µoptimal1 6 17.10 0

PG-LS soln. µoptimal2 = 0.015 1000 3.10 hours 6.5276× 10−5

PG-LS soln. µ = 0.9 · µoptimal2 1000 3.13 hours 6.8114× 10−5

PG-LS soln. µ = 1.1 · µoptimal2 1000 3.01 hours 4.8247× 10−5

PGNST-LS soln. µoptimal3 = 0.015 3 (PG)+5 (NST) 42.87 0

PGNST-LS soln. µ = 0.9 · µoptimal3 3 (PG)+5 (NST) 42.84 0

PGNST-LS soln. µ = 1.1 · µoptimal3 3 (PG)+5 (NST) 42.93 0

Table 4: Example 5.4: Comparison of several algorithms in terms of different values of µ, the number of

iterations, required CPU time (in seconds), and the error (25).

23

Figure 5: Example 5.4: Comparison of the true and computed approximate solutions by several algorithms

for different µ-values. The heading of each subplot shows the corresponding µ-value and the bottom indicates

the number of ones in each solution.

The examples of this section, as well as numerous other numerical experiments, indicate that both the

PG-type methods typically give more accurate approximate solutions than the NST-type methods, but the

former methods may require many iterations. The computational cost of the PN-LS and PNKKRS-LS is too

24

high to make these methods attractive when the number of nodes, n, is large.

6 Conclusion

This paper introduces several methods for recovering an unknown sparse adjacency matrix of a network

based on a corrupted version of the communicability matrix. It discusses convergence properties of the NST-

LS and PG-LS methods, and illustrates the effect the choice of the regularization parameter µ has on the

computed results.

7 Appendix

We illustrate with an example that the use of the MATLAB function logm to compute the matrix logarithm

of an available noise-contaminated communicability matrix C may yield inferior results when compared to

results determined by the NST-LS and PG-LS methods. Consider the Erdős-Rényi model, whose adjacency

matrix Atrue can be generated by using the code erdrey(n,m) in the CONTEST toolbox. Here n is the number

of nodes and 2m is the number of 1’s in the matrix. We let n = 50 and m = 113, and obtain a symmetric

adjacency matrix Atrue with 226 entries equal to one. Adding 3% white Gaussian noise N ∈ R50×50 to

the true communicability matrix Ctrue = exp(Atrue) gives us the corrupted version C = Ctrue + N. We

apply the MATLAB function logm to C, resulting a nonprincipal matrix logarithm along with a warning

message. Subsequently, we replace all non-real entries of log(C) with their real parts. This led us to a densely

approximated solution, denoted as Ad. We then select the regularization parameter µ > 0 in a manner that

ensured the projected solution has 226 ones.

We also use Ad in the right-hand side of (24) and apply some of the algorithms NST-LS, PG-LS, and

PGNST-LS to solve (4) and choose the regularization parameter µ > 0 so that the computed solutions after

projection have 226 ones. Figure 6 shows that the computed solution determined by using logm is missing

some edges when compared with Atrue. In fact, it is less accurate than the approximations obtained by the

Newton-type and PG-LS methods.

25

Figure 6: Counter-example: Comparison of the true and approximate solutions using the the LOGM, NST-

LS, PG-LS, and PGNST-LS methods with their corresponding µ values. The heading of each subplot shows

the corresponding µ value and the bottom indicates the number of ones in each solution.

8 Acknowledgment

The authors would like to thank the referees for comments that led to improvements of the presentation.

References

[1] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB,

SIAM, Philadelphia, 2014.

[2] A. Beck, First-Order Methods in Optimization, SIAM, Philadelphia, 2017.

[3] I. Borg and P. J. F. Groenen, Modern Multidimensional Scaling Theory and Applications, Springer, New

York, 1997.

[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.

26

[5] Celegans neural data and Western US Power data, https://sparse.tamu.edu.

[6] O. De la Cruz Cabrera, M. Matar, and L. Reichel, Analysis of directed networks via the matrix exponen-

tial, J. Comput. Appl. Math., 355 (2019), pp. 182–192.

[7] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Equations, SIAM, Philadelphia, 1996.

[8] L. Dieci, Considerations on computing real logarithms of matrices, Hamiltonian logarithms, and skew-

symmetric logarithms, Linear Algebra Appl., 244 (1996), pp. 35–54.

[9] E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University Press,

Oxford, 2011.

[10] E. Estrada and J. A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Phys. Rev. E, 71

(2005), Art. 056103.

[11] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.

[12] P. Kandolf, A. Koskela, S. D. Relton, and M. Schweitzer, Computing low-rank approximations of the

Frèchet derivative of a matrix function using Krylov subspace methods, Numer. Linear Algebra Appl.,

28 (2020), Art. e2401.

[13] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for minimizing composite func-

tions, SIAM J. Optim., 24 (2014), pp. 1420–1443.

[14] H. Liu and R. F. Barber, Between hard and soft thresholding: Optimal iterative thresholding algorithms,

Inf. Inference, 9 (2020), pp. 899–933.

[15] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

[16] M. E. J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.

[17] A. Taylor and D. J. Higham, CONTEST: A controllable test matrix toolbox for MATLAB, ACM Trans.

Math. Software, 35 (2009), Art. 26.

[18] Y. Zhang and W. Ye, L2/3 regularization: Convergence of iterative thresholding algorithm, J. Vis. Com-

mun. Image Represen., 33 (2015), pp. 350–357.

27

