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Abstract

Optimal averaged Gauss quadrature rules provide estimates for the quadrature
error in Gauss rules, as well as estimates for the error incurred when approxi-
mating matrix functionals of the form uT f(A)v with a large matrix A ∈ RN×N

by low-rank approximations that are obtained by applying a few steps of the
symmetric or nonsymmetric Lanczos processes to A; here u, v ∈ RN are vectors.
The latter process is used when the measure associated with the Gauss quadra-
ture rule has support in the complex plane. The symmetric Lanczos process
yields a real tridiagonal matrix, whose entries determine the recursion coeffi-
cients of the monic orthogonal polynomials associated with the measure, while
the nonsymmetric Lanczos process determines a nonsymmetric tridiagonal ma-
trix, whose entries are recursion coefficients for a pair of sets of bi-orthogonal
polynomials. Recently, it has been shown, by applying the results of Peherstor-
fer, that optimal averaged Gauss quadrature rules, which are associated with
a nonnegative measure with support on the real axis, can be expressed as a
weighted sum of two quadrature rules. This decomposition allows faster evalu-
ation of optimal averaged Gauss quadrature rules than the previously available
representation. The present paper provides a new self-contained proof of this
decomposition that is based on linear algebra techniques. Moreover, these tech-
niques are generalized to determine a decomposition of the optimal averaged
quadrature rules that are associated with the tridiagonal matrices determined
by the nonsymmetric Lanczos process. Also, the splitting of complex symmetric
tridiagonal matrices is discussed. The new splittings allow faster evaluation of
optimal averaged Gauss quadrature rules than the previously available repre-
sentations. Computational aspects are discussed.
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1. Introduction

Let dw be a nonnegative measure on (part of) the real axis with infinitely
many points of support and such that all moments µk =

∫
tkdw(t), k = 0, 1, . . . ,

are well defined. For notational simplicity, we will assume that µ0 = 1. The
first part of this paper is concerned with the approximation of integrals of the
form

I(f) =

∫
f(t)dw(t), (1)

with a suitable integrand f , by a k-node Gauss quadrature rule

Gk(f) =

k∑
j=1

f(tj)wj , (2)

where the tj are the nodes and the wj are the weights of the quadrature rule.
Gauss rules are closely associated with monic orthogonal polynomials {pj}∞j=0

determined by the inner product

〈f, g〉 =

∫
f(t)g(t)dw(t).

Thus, the polynomials pj have leading coefficient one and satisfy

〈pi, pj〉 =

{
> 0, i = j,
0, i 6= j.

It is well known that the polynomials pj satisfy a three-term recurrence relation
of the form

pj+1(t) = (t− αj)pj(t)− βjpj−1(t), j = 0, 1, . . . ,

with p−1(t) ≡ 0, p0(t) ≡ 1, and the coefficients αj and βj are given by

αj =
〈tpj , pj〉
〈pj , pj〉

, j = 0, 1, . . . ,

βj =
〈pj , pj〉

〈pj−1, pj−1〉
> 0, j = 1, 2, . . . ,

with β0 = 1. The polynomial pk has k distinct real zeros, all of which are in the
convex hull of the support of dw. The nodes t1, . . . , tk of the Gauss rule (2) are
the zeros of pk and all the weights w1, . . . , wk are positive; see, e.g., [7, 20] for
proofs.

Among all interpolatory quadrature rules with k nodes for approximating
integral (1), the Gauss rule (2) has maximal degree of precision 2k − 1, i.e.,

Gk(p) = I(p), ∀p ∈ P2k−1,
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where P2k−1 denotes the set of all polynomials of degree at most 2k − 1; see
[7, 20]. This makes Gauss quadrature rules well suited for the approximation of
many integrals of the form (1).

The Gauss rule (2) can be associated with the symmetric tridiagonal matrix

Tk =



α0

√
β1 O

√
β1 α1

√
β2

. . .
. . .

. . .√
βk−2 αk−2

√
βk−1

O
√
βk−1 αk−1


∈ Rk×k. (3)

The nodes t1, . . . , tk of the Gauss rule (2) are the eigenvalues of the matrix (3),
and the weights w1, . . . , wk are the square of the first components of normalized
eigenvectors. The nodes and weights of the Gauss quadrature rule (2) can
be computed efficiently in only O(k2) arithmetic floating point operations by
applying the Golub-Welsch algorithm [9] to the matrix Tk. The representation

Gk(f) = eT1 f(Tk)e1 (4)

of rule (2) can be seen to be valid by substituting the spectral factorization

Tk = UkΛkU
T
k (5)

into (4). Here Uk ∈ Rk×k is an orthogonal matrix and Λk = diag[t1, t2, . . . , tk] ∈
Rk×k. The representation (4) exploits the fact that µ0 = 1. Throughout this
paper, ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth axis vector and the superscript
T stands for transposition.

It is important to be able to estimate the magnitude of the quadrature error,

Ek(f) = |I(f)− Gk(f)|, (6)

because this makes it possible to determine a suitable number of nodes k of
the Gauss rule (2) when approximating the integral (1) to achieve a desired
accuracy. Too few nodes do not yield an accurate enough approximation, while
the use of unnecessarily many nodes requires the evaluation of the integrand f
at needlessly many nodes.

A classical approach to estimate the error (6) is to evaluate the (2k+1)-node
Gauss-Kronrod rule K2k+1 that is associated with Gk and use

|K2k+1(f)− Gk(f)|

as an estimate of (6). The rule K2k+1 shares the k nodes of Gk; the remaining
k + 1 nodes and the weights are chosen so that K2k+1 is of degree of precision
at least 3k + 1. However, a difficulty when seeking to evaluate Gauss-Kronrod
rules is that nodes that are not nodes of the Gauss rule (2) are not guaranteed
to live in the convex hull of the support of the measure dw; in fact, they are
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not guaranteed to be real. This may limit the applicability of Gauss-Kronrod
quadrature rules to integrands that can be defined in a sufficiently large domain
in the complex plane that contains the support of the measure dw and all
nodes of the Gauss-Kronrod rule; it also complicates the computation of the
Gauss-Kronrod rules. We refer to Notaris [12] for a nice fairly recent survey of
Gauss-Kronrod rules and to Ammar et al. [1], Calvetti et al. [3], and Laurie
[11] for computational aspects.

These difficulties prompted the development of averaged Gauss rules, which
can be used instead of Gauss-Kronrod rules, to estimate the error in Gauss rules.
The first averaged Gauss rule was proposed by Laurie [10], who suggested that
the average of the Gauss rule (2) and an associated so-called (k+ 1)-node anti-

Gauss rule be evaluated. We will refer to this averaged rule as ĜL2k+1. The
magnitude of the quadrature error (6) can be estimated by

|ĜL2k+1(f)− Gk(f)|. (7)

Similarly as the Gauss-Kronrod rule K2k+1, the rule ĜL2k+1 has 2k + 1 nodes,

k of which are nodes of the Gauss rule (2). The rule ĜL2k+1 is easy to compute
by using the Golub-Welsch algorithm [9]; its nodes are guaranteed to be real
and it has degree of precision at least 2k + 1. Moreover, computed examples
reported in [16] indicate that the quadrature error achieved with these averaged
rules may be smaller than suggested by their degree of precision. Therefore, the
estimate (7) often is a useful approximation of the quadrature error (6).

Ehrich [5] considered k-node Gauss-Hermite and Gauss-Laguerre quadrature
rules, and in this context re-weighted the averaged rule of Laurie to obtain a
new (2k+1)-node quadrature rule, with k of the nodes being nodes of the Gauss
rule Gk and with degree of precision at least 2k + 2. This degree of precision is
the largest possible for all re-weighted averaged rules with 2k+ 1 nodes. These
rules therefore often are referred to as optimal averaged Gauss rules.

By applying results by Peherstorfer [13] on positive quadrature formulas,
Spalević [19] derived a new representation of optimal averaged Gauss quadra-
ture rules. This representation is valid not only for Gauss-Hermite and Gauss-
Laguerre quadrature rules, but for all nonnegative measures dw with support
on the real axis, for which there are Gauss rules. Specifically, Spalević [19] de-

termined a real symmetric tridiagonal matrix T̂2k+1 ∈ R(2k+1)×(2k+1), defined
below, such that

ĜS2k+1(f) = eT1 f(T̂2k+1)e1 (8)

represents the optimal averaged Gauss quadrature rule associated with the
Gauss rule (2). It has real nodes and degree of precision at least 2k+2. Further,
computed examples reported in [16] indicate that the quadrature error for many
measures and integrands may be smaller than what is suggested by the degree
of precision. Therefore, it is attractive to use

|ĜS2k+1(f)− Gk(f)| (9)

as an estimate for the magnitude of the quadrature error (6).
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Let Jk ∈ Rk×k denote the skew-identity of order k, i.e., Jk has ones on the
anti-diagonal and zeros elsewhere. The matrix in (8) is given by

T̂2k+1 =

 Tk
√
βkek Ok√

βke
T
k αk

√
βk+1e

T
1

Ok

√
βk+1e1 JkTkJk

 ∈ R(2k+1)×(2k+1), (10)

where Ok ∈ Rk×k denotes the zero matrix. The nodes of this quadrature formula
can be computed by applying the Golub-Welsch algorithm to the matrix T̂2k+1;
however, faster methods are available; see below. Moreover, when βk+1 in (10)
is replaced by βk, the analogue of the quadrature rule (8) so obtained is the

averaged formula ĜL2k+1 introduced by Laurie [10]; see [19] for details.

The fact that the averaged Gauss rule ĜL2k+1 can be written as the average of
the Gauss rule (2) and an associated (k+1)-node anti-Gauss rule, see [10], raises

the question whether the optimal averaged Gauss rule ĜS2k+1 can be expressed
as a weighted sum of the Gauss rule (2) and a (k + 1)-node quadrature rule.
A positive answer has recently been provided in [15]. The derivation of this
decomposition is based on results by Peherstorfer [13] and holds for Gauss rules
determined by a nonnegative measure with support on the real axis. We remark
that this representation reduces the computational effort required to determine
the nodes and weights of the rule ĜS2k+1; see [15] for details.

It is the purposes of the present paper to provide a new proof of the decom-
position shown in [15], and to extend the result to measures with support in
the complex plane. Section 2 provides a new self-contained proof of the result
in [15] that uses linear algebra techniques. An advantage of the new proof is
that it can be generalized to apply to measures dw with support in the complex
plane. This is done in Section 3. Specifically, we are interested in computing
approximations of matrix functionals of the form

I(f) = uT f(A)v, (11)

where A ∈ RN×N is a large nonsymmetric matrix and the vectors u, v ∈ RN

satisfy uT v = 1. Application of k steps the nonsymmetric Lanczos process to A
with initial vectors u and v generically yields a nonsymmetric tridiagonal matrix
Tk ∈ Rk×k; see, e.g., Saad [18] for a discussion of the nonsymmetric Lanczos
process. The expression

Gk(f) = eT1 f(Tk)e1 (12)

may be considered a k-node Gauss quadrature rule for the approximation of
(11); see [6]. This Gauss rule is determined by a measure that may have support
in the complex plane; see Section 3 for more details. One can determine an
optimal averaged (2k+ 1)-node quadrature rule analogous to (8) for estimating
the error in (12); see Section 3 or [17]. We show in Section 3 that the latter
quadrature rule can be expressed as a weighted sum of two quadrature rules with
k and k+ 1; the k-node rule is (12). Section 3 also discusses the situation when
Tk is a non-Hermitian complex symmetric matrix determined by the Chebyshev
algorithm applied to a sequence of real moments µj , j = 0, 1, . . . . This situation
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has recently been considered by Djukić et al. [4] in an investigation of Padé-type
approximants. Finally, Section 4 provides a computed examples with timings,
and Section 5 contains concluding remarks.

2. Decomposition of optimal averaged quadrature rules associated
with a real nonnegative measure on the real axis

Consider the spectral factorization (5) of the matrix (3) and define the or-
thogonal block diagonal matrix

Û2k+1 =

 Uk Ok

1
Ok JkUk

 ∈ R(2k+1)×(2k+1),

where “1” denotes the scalar one, Uk is the eigenvactor matrix in (5), and Jk
stands for the skew-identity of order k, i.e., Jk has ones on the anti-diagonal
and zeros elsewhere. Then, letting u = UT

k ek, we obtain

ÛT
2k+1T̂2k+1Û2k+1 =

 Λk u
√
βk Ok√

βku
T αk

√
βk+1u

T

Ok u
√
βk+1 Λk

 .
This matrix is the sum of a diagonal matrix and a “cross”. It is convenient to
permute the rows and columns symmetrically so that the “cross” is moved to
the last row and column. Thus, define the permutation matrix

P̂2k+1 = [e1, e2, . . . , ek, ek+2, ek+3, . . . , e2k+1, ek+1] ∈ R(2k+1)×(2k+1). (13)

Then

P̂T
2k+1Û

T
2k+1T̂2k+1Û2k+1P̂2k+1 =

 Λk Ok u
√
βk

Ok Λk u
√
βk+1

uT
√
βk uT

√
βk+1 αk

 .
We now can annihilate the vector u

√
βk by orthogonal similarity transformation.

In the context of divide-and-conquer methods for the symmetric tridiagonal
eigenproblem, this annihilation is referred to as deflation; see, e.g., Borges and
Gragg [2].

Define the block Givens rotation

Ĝ2k+1 =

 cIk sIk
−sIk cIk

1

 ∈ R(2k+1)×(2k+1),

where Ik ∈ Rk×k denotes the identity matrix and

c =

√
βk+1√

βk + βk+1

, s =

√
βk√

βk + βk+1

. (14)
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Then

ĜT
2k+1P̂

T
2k+1Û

T
2k+1T̂2k+1Û2k+1P̂2k+1Ĝ2k+1 =


Λk Ok 0k

Ok Λk u

√
β̃k

0Tk uT
√
β̃
k

αk

 .
Here 0k ∈ Rk denotes the zero vector and β̃k = βk + βk+1. This shows that

the eigenproblem for the matrix T̂2k+1 splits into two eigenproblems: the eigen-
problems for Tk and for the trailing (k + 1)× (k + 1) submatrix

M̃k+1 =

 Λk u

√
β̃k

uT
√
β̃k αk

 .
Define the symmetric tridiagonal matrix

T̃k+1 =



α0

√
β1 O

√
β1 α1

√
β2

. . .
. . .

. . .√
βk−2 αk−2

√
βk−1√

βk−1 αk−1

√
β̃k

O

√
β̃k αk


∈ R(k+1)×(k+1). (15)

We remark that if βk+1 is replaced by βk in (10), then β̃k in (15) is 2βk and the
matrix defines the (k + 1)-node anti-Gauss rule associated with the Gauss rule
(2); see Laurie [10] for a discussion of anti-Gauss rules.

Introduce the spectral factorization

T̃k+1 = W̃k+1Λ̃k+1W̃
T
k+1, (16)

where the matrix W̃k+1 ∈ R(k+1)×(k+1) is orthogonal and the diagonal entries

of Λ̃k+1 = diag[λ̃1, . . . .λ̃k+1] ∈ R(k+1)×(k+1) are eigenvalues of T̃k+1. Define the
orthogonal block matrix‘

Ũk+1 =

[
Uk

1

]
∈ R(k+1)×(k+1).

Since
ŨT
k+1T̃k+1Ũk+1 = M̃k+1,

it follows that
M̃k+1 = ŨT

k+1W̃k+1Λ̃k+1W̃
T
k+1Ũk+1.

This shows that the eigenvector matrix for T̂2k+1 can be expressed as

Û2k+1P̂2k+1Ĝ2k+1

[
Ik Ok,k+1

Ok+1,k ŨT
k+1

] [
Ik Ok,k+1

Ok+1,k W̃k+1

]
,
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where Oi,j ∈ Ri×j denotes the zero matrix.

Substituting the spectral factorization of the matrix T̂2k+1 into (8) yields
a quadrature rule whose nodes are the eigenvalues of this matrix and whose
weights are the square of the components of the first row of the eigenvector
matrix. We first observe that

eT1 Û2k+1P̂2k+1Ĝ2k+1 = [ceT1 Uk, se
T
1 Uk, 0],

where c and s are defined by (14). Therefore,

eT1 Û2k+1P̂2k+1Ĝ2k+1

[
Ik Ok,k+1

Ok+1,k ŨT
k+1

]
= [ceT1 Uk, se

T
1 , 0]

and, finally,

eT1 Û2k+1P̂2k+1Ĝ2k+1

[
Ik Ok,k+1

Ok+1,k ŨT
k+1

] [
Ik Ok,k+1

Ok+1,k W̃k+1

]
= [ceT1 Uk, se

T
1 W̃k+1].

We have shown the following result.

Theorem 1. Let the quadrature rule G̃k+1 be defined by the symmetric tridiag-
onal matrix (15), i.e.,

G̃k+1(f) = eT1 f(T̃k+1)e1. (17)

Then the optimal averaged quadrature rule (8) can be represented as

ĜS2k+1 =
βk+1

βk + βk+1
Gk +

βk
βk + βk+1

G̃k+1. (18)

Thus, the rule ĜS2k+1 is a weighted average of the rules Gk and G̃k+1.

Proof. The weights of the Gauss rule (2) are the square of the entries of first row
of the eigenvector matrix Uk in the spectral factorization (5) of Tk. Similarly,
the weights of the Gauss rule (17) are the square of the entries of first row of
the eigenvector matrix Wk+1 in the spectral factorization (16).

The splitting (18) has been shown in [15] in a different manner by applying
results of Peherstorfer [13]. When βk+1 is replaced by βk in (10) and (18), then

the latter formula yields a representation of the averaged rule ĜL2k+1 used by
Laurie [10].

3. Decomposition of optimal averaged quadrature rules associated
with a measure with support in the complex plane

Let A ∈ RN×N be a large nonsymmetric matrix with spectral factorization

A = SΛS−1, (19)
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where the matrix S ∈ CN×N is nonsingular and Λ = diag[λ1, . . . , λN ] ∈ CN×N .
The entries λj are eigenvalues of A; they are either real or occur in complex
conjugate pairs. We are interested in computing inexpensive approximations of
expressions of the form (11) with u, v ∈ RN such that uT v = 1. The nonsym-
metric Lanczos algorithm provides a way to determine such approximations.

Substituting the spectral factorization (19) into (11) gives

I(f) = uT f(A)v = uTSf(Λ)S−1v =

N∑
j=1

f(λj)µjµ
′
j , (20)

where [µ1, . . . , µN ] = uTS and [µ′1, . . . , µ
′
N ] = S−1v. The right-hand side of

(20) can formally be written as an integral

I(f) =

∫
f(t)dµA,u,v(t) (21)

with the measure

dµA,u,v(t) =

N∑
j=1

δ(t− λj)µjµ
′
j ,

where δ denotes the Dirac δ-function. This measure depends on the matrix A
and the vectors u and v; the support is on the real axis or at complex conjugate
points in the complex plane.

Application of k+1 steps of the nonsymmetric Lanczos process to the matrix
A with initial vectors u and v gives the Lanczos decompositions

AVk+1 = Vk+1Tk+1 + βk+1vk+2e
T
k+1,

ATUk+1 = Uk+1T
T
k+1 + γk+1uk+2e

T
k+1,

(22)

where the columns of the matrices Uk+1 ∈ RN×(k+1) and Vk+1 ∈ RN×(k+1) are
bi-orthogonal, i.e., UT

k+1Vk+1 = Ik+1. Moreover, UT
k+1vk+2 = 0, V T

k+1uk+2 = 0,

and uTk+2vk+2 = 1. The matrix

Tk+1 =


α0 γ1
β1 α1 γ2

. . .
. . .

. . .

βk−1 αk−1 γk
βk αk

 ∈ R(k+1)×(k+1).

is tridiagonal and generally nonsymmetric; see Saad [18, Algorithm 7.1] for
details on the nonsymmetric Lanczos process. If the matrix A is nonsymmetric
and the vectors u, v are such that the above matrix is symmetric, then we can
apply the formulas of Section 2. Moreover,

γi = βi or γi = −βi for all 1 ≤ i ≤ k.

Throughout this section, we assume that k � N is small enough so that the
Lanczos process does not break down and therefore the Lanczos decompositions
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(22) exist. This is the generic situation. We remark that the nonsymmetric
Lanczos process can be associated with two families of monic bi-orthogonal
polynomials, which are related to the columns of the matrices Uk and Vk; see
[6] for further details on this.

Let the matrix Tk ∈ Rk×k consist of the k first rows and columns of Tk+1.
Then

Gk(f) = eT1 f(Tk)e1 (23)

may be considered a Gauss rule with respect to the integral (21), since

Gk(f) = I(f), ∀f ∈ P2k−1;

see [6] for a proof.
Introduce the real nonsymmetric tridiagonal matrix

T̂2k+1 =

 Tk γkek Ok

βke
T
k αk γk+1e

T
1

Ok βk+1e1 JkTkJk

 ∈ R(2k+1)×(2k+1) (24)

and define the associated quadrature rule

Ĝ2k+1(f) = eT1 f(T̂2k+1)e1. (25)

Expressions of this form can be computed by evaluating the function f at the
fairly small matrix T̂2k+1 or by first calculating the spectral factorization

T̂2k+1 = Ŵ2k+1Λ̂2k+1Ŵ
−1
2k+1, (26)

which we assume to exist. This is the generic situation; the rare situation when
T̂2k+1 does not have a spectral factorization is discussed by Pozza et al. [14].

Thus, the matrix Ŵ2k+1 ∈ C(2k+1)×(2k+1) is assumed to be nonsingular

and the nontrivial entries of Λ̂2k+1 = diag[λ̂1, . . . , λ̂2k+1] ∈ C(2k+1)×(2k+1) are

eigenvalues of T̂2k+1. Substituting the spectral factorization (26) into (25) gives

Ĝ2k+1(f) = eT1 Ŵ2k+1f(Λ̂2k+1)Ŵ−12k+1e1, (27)

which shows that only the eigenvalues of T̂2k+1, the first row of the eigenvector

matrix Ŵ2k+1, and the first column of the inverse of the eigenvector matrix are
required to compute (25). We will return to this observation below.

The magnitude of the error in the Gauss rule (23),

|I(f)− Gk(f)|,

can be estimated by evaluating

|Ĝ2k+1(f)− Gk(f)|.

Computed examples reported in [17] illustrate that this estimate of the quadra-
ture error generally is quite accurate.
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It is the aim of this section to show that the expression (25) can be de-
composed into a weighted sum of simpler quadrature rules, similarly to the
decomposition of Theorem 1. Consider the spectral factorization

Tk = SkΛkS
−1
k ,

which we assume to exist. Thus, the matrix Sk ∈ Ck×k is nonsingular and
Λk ∈ Ck×k is diagonal; its nontrivial entries are eigenvalues of Tk. Define the
block matrix

Ŝ2k+1 =

 Sk Ok

1
Ok JkSk

 ∈ C(2k+1)×(2k+1).

Then

Ŝ−12k+1T̂2k+1Ŝ2k+1 =

 Λk wγk Ok

uTβk αk uT γk+1

Ok wβk+1 Λk

 ,
where u = ST

k ek and w = S−1k ek. This matrix is the sum of a diagonal matrix
and a “cross”. Similarly as in Section 2, we move the cross to the last row and
column by applying the permutation (13),

P̂T
2k+1Ŝ

−1
2k+1T̂2k+1Ŝ2k+1P̂2k+1 =

 Λk Ok wγk
Ok Λk wβk+1

uTβk uT γk+1 αk

 .
We will apply a similarity transformation to annihilate the vectors uTβk

and wγk in the last row and column of the above matrix. For simplicity, first
consider the matrix

B =

 λ 0 γk
0 λ βk+1

βk γk+1 αk

 ∈ C3×3,

and determine a nonsingular matrix

H =

[
h11 h12
h21 h22

]
∈ R2×2 (28)

such that [
H−1 02
0T2 1

]
B

[
H 02
0T2 1

]
=

 λ 0 0
0 λ ∗
0 ∗ αk

 ,
where the entries marked by ∗ generally are nonvanishing and 02 = [0, 0]T ∈ R2.
This imposes the requirements

H−1
[

γk
βk+1

]
=

[
0
∗

]
,
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or equivalently, [
γk
βk+1

]
= H

[
0
∗

]
,

and [
βk γk+1

]
H =

[
0 ∗

]
.

We may choose

h11 =
γk+1√
β2
k + γ2k+1

, h21 = − βk√
β2
k + γ2k+1

,

h12 =
γk√

β2
k+1 + γ2k

, h22 =
βk+1√
β2
k+1 + γ2k

.

Note that if βk = γk and βk+1 = γk+1, which happens when the matrix Tk+2 is
symmetric, then H is orthogonal.

Expanding the matrix H to the block matrix

Ĥ2k+1 =

 h11Ik h12Ik
h21Ik h22Ik

1

 ∈ R(2k+1)×(2k+1) (29)

gives

Ĥ−12k+1P̂
T
2k+1Ŝ

−1
2k+1T̂2k+1Ŝ2k+1P̂2k+1Ĥ2k+1 =

 Λk Ok 0k
Ok Λk wγ̆k
0Tk uT β̆k αk

 ,
where

β̆k =
βkγk + βk+1γk+1√

β2
k+1 + γ2k

, γ̆k =
√
β2
k+1 + γ2k.

This shows that the eigenproblem for T̂2k+1 splits into eigenproblems for Tk and
for the trailing principal submatrix

M̆k+1 =

[
Λk wγ̆k
uT β̆k αk

]
∈ C(k+1)×(k+1).

Define the nonsymmetric tridiagonal matrix

T̆k+1 =



α0 γ1 0
β1 α1 γ2

. . .
. . .

. . .

βk−2 αk−2 γk−1

βk−1 αk−1 γ̆k

0 β̆k αk


∈ R(k+1)×(k+1) (30)
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with spectral factorization

T̆k+1 = W̆k+1Λ̆k+1W̆
−1
k+1,

where the matrix W̆k+1 ∈ C(k+1)×(k+1) is nonsingular and the diagonal entries
of Λ̆k+1 = diag[λ̆1, . . . , λ̆k+1] ∈ C(k+1)×(k+1) are eigenvalues. Define the block
matrix

S̆k+1 =

[
Sk

1

]
∈ C(k+1)×(k+1).

Then
S̆−1k+1T̆k+1S̆k+1 = M̆k+1,

and it follows that

M̆k+1 = S̆−1k+1W̆k+1Λ̆k+1W̆
−1
k+1S̆k+1.

This shows that the eigenvector matrix for the matrix T̂2k+1, defined by (24),
can be expressed as

Ŵ2k+1 = Ŝ2k+1P̂2k+1Ĥ2k+1

[
Ik Ok,k+1

Ok+1,k S̆−1k+1

] [
Ik Ok,k+1

Ok+1,k W̆k+1

]
.

The expression (27) shows that to evaluate the functional (25) it suffices

to know the eigenvalues of the matrix T̂2k+1, the elements of the first row of

the eigenvector matrix Ŵ2k+1, and the elements of the first column of Ŵ−12k+1.
Observe that

eT1 Ŝ2k+1P̂2k+1Ĥ2k+1 = [h11e
T
1 Sk, h12e

T
1 Sk, 0],

from which we obtain

eT1 Ŵ2k+1 = eT Ŝ2k+1P̂2k+1Ĥ2k+1

[
Ik Ok,k+1

Ok+1,k S̆−1k+1

] [
Ik Ok,k+1

Ok+1,k W̆k+1

]
= [h11e

T
1 Sk, h12e

T
1 W̆k+1]. (31)

We turn to the entries of the vector Ŵ−12k+1e1. Let

H−1 =

[
h′11 h′12
h′21 h′22

]
∈ R2×2

denote the inverse of the matrix (28). Then the inverse of the matrix (29) is
given by the block matrix

Ĥ−12k+1 =

 h′11Ik h′12Ik
h′21Ik h′22Ik

1

 ∈ R(2k+1)×(2k+1),
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and it follows that

Ĥ−12k+1P
T
2k+1Ŝ

−1
2k+1e1 =

 h′11S
−1
k e1

h′21S
−1
k e1
0

 .
Hence,

Ŵ−12k+1e1 =

[
Ik Ok,k+1

Ok+1,k W̆−1k+1

] [
Ik Ok,k+1

Ok+1,k S̆k+1

] h′11S
−1
k e1

h′21S
−1
k e1
0


and, finally,

Ŵ−12k+1e1 =

[
h′11S

−1
k e1

h′21W̆
−1
k+1e1

]
. (32)

We have shown the following result.

Theorem 2. The quadrature rule (25) can be expressed as a weighted sum of
the rules (23) and

Ğk+1(f) = eT1 f(T̆k+1)e1. (33)

Specifically,
Ĝ2k+1 = h11h

′
11Gk + h12h

′
21Ğk+1. (34)

In particular, the nodes of the rule Gk are nodes of Ĝ2k+1.

Proof. Let u◦v = [u1v1, . . . , u`v`] denote the Hadamard product of the `-vectors
u and v. Then the quadrature rules (23), (33), and (25) can be expressed as

Gk(f) =

k∑
j=1

f(λj)(e
T
1 Sk ◦ S−1k e1)j ,

Ğk+1(f) =

k+1∑
j=1

f(λ̆j)(e
T
1 W̆k+1 ◦ W̆−1k+1e1)j ,

Ĝ2k+1(f) =

2k+1∑
j=1

f(λ̂j)(e
T
1 Ŵ2k+1 ◦ Ŵ−12k+1e1)j .

The theorem now follows from (31) and (32).

We conclude this section by considering some special cases. Application
of k + 1 steps of the nonsymmetric Lanczos process to a nonsymmetric matrix
A ∈ RN×N with initial vectors u, v ∈ RN such that uT v = 1 generically gives the
Lanczos decompositions (22) with a generally nonsymmetric tridiagonal matrix
Tk+1 ∈ R(k+1)×(k+1) in which the off-diagonal entries satisfy

βj = γj or βj = −γj , j = 1, 2, . . . , k + 1.

14



It follows that the matrix (28) can be chosen to be a Givens rotation when

sign(βkβk+1) = sign(γkγk+1),

and then the weights in (34) can be replaced by weights c and s similarly as in
Theorem 1. We recall that c and s are defined in (14).

Given moments or modified moments, the Chebyshev algorithm or modified
Chebyshev algorithm determines a complex symmetric tridiagonal matrix whose
entries are recurrence coefficients for orthogonal polynomials associated with a
bilinear form determined by a measure that defines the moments; see. e.g.,
[7] for details. We assume here that the Chebyshev or modified Chebyshev
algorithms do not break down. This is the generic situation. An application of
the Chebyshev algorithm to the computation of certain Padé-type approximants
is described in [4]. The off-diagonal entries of the complex symmetric matrix
Tk+1 ∈ C(k+1)×(k+1) determined in this manner satisfy

βj > 0 or iβj < 0, j = 1, 2, . . . , k + 1,

where i =
√
−1. The matrix (28) can be chosen as a Givens rotation when

βkβk+1 ∈ R and γkγk+1 ∈ R,

and the weights in (34) then can be replaced by weights c and s similarly as in
Theorem 1.

We finally consider the application of the non-Hermitian Lanczos algorithm
to a large matrix A ∈ CN×N with initial vectors u, v ∈ CN , such that uHv = 1,
where the superscript H denotes transposition and complex conjugation. If the
matrix A is complex symmetric and ū = v, where the bar denotes complex
conjugation, then the decompositions (22) with T replaced by H simplify to
only one decomposition.

4. A computed example

The performance of the optimal averaged Gauss quadrature rules has al-
ready been illustrated in [16, 17] and timings for the representation (18) are
presented in [15]. We therefore only show some timings that demonstrate that
the evaluation of (34) can be carried out faster than the evaluation of (25). All
computations are carried out using Matlab version R2021a on a MacBook Pro
laptop computer with an M1 processor and 8GB of RAM. The computations
are performed with about 15 significant decimal digits.

We evaluate Gauss and optimal averaged Gauss rules associated with non-
symmetric tridiagonal matrices by computing the spectral factorization of these
matrices. For instance, the optimal averaged Gauss rule (25) is evaluated by
first computing the spectral factorization (26) and then evaluating (27). This

approach of evaluating (25) works well if the eigenvector matrix Ŵ2k+1 is not
very ill-conditioned. The computation of the spectral factorization (26) by the
QR algorithm requires about 21 2

3 (2k + 1)3 + O(k2) arithmetic floating point
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operations (flops); see, e.g., [8, p. 376 and p. 391]. This flop count takes into

account that the matrix T̂2k+1 is of upper Hessenberg form. The evaluation of

(25) also requires the evaluation of Ŵ−12k+1e1, which can be carried out by solving

a linear system of equations with the matrix Ŵ2k+1 by computing its LU fac-
torization. This requires 2(2k+ 1)3/3 +O(k2) flops; see, e.g., [8, p. 116]. We do
not count the computational effort required to evaluate the integrand f in (25),
because this is independent of the representation of the quadrature rule (25)
being used. Thus, the flop count for the evaluation of (25) is 178 2

3k
3 +O(k2).

We turn to the evaluation of the representation (34) of (25). Similarly
as above, the evaluation of each integral in the representation (34) demands
22 1

3k
3 +O(k2) flops resulting in a total flop count of 44 2

3k
3 +O(k2). This flop

count is much smaller than the count for the evaluation of (25). This also is the
flop count for evaluating (9) when the quadrature rules are defined by (23) and
(25), and the representation (34) is used.

When, instead, using the representation (27), the evaluation of (9) requires
178 2

3k
3 + 22 1

3k
3 + O(k2) = 201k3 + O(k2) flops, because the Gauss rule (23)

also has to be evaluated. We remark that for certain integrands with special
properties, it may be possible to evaluate of the representations (25) and (34)
with a lower flop counts by calculating the integrals without using the spectral
factorizations of the tridiagonal matrices. We will not dwell on these special
situations.

Flop counts provide a measure of computational complexity. However, tim-
ings of algorithms do not only include arithmetic work, but also the time re-
quired to access and move data. Therefore, timings of algorithms generally
are not proportional to flop counts. Table 1 shows the ratio of the timings for
the evaluation of the quadrature rules (12) and (25), and the evaluation of the
representation (34). The timings are for the dominating computational effort
discussed above. If the timings would be proportional to the flop count, then
the ratio should be about 4.5.

Timings of the same computations carried out at different times typically
differ. Table 1 therefore reports mean values over 1000 runs. The table shows
that the representation (34) can be evaluated faster than the formulas (12) and
(25). The reported timings illustrate that when the number of nodes k in (12)
is small, the time required for data access and data movement dominates the
time needed for arithmetic operations.

5. Conclusion

Section 2 of this paper presents a new derivation of the representation (18)
of the rule (8). This derivation has the advantage of carrying over, mutatis

mutandis, to the situation when the tridiagonal matrix T̂2k+1 is nonsymmetric.
Section 3 presents the derivation. The advantages of using the new derived
formulas is that they can be evaluated faster than available formulas. This
is illustrated by timings reported in Section 4, where we show that the new
representation (34) can evaluated faster than the representation (25).
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Table 1: Ratios of average CPU times for computing the Gauss rule (12) and the generalized
averaged Gauss rule using the representation (25), and for computing the generalized averaged
Gauss rule using the representation (34), which yields the Gauss rule (12) without additional
work, for several values of k. The table shows averages over 1000 runs.

k
time for computing the rules (12) and (25)

time for computing the rule (34)

1000 3.3
100 2.5
50 2.4
25 2.6
12 1.9
6 1.7
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