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Abstract

Optimal averaged Gauss quadrature rules provide estimates for the quadrature
error in Gauss rules, as well as estimates for the error incurred when approxi-
mating matrix functionals of the form u” f(A)v with a large matrix A € RV*N
by low-rank approximations that are obtained by applying a few steps of the
symmetric or nonsymmetric Lanczos processes to A; here u,v € R¥ are vectors.
The latter process is used when the measure associated with the Gauss quadra-
ture rule has support in the complex plane. The symmetric Lanczos process
yields a real tridiagonal matrix, whose entries determine the recursion coefli-
cients of the monic orthogonal polynomials associated with the measure, while
the nonsymmetric Lanczos process determines a nonsymmetric tridiagonal ma-
trix, whose entries are recursion coeflicients for a pair of sets of bi-orthogonal
polynomials. Recently, it has been shown, by applying the results of Peherstor-
fer, that optimal averaged Gauss quadrature rules, which are associated with
a nonnegative measure with support on the real axis, can be expressed as a
weighted sum of two quadrature rules. This decomposition allows faster evalu-
ation of optimal averaged Gauss quadrature rules than the previously available
representation. The present paper provides a new self-contained proof of this
decomposition that is based on linear algebra techniques. Moreover, these tech-
niques are generalized to determine a decomposition of the optimal averaged
quadrature rules that are associated with the tridiagonal matrices determined
by the nonsymmetric Lanczos process. Also, the splitting of complex symmetric
tridiagonal matrices is discussed. The new splittings allow faster evaluation of
optimal averaged Gauss quadrature rules than the previously available repre-
sentations. Computational aspects are discussed.
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1. Introduction

Let dw be a nonnegative measure on (part of) the real axis with infinitely
many points of support and such that all moments py = [ t*dw(t), k =0,1,... ,
are well defined. For notational simplicity, we will assume that pg = 1. The
first part of this paper is concerned with the approximation of integrals of the
form

7(1) = [ fe)du) (1)
with a suitable integrand f, by a k-node Gauss quadrature rule

k

Gil(f) =D f(tj)w;, (2)

j=1

where the ¢; are the nodes and the w; are the weights of the quadrature rule.
Gauss rules are closely associated with monic orthogonal polynomials {p; }‘J?’;O
determined by the inner product

(f9) = [ Fg(00du®).
Thus, the polynomials p; have leading coefficient one and satisfy

) >0, i=yj
<p1,upj> - { 0’ Z7éj

It is well known that the polynomials p; satisfy a three-term recurrence relation
of the form

pi+1(t) = (t —a;)p;(t) — Bjpj-1(t), 7=0,1,...,

with p_1(t) =0, po(t) = 1, and the coefficients «; and §; are given by

o = PP gy
(pj, 1)

B = _PiPi) g g9
<pj717pj71>

with B9 = 1. The polynomial p; has k distinct real zeros, all of which are in the
convex hull of the support of dw. The nodes t1, ..., t; of the Gauss rule (2) are
the zeros of py and all the weights wy, ..., wy are positive; see, e.g., [7, 20] for
proofs.

Among all interpolatory quadrature rules with k& nodes for approximating
integral (1), the Gauss rule (2) has maximal degree of precision 2k — 1, i.e.,

Gr(p) = Z(p), Vp € Pog_1,



where Py, 1 denotes the set of all polynomials of degree at most 2k — 1; see
[7, 20]. This makes Gauss quadrature rules well suited for the approximation of
many integrals of the form (1).

The Gauss rule (2) can be associated with the symmetric tridiagonal matrix

Fo0 VB O
\/ﬂTOél\/E

Tk: ERka. (3)

VBr—2 k-2 \/Br-1

| O Br-1  ar-1 ]
The nodes t1, ..., t; of the Gauss rule (2) are the eigenvalues of the matrix (3),
and the weights w1, ..., w; are the square of the first components of normalized

eigenvectors. The nodes and weights of the Gauss quadrature rule (2) can
be computed efficiently in only O(k?) arithmetic floating point operations by
applying the Golub-Welsch algorithm [9] to the matrix T). The representation

Gi(f) = el f(Tx)er (4)
of rule (2) can be seen to be valid by substituting the spectral factorization
Ty, = Up AU (5)

into (4). Here Uy € RF*¥ is an orthogonal matrix and Ay = diag[ty, ta,..., %] €
R¥**_ The representation (4) exploits the fact that jo = 1. Throughout this
paper, e; = [0,...,0,1,0,... ,0]7 denotes the jth axis vector and the superscript
T stands for transposition.

It is important to be able to estimate the magnitude of the quadrature error,

&(f) = 1Z(f) = Gr()], (6)

because this makes it possible to determine a suitable number of nodes k of
the Gauss rule (2) when approximating the integral (1) to achieve a desired
accuracy. Too few nodes do not yield an accurate enough approximation, while
the use of unnecessarily many nodes requires the evaluation of the integrand f
at needlessly many nodes.

A classical approach to estimate the error (6) is to evaluate the (2k+1)-node
Gauss-Kronrod rule Ko 41 that is associated with Gy and use

IKakt1(f) — Gr(f)]

as an estimate of (6). The rule Kgj11 shares the k nodes of Gi; the remaining
k 4+ 1 nodes and the weights are chosen so that Kor11 is of degree of precision
at least 3k + 1. However, a difficulty when seeking to evaluate Gauss-Kronrod
rules is that nodes that are not nodes of the Gauss rule (2) are not guaranteed
to live in the convex hull of the support of the measure dw; in fact, they are



not guaranteed to be real. This may limit the applicability of Gauss-Kronrod
quadrature rules to integrands that can be defined in a sufficiently large domain
in the complex plane that contains the support of the measure dw and all
nodes of the Gauss-Kronrod rule; it also complicates the computation of the
Gauss-Kronrod rules. We refer to Notaris [12] for a nice fairly recent survey of
Gauss-Kronrod rules and to Ammar et al. [1], Calvetti et al. [3], and Laurie
[11] for computational aspects.

These difficulties prompted the development of averaged Gauss rules, which
can be used instead of Gauss-Kronrod rules, to estimate the error in Gauss rules.
The first averaged Gauss rule was proposed by Laurie [10], who suggested that
the average of the Gauss rule (2) and an associated so-called (k + 1)-node anti-
Gauss rule be evaluated. We will refer to this averaged rule as Q\QL,C 4+1- The
magnitude of the quadrature error (6) can be estimated by

1G5 () = Gr( )] (7)

Similarly as the Gauss-Kronrod rule Kok 1, the rule §2Lk+1 has 2k + 1 nodes,

k of which are nodes of the Gauss rule (2). The rule (szk 41 1s easy to compute
by using the Golub-Welsch algorithm [9]; its nodes are guaranteed to be real
and it has degree of precision at least 2k + 1. Moreover, computed examples
reported in [16] indicate that the quadrature error achieved with these averaged
rules may be smaller than suggested by their degree of precision. Therefore, the
estimate (7) often is a useful approximation of the quadrature error (6).

Ehrich [5] considered k-node Gauss-Hermite and Gauss-Laguerre quadrature
rules, and in this context re-weighted the averaged rule of Laurie to obtain a
new (2k+1)-node quadrature rule, with & of the nodes being nodes of the Gauss
rule G, and with degree of precision at least 2k + 2. This degree of precision is
the largest possible for all re-weighted averaged rules with 2k 4+ 1 nodes. These
rules therefore often are referred to as optimal averaged Gauss rules.

By applying results by Peherstorfer [13] on positive quadrature formulas,
Spalevié [19] derived a new representation of optimal averaged Gauss quadra-
ture rules. This representation is valid not only for Gauss-Hermite and Gauss-
Laguerre quadrature rules, but for all nonnegative measures dw with support
on the real axis, for which there are Gauss rules. Specifically, Spalevié¢ [19] de-
termined a real symmetric tridiagonal matrix fng S R(%H)X(Qk“), defined
below, such that R R

G (f) = ef f(Tart1)er (8)
represents the optimal averaged Gauss quadrature rule associated with the
Gauss rule (2). It has real nodes and degree of precision at least 2k + 2. Further,
computed examples reported in [16] indicate that the quadrature error for many
measures and integrands may be smaller than what is suggested by the degree
of precision. Therefore, it is attractive to use

G541 () — G ()] 9)

as an estimate for the magnitude of the quadrature error (6).



Let Jj, € R¥** denote the skew-identity of order k, i.e., Jj, has ones on the
anti-diagonal and zeros elsewhere. The matrix in (8) is given by

R T, v Brex Oy
Tors1 = | VBrel Qg VBrrel | € REFHDX (k4D (10)
Or  Bryrer  JTiJy

where O, € R*¥*¥ denotes the zero matrix. The nodes of this quadrature formula
can be computed by applying the Golub-Welsch algorithm to the matrix To;1;
however, faster methods are available; see below. Moreover, when Sk in (10)
is replaced by S, the analogue of the quadrature rule (8) so obtained is the
averaged formula gng 41 introduced by Laurie [10]; see [19] for details.

The fact that the averaged Gauss rule Q\QLk 41 can be written as the average of
the Gauss rule (2) and an associated (k+1)-node anti-Gauss rule, see [10], raises
the question whether the optimal averaged Gauss rule éfk 41 can be expressed
as a weighted sum of the Gauss rule (2) and a (k + 1)-node quadrature rule.
A positive answer has recently been provided in [15]. The derivation of this
decomposition is based on results by Peherstorfer [13] and holds for Gauss rules
determined by a nonnegative measure with support on the real axis. We remark
that this representation reduces the computational effort required to determine
the nodes and weights of the rule G5, ; see [15] for details.

It is the purposes of the present paper to provide a new proof of the decom-
position shown in [15], and to extend the result to measures with support in
the complex plane. Section 2 provides a new self-contained proof of the result
in [15] that uses linear algebra techniques. An advantage of the new proof is
that it can be generalized to apply to measures dw with support in the complex
plane. This is done in Section 3. Specifically, we are interested in computing
approximations of matrix functionals of the form

Z(f) = u" f(A), (11)

where A € RV*N is a large nonsymmetric matrix and the vectors u,v € RV
satisfy uTv = 1. Application of k steps the nonsymmetric Lanczos process to A
with initial vectors w and v generically yields a nonsymmetric tridiagonal matrix
T). € RF*k: see, e.g., Saad [18] for a discussion of the nonsymmetric Lanczos
process. The expression

Gr(f) = el f(Ti)er (12)

may be considered a k-node Gauss quadrature rule for the approximation of
(11); see [6]. This Gauss rule is determined by a measure that may have support
in the complex plane; see Section 3 for more details. One can determine an
optimal averaged (2k + 1)-node quadrature rule analogous to (8) for estimating
the error in (12); see Section 3 or [17]. We show in Section 3 that the latter
quadrature rule can be expressed as a weighted sum of two quadrature rules with
k and k + 1; the k-node rule is (12). Section 3 also discusses the situation when
T}, is a non-Hermitian complex symmetric matrix determined by the Chebyshev
algorithm applied to a sequence of real moments uj, j = 0,1, ... . This situation



has recently been considered by Djukic¢ et al. [4] in an investigation of Padé-type
approximants. Finally, Section 4 provides a computed examples with timings,
and Section 5 contains concluding remarks.

2. Decomposition of optimal averaged quadrature rules associated
with a real nonnegative measure on the real axis

Consider the spectral factorization (5) of the matrix (3) and define the or-
thogonal block diagonal matrix

~ Uk Ok
Usgy1 = 1 € REHDX(2k+1)

where “1” denotes the scalar one, Uy, is the eigenvactor matrix in (5), and Jg
stands for the skew-identity of order k, i.e., Ji has ones on the anti-diagonal
and zeros elsewhere. Then, letting u = UkT ek, we obtain

~ ~ N Ay U\/ﬁT@ Oy,
Usp i1 Toks1Uskqr = | v/Bru® ay, VBreru”
Or  u/Bryr M

This matrix is the sum of a diagonal matrix and a “cross”. It is convenient to
permute the rows and columns symmetrically so that the “cross” is moved to
the last row and column. Thus, define the permutation matrix

5 2h41) X (2k+1
Pay1 = [€1,€0, ., €k, €ht2, €hids- - - Copt1, 1] € REFFDXEEHD 0 (13)

Then

N Y R N R Ak Ok U\/ﬂk
P2T1g+1U;g+1T2k+1U2k+1P2k+1 = Oy Ay U/ Br+1
u" /B u” vV Brt1 (07"

We now can annihilate the vector u+/B; by orthogonal similarity transformation.
In the context of divide-and-conquer methods for the symmetric tridiagonal
eigenproblem, this annihilation is referred to as deflation; see, e.g., Borges and
Gragg [2].

Define the block Givens rotation

CIk SIk

a2k+1= —sl,  cly ER(2k+1)><(2k+1),

1

where Ij, € RF*F denotes the identity matrix and

ee VB s VB (14)
VB + Brt1 v B + Bry1



Then
Ay Oy O

AT BT ST A7 5 A
Gis1Pari1Uspy1 Tor1 Uz 1 Py 1 Goagyr = | Ok Ay u\/ B
T T,/”
0y wu \/Ek Qg

Here 0;, € R¥ denotes the zero vector and Ek = Bk + Brr1. This shows that
the eigenproblem for the matrix 75,1 splits into two eigenproblems: the eigen-
problems for Tj and for the trailing (k + 1) x (k + 1) submatrix

Ay u\/ Br

uT\/EilC ag

Define the symmetric tridiagonal matrix

My =

S O
VB o VB2

c R(k+1)><(k+1). (15)

- . . )
k1 VBrk—2 p_2 /Br-1

Br—1  Qp—1 B

| O Br ap |

We remark that if 8,11 is replaced by B in (10), then By, in (15) is 2, and the
matrix defines the (k + 1)-node anti-Gauss rule associated with the Gauss rule
(2); see Laurie [10] for a discussion of anti-Gauss rules.

Introduce the spectral factorization

Tht1 = Wkﬂxkﬂwgﬂ, (16)

where the matrix W;Hl e RE+Dx(k+1) i5 orthogonal and the diagonal entries
of Ap1 = diag[hy, ... Apy1] € REFDXEHD are eigenvalues of Ty 1. Define the
orthogonal block matrix‘

S L P
Since L -
Ui Tir1Ussr = Myqa,
it follows that . .
M1 = Uy Wipr A a W Upgr.
This shows that the eigenvector matrix for f2k+1 can be expressed as

Iy, Ok k+1 } [ 1y, Ok k+1

62k+1132k+1é2k+1 T
T
Ok+1k Uy Ok+1 Wit



where O; ; € R™J denotes the zero matrix.

Substituting the spectral factorization of the matrix Thyyy into (8) yields
a quadrature rule whose nodes are the eigenvalues of this matrix and whose
weights are the square of the components of the first row of the eigenvector
matrix. We first observe that

el Usjey1 Porey1 Garsr = [ce] U, sel Uy, 0],
where ¢ and s are defined by (14). Therefore,

I Okksa

e s oA
e1 Uaky1Popy1Gapt1 { Orirn OF
, k41

] = [cel Uy, seT', 0]
and, finally,

~ ~ ~ I 0] 1 O
T k ke k1 k ke k41
e1 Usk4+1Por+1Gor+1 [ ~ =

T
Ok+16 Uy Ok+1.6 Wit

= [ceT Uy, seT Wiiq].
We have shown the following result.

Theorem 1. Let the quadrature rule §k+1 be defined by the symmetric tridiag-
onal matriz (15), i.e.,

Gri1(f) = ef f(Trr)er. (17)
Then the optimal averaged quadrature rule (8) can be represented as
Br+1 B

G + Gt (18)

2
Br + Brt1 Br + Br+1

55 _
ng+1 -

Thus, the rule QAQSkH is a weighted average of the rules Gy, and Gy 1.

Proof. The weights of the Gauss rule (2) are the square of the entries of first row
of the eigenvector matrix Uy in the spectral factorization (5) of Ty. Similarly,
the weights of the Gauss rule (17) are the square of the entries of first row of
the eigenvector matrix Wy in the spectral factorization (16). O

The splitting (18) has been shown in [15] in a different manner by applying
results of Peherstorfer [13]. When ()41 is replaced by S in (10) and (18), then
the latter formula yields a representation of the averaged rule QAQLk 41 used by
Laurie [10].

3. Decomposition of optimal averaged quadrature rules associated
with a measure with support in the complex plane
Let A € RV*N be a large nonsymmetric matrix with spectral factorization

A=SAS, (19)



where the matrix S € CV*¥ is nonsingular and A = diag[\y, ..., Ay] € CV*V,

The entries A; are eigenvalues of A; they are either real or occur in complex

conjugate pairs. We are interested in computing inexpensive approximations of

expressions of the form (11) with u,v € RY such that «”v = 1. The nonsym-

metric Lanczos algorithm provides a way to determine such approximations.
Substituting the spectral factorization (19) into (11) gives

N
I(f) = u" f(Ayw = " SF(N) S 0 =" F(N ), (20)
Jj=1

where [u1,...,un] = uTS and [y),...,iy] = S~!v. The right-hand side of
(20) can formally be written as an integral

2(1) = [ FOdpann(® e
with the measure

N
dppawn(t) =D 0t = N,
j=1

where ¢ denotes the Dirac §-function. This measure depends on the matrix A
and the vectors u and v; the support is on the real axis or at complex conjugate
points in the complex plane.

Application of k+1 steps of the nonsymmetric Lanczos process to the matrix
A with initial vectors u and v gives the Lanczos decompositions

AViyr = Vi1 Thsr + Besr1ves2€l 4,
T T ba (22)
A Uk+1 = Uk+1Tk+1 + ’7k+1uk+26k+1,

where the columns of the matrices Uy, € RV**+D and Vi, € RNX(E+D are
bi-orthogonal, i.e., U,?+1Vk+1 = Iy+1. Moreover, Ug+1vk+2 =0, ijj,’_luk+2 =0,
and u£+2vk+2 = 1. The matrix

@y N
B1 o 72

Treyr = e R+ X (k+1)

Br—1 ar—1 Yk
Br o

is tridiagonal and generally nonsymmetric; see Saad [18, Algorithm 7.1] for
details on the nonsymmetric Lanczos process. If the matrix A is nonsymmetric
and the vectors u, v are such that the above matrix is symmetric, then we can
apply the formulas of Section 2. Moreover,

vi=PB or v=-83 forall 1<i<k.

Throughout this section, we assume that k¥ < N is small enough so that the
Lanczos process does not break down and therefore the Lanczos decompositions



(22) exist. This is the generic situation. We remark that the nonsymmetric
Lanczos process can be associated with two families of monic bi-orthogonal
polynomials, which are related to the columns of the matrices Uy and Vj; see
[6] for further details on this.

Let the matrix T), € RF¥*F consist of the k first rows and columns of Ty ;.
Then

Gr(f) = el f(Th)er (23)
may be considered a Gauss rule with respect to the integral (21), since
Or(f) =Z(f),  VfePy_y;

see [6] for a proof.
Introduce the real nonsymmetric tridiagonal matrix

T, Vrek Oy

T T T
Top+1 = | Brey, ag, Vk+1€1
Or  Brrien JpTiJr

c R(2k+l)><(2k+l) (24)

and define the associated quadrature rule

Gors1(f) = X f(Topi1)er (25)

Expressions of this form can be computed by evaluating the function f at the
fairly small matrix T5,41 or by first calculating the spectral factorization

Topr1 = Waks1Aoen Wik, (26)

which we assume to exist. This is the generic situation; the rare situation when
Tors1 does not have a spectral factorization is discussed by Pozza et al. [14].
Thus, the matrix W2k+1 € CERH)XEk+1) js assumed to be nonsingular
and the nontrivial entries of Agpyq = dlag[)q, .. )\2k+1] € C@F+1)X(2k+1) are
cigenvalues of Thy1. Substituting the spectral factorlzatlon (26) into (25) gives

Gors1(f) = e{W2k+1f(K2k+1)W27€1+1617 (27)

which shows that only the eigenvalues of T 2k+1, the first row of the eigenvector
matrix W2k+1, and the first column of the inverse of the eigenvector matrix are
required to compute (25). We will return to this observation below.

The magnitude of the error in the Gauss rule (23),

1Z(f) = Gr(f)l,

can be estimated by evaluating

Gor1(f) = G (F)]-

Computed examples reported in [17] illustrate that this estimate of the quadra-
ture error generally is quite accurate.

10



It is the aim of this section to show that the expression (25) can be de-
composed into a weighted sum of simpler quadrature rules, similarly to the
decomposition of Theorem 1. Consider the spectral factorization

Ty = SpAS; Y,

which we assume to exist. Thus, the matrix S; € CF** is nonsingular and
Aj € CF** is diagonal; its nontrivial entries are eigenvalues of Tj. Define the
block matrix

) Se O
Soky1 = 1
Oy, JiSk

€ C@k+1)x(2k+1)

Then
R Ay WY Oy
5§k1+1T2H152k+1= u'Br o uTr |
Or  wPhrs Ay

where u = Sgek and w = S,;lek. This matrix is the sum of a diagonal matrix
and a “cross”. Similarly as in Section 2, we move the cross to the last row and
column by applying the permutation (13),

R R R R ~ Ay Oy, WYk
T a-1
Psy 1195141 Tok+152k+1 Pak 1 = (T)k TAk wBk41
u B U Ye41 Qg

We will apply a similarity transformation to annihilate the vectors u” 3
and w7y, in the last row and column of the above matrix. For simplicity, first
consider the matrix

A 0 Yk
B=1] 0 A g | €C¥
Be Y1 Qg

and determine a nonsingular matrix

hit hi2 2%2
H = eR 28
[ ha1r  hao } (28)
such that
H! 0o H 0, A0 0
2 2 0 = AL

where the entries marked by * generally are nonvanishing and 0, = [0,0]7 € R2.
This imposes the requirements

e =0

11



or equivalently,

and

We may choose

hi1

hio

= ki1 ha1
vV Bi + 71%+1
_ Vi Doy

\/BI%+1 +71%

B
\ Bi + 7}3+1

Br+1

\/ 51%+1 +7i

Note that if 8y = v and Bryr1 = Yk+1, which happens when the matrix Ty o is
symmetric, then H is orthogonal.

Expanding the matrix H to the block matrix

Hopy1 =

gives

ﬁfl

where

v

Br

hiidy
hai 1y,

hia1y,
hoa Iy,

ST Al A ~ ~ ~
2k+1P2k+152k+1T2k+152k+1P2k+1H2k+1 =

~ Bevk + Brt17k+1

\/BI%-H "‘71%

€ Rk+Dx(2k+1)

o =

(29)

A, Oy O
Ok Aku w’yk s
0f u'Br oy

\/ﬁ%+1 + 7

This shows that the eigenproblem for fgk.}rl splits into eigenproblems for T} and
for the trailing principal submatrix

Ay

u® By,

WY

Myiq = { I~

Define the nonsymmetric tridiagonal matrix

Thy1 =

_Oéo

g4t
B1 (€3] Y2
Br—2 Qk—2  Ye—1
Br—1 o1
0 Bk

12

} € CkHDx (k1)

0_

c R(k-‘rl)x(k-‘rl) (30)

Vi

g




with spectral factorization
Tt = Wi Apa WY

where the matrix Vka—Hﬁ CF+1)x(k+1) is nonsingular and the diagonal entries
of Apy1 = diag[Ay, ..., App1] € CEHUXEHD are eigenvalues. Define the block
matrix

Then
St Trr1Sk41 = My,
and it follows that
Mk—i—l = S‘k_leT/kH]XkHVT/k_jlng.

This shows that the eigenvector matrix for the matrix j_\'QkJ’_l, defined by (24),
can be expressed as

= a = ~ Iy, Ok k+1 Iy, Ok k+1
Wak 1 = Soy1Por+1Hort1 ’ o

S—1
Okt1k Skt Ort1.6 Wit

The expression (27) shows that to evaluate the functional (25) it suffices
to know the eigenvalues of the matrix Thx11, the elements of the first row of

the eigenvector matrix W2k+17 and the elements of the first column of Wz_kil
Observe that

TG 5 5 T T
e1 Sok+1Poky1Hog+1 = [h11€7 Sk, hizer Sk, 0],

from which we obtain

o~ ~ ~ ~ I O 1 1 O
elTW2k+1 = eTSQk+1P2k+1H2k+1 [ Opirn 5,’_1+1 Okfl ) [/T];::ll
) k+1 ,
= [hue?sk, hlge?Vqu_,_l]. (31)

We turn to the entries of the vector /Wg_klﬂel. Let
/ h/
H-! — [ 1 o ] c R2%2
21 Mo

denote the inverse of the matrix (28). Then the inverse of the matrix (29) is
given by the block matrix

7—1 h/lllk hll2[k 2k+1)x (2k+1
Hypq = ho I hio Iy € REkHx( +)7

13



and it follows that

/ —1
7—1 T a—1 hllSk 161
_ _ - pRd
Hyp 1 Popy1Sopa€1 = | by Sy e
0
Hence,
Ry, S, te
T Iy, O k+1 Iy, Ok k+1 ey
1= g1 & 1
Zk+1 Ok+16 Wi Ok+1.c Skt 2 Ok
and, finally,

o~

B Sy e ] . (32)

W71 e = |: v
2k+1¢1 / -1
ho1Wiiier

We have shown the following result.

Theorem 2. The quadrature rule (25) can be expressed as a weighted sum of
the rules (23) and

Ger1(f) = ef f(Tisr)er (33)
Specifically, R y
Gok+1 = h11h1 Gk + hi2hh; Gria . (34)

In particular, the nodes of the rule Gy are nodes of §2k+1,

Proof. Let uov = [ujvy, ..., upve] denote the Hadamard product of the f-vectors
u and v. Then the quadrature rules (23), (33), and (25) can be expressed as

k
Gi(f) = D f)(el Spo Sy ten);,
j=1

k+1
Gera(f) = D F)(e Wi o Wi ler);,
j=1

2%k+1
Gokta1(f) = Z FOG) (e Waggr o Wk je1);.
j=1
The theorem now follows from (31) and (32). O

We conclude this section by considering some special cases. Application
of k + 1 steps of the nonsymmetric Lanczos process to a nonsymmetric matrix
A € RVXN with initial vectors u, v € RY such that u”v = 1 generically gives the
Lanczos decompositions (22) with a generally nonsymmetric tridiagonal matrix
Thy1 € REFDX(EHD in which the off-diagonal entries satisfy

Bi=r; or Bj=—v;, j=12,...k+1

14



It follows that the matrix (28) can be chosen to be a Givens rotation when

sign(BrBr+1) = sign(Yave+1)s

and then the weights in (34) can be replaced by weights ¢ and s similarly as in
Theorem 1. We recall that ¢ and s are defined in (14).

Given moments or modified moments, the Chebyshev algorithm or modified
Chebyshev algorithm determines a complex symmetric tridiagonal matrix whose
entries are recurrence coefficients for orthogonal polynomials associated with a
bilinear form determined by a measure that defines the moments; see. e.g.,
[7] for details. We assume here that the Chebyshev or modified Chebyshev
algorithms do not break down. This is the generic situation. An application of
the Chebyshev algorithm to the computation of certain Padé-type approximants
is described in [4]. The off-diagonal entries of the complex symmetric matrix
Thy1 € CHEHDX(+D) determined in this manner satisfy

B; >0 or iB; <0, 7=1,2,...,k+1,
where i = /—1. The matrix (28) can be chosen as a Givens rotation when

Bebr+1 € R and ypye41 €R,

and the weights in (34) then can be replaced by weights ¢ and s similarly as in
Theorem 1.

We finally consider the application of the non-Hermitian Lanczos algorithm
to a large matrix A € CV*V with initial vectors u,v € CV, such that uv =1,
where the superscript  denotes transposition and complex conjugation. If the
matrix A is complex symmetric and u = v, where the bar denotes complex
conjugation, then the decompositions (22) with 7 replaced by ¥ simplify to
only one decomposition.

4. A computed example

The performance of the optimal averaged Gauss quadrature rules has al-
ready been illustrated in [16, 17] and timings for the representation (18) are
presented in [15]. We therefore only show some timings that demonstrate that
the evaluation of (34) can be carried out faster than the evaluation of (25). All
computations are carried out using Matlab version R2021a on a MacBook Pro
laptop computer with an M1 processor and 8GB of RAM. The computations
are performed with about 15 significant decimal digits.

We evaluate Gauss and optimal averaged Gauss rules associated with non-
symmetric tridiagonal matrices by computing the spectral factorization of these
matrices. For instance, the optimal averaged Gauss rule (25) is evaluated by
first computing the spectral factorization (26) and then evaluating (27). This
approach of evaluating (25) works well if the eigenvector matrix W2k+1 is not
very ill-conditioned. The computation of the spectral factorization (26) by the
QR algorithm requires about 212 (2k + 1)* + O(k?) arithmetic floating point
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operations (flops); see, e.g., [8, p.376 and p.391]. This flop count takes into
account that the matrix Thg 11 is of upper Hessenberg form. The evaluation of
(25) also requires the evaluation of W{,C}Hel, which can be carried out by solving

a linear system of equations with the matrix Ws,,1 by computing its LU fac-
torization. This requires 2(2k + 1)3/3 + O(k?) flops; see, e.g., [8, p. 116]. We do
not count the computational effort required to evaluate the integrand f in (25),
because this is independent of the representation of the quadrature rule (25)
being used. Thus, the flop count for the evaluation of (25) is 1782k% + O(k?).

We turn to the evaluation of the representation (34) of (25). Similarly
as above, the evaluation of each integral in the representation (34) demands
221k + O(k?) flops resulting in a total flop count of 442k* + O(k?). This flop
count is much smaller than the count for the evaluation of (25). This also is the
flop count for evaluating (9) when the quadrature rules are defined by (23) and
(25), and the representation (34) is used.

When, instead, using the representation (27), the evaluation of (9) requires
1782k3 4 224k 4+ O(k?) = 201k® + O(k?) flops, because the Gauss rule (23)
also has to be evaluated. We remark that for certain integrands with special
properties, it may be possible to evaluate of the representations (25) and (34)
with a lower flop counts by calculating the integrals without using the spectral
factorizations of the tridiagonal matrices. We will not dwell on these special
situations.

Flop counts provide a measure of computational complexity. However, tim-
ings of algorithms do not only include arithmetic work, but also the time re-
quired to access and move data. Therefore, timings of algorithms generally
are not proportional to flop counts. Table 1 shows the ratio of the timings for
the evaluation of the quadrature rules (12) and (25), and the evaluation of the
representation (34). The timings are for the dominating computational effort
discussed above. If the timings would be proportional to the flop count, then
the ratio should be about 4.5.

Timings of the same computations carried out at different times typically
differ. Table 1 therefore reports mean values over 1000 runs. The table shows
that the representation (34) can be evaluated faster than the formulas (12) and
(25). The reported timings illustrate that when the number of nodes k in (12)
is small, the time required for data access and data movement dominates the
time needed for arithmetic operations.

5. Conclusion

Section 2 of this paper presents a new derivation of the representation (18)
of the rule (8). This derivation has the advantage of carrying over, mutatis
mutandis, to the situation when the tridiagonal matrix f2k+1 is nonsymmetric.
Section 3 presents the derivation. The advantages of using the new derived
formulas is that they can be evaluated faster than available formulas. This
is illustrated by timings reported in Section 4, where we show that the new
representation (34) can evaluated faster than the representation (25).
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Tab

le 1: Ratios of average CPU times for computing the Gauss rule (12) and the generalized

averaged Gauss rule using the representation (25), and for computing the generalized averaged
Gauss rule using the representation (34), which yields the Gauss rule (12) without additional
work, for several values of k. The table shows averages over 1000 runs.

3 time for computing the rules (12) and (25)
time for computing the rule (34)

1000 3.3

100 2.5

50 2.4

25 2.6

12 1.9

6 1.7
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