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Abstract The LSQR iterative method is one of the most popular numerical schemes
for computing an approximate solution of large linear discrete ill-posed problems
with an error-contaminated right-hand side, which represents available data. It is
important to terminate the iterations after a suitable number of steps, because too
many steps yield an approximate solution that suffers from a large propagated error
due to the error in the data, and too few iterations give an approximate solution
that may lack many details that can be of interest. When the error in the right-hand
side is white Gaussian and a tight bound on its variance is known, the discrepancy
principle typically furnishes a suitable termination criterion for the LSQR iterations.
However, in many applications in science and engineering that give rise to large linear
discrete ill-posed problems, the variance of the error is not known. This has spurred
the development of a variety of stopping rules for assessing when to terminate the
iterations in this situation. The present paper proposes new simple stopping rules
that are based on comparing the residual errors associated with iterates generated
by the LSQR and Craig iterative methods.
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1 Introduction

We are concerned with the solution of large linear systems of equations

Ax = b, A ∈ R
n×n, x, b ∈ R

n, (1)

with a matrix A, whose singular values “cluster” at the origin. In particular, A is
severely ill-conditioned and may be rank-deficient; the system (1) may not have a
solution. Matrices of this kind arise, for instance, from the discretization of linear
ill-posed problems such as Fredholm integral equations of the first kind. Therefore,
linear systems of equations (1) with this type of matrices are commonly referred
to as linear discrete ill-posed problems. The right-hand side b in discrete ill-posed
problems that arise in science and engineering represents available data and typically
is contaminated by a measurement error e ∈ R

n. For insightful discussions on linear
discrete ill-posed problems, we refer to [12,14].

Let bexact denote the unknown error-free vector associated with the available
right-hand side b, i.e.,

b = bexact + e. (2)

We would like to compute the solution xexact of minimal Euclidean norm of (1) with
b replaced by bexact. It can be expressed as

xexact = A†bexact, (3)

where A† denotes the Moore–Penrose pseudoinverse of A. Note that the solution
of minimal Euclidean norm of (1), which is given by A†b, generally is not a useful
approximation of xexact due to severe propagation of the error e into this solution.
We have

A†b = xexact + A†e,

and, typically, ‖xexact‖ ≪ ‖A†e‖. Throughout this paper, ‖·‖ denotes the Euclidean
vector norm or the associated induced matrix norm.

The above discussions indicates that even when the linear system of equations
(1) has a solution, one typically should not determine it. Instead one should compute
a suitable approximate solution of (1) that furnishes an accurate approximation of
xexact.

It is natural to try to solve large-scale linear discrete ill-posed problems (1)
by an iterative method. Discussions and analyses of a variety of iterative methods
are provided by Meurant [17,18]. One of the most popular iterative methods for
computing an approximate solution of large-scale linear discrete ill-posed problems
(1) is the LSQR iterative method; see, e.g., [12,21] for descriptions of this method.
When LSQR is used to solve linear discrete ill-posed problems, the initial iterate
often is chosen to be x0 = 0. We will use this choice in the present paper. Then the
kth step of the LSQR method generates an approximate solution xk ∈ R

n of (1) in
the Krylov subspace

Kk(AT A, AT b) = span{AT b, (AT A)AT b, . . . , (AT A)k−1AT b}, (4)

where we assume k ≥ 1 to be small enough so that dim(Kk(AT A, AT b)) = k. We
will comment on this restriction below. The iterate xk is characterized by

xk ∈ Kk(AT A, AT b) and ‖Axk − b‖ = min
x∈Kk(AT A,AT b)

‖Ax − b‖; (5)
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see, e.g., [12,21] for details on LSQR. It follows from (5) that LSQR is a minimal
residual method in the sense that at step k, LSQR determines the element xk ∈
Kk(AT A, AT b) that minimizes the residual error rk = b − Axk. Clearly,

‖rk−1‖ ≥ ‖rk‖

and, generally, this inequality is strict.
However, while the norm of the residual errors associated with iterates generated

by LSQR decreases monotonically as k increases, the distance ‖xk − xexact‖ gener-
ally does not. Typically, this distance decreases during the first few iterations, but
increases during subsequent iterations. This behavior of the iterates xk is commonly
referred to as semi-convergence; see [10] for illustrations. We would like to terminate
the iterations with LSQR when ‖xk − xexact‖ is minimal.

When a sharp bound ‖e‖ ≤ δ is known and bexact is in the range of A, the
discrepancy principle can be used to determine how many iterations to carry out
with LSQR. The discrepancy principle prescribes that the iterations with LSQR be
terminates as soon as

‖Axk − b‖ ≤ τδ,

where τ > 1 is a user-chosen constant that is independent of δ. Note that ‖Axexact −
b‖ ≤ δ.

We are interested in determining an iterate xk that furnishes an as accurate
approximation as possible of xexact when no information about the norm of e is
available. The determination of such an iterate is an important problem, because for
many linear discrete ill-posed problems (1) that arise in applications, an accurate
bound for ‖e‖ is not available. Methods for determining a suitable iterate xk without
using a bound for ‖e‖ are commonly referred to as “heuristic”, because they may fail
for certain problems; see Kindermann [16] for an insightful discussion. Many heuristic
methods have been proposed in the literature for determining a suitable iterate, or for
the related problem of choosing an appropriate value of the regularization parameter
in Tikhonov regularization. The methods include the L-curve criterion, generalized
cross-validation, and extrapolation-based approaches; see [2–8,11,12,22,24–26] and
references therein.

It is the purpose of the present paper to describe new heuristic stopping rules
that are attractive to use with LSQR. Our interest in these rules stems from the fact
that they are inexpensive to use and simple to implement. These rules belong to a
new class of rules that seek to determine a suitable LSQR iterate xk by comparing
properties of iterates generated by two methods. Specifically, we will compare the
residual errors associated with LSQR iterates with residual errors associated with
iterates determined by Craig’s method. The kth iterate generated by Craig’s method
lives in the Krylov subspace (4) and satisfies

‖xk − A†b‖ = min
x∈Kk(AT A,AT b)

‖x − A†b‖. (6)

An implementation of Craig’s method that is fairly similar to the standard imple-
mentation of LSQR is described by Saunders [27]; see also Paige [20]. We remark that
methods that determine a suitable LSQR iterate, xk, by comparing it to approximate
solutions computed by Tikhonov regularization are discussed in [15,22].

Craig’s method is usually not used to compute approximate solutions of linear
discrete ill-posed problems (1), because it is not a minimal residual method. However,
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as we will illustrate, the residual errors associated with iterates determined by Craig’s
method are helpful for deciding when to terminate the iterations with LSQR.

Section 2 discusses LSQR, describes Craig’s method, and shows some properties
that shed light on how these methods perform when applied to the solution of linear
discrete ill-posed problems. An algorithm that implements both LSQR and Craig’s
method is described. The computational effort and storage requirement of this al-
gorithm are essentially the same as for LSQR. A post-processing step that refines
the choice of iterate by considering the distance between consecutive iterates also
is introduced. Section 3 presents a few computed examples and Section 4 contains
concluding remarks.

2 Novel stopping criteria

Both the LSQR and Craig iterative methods are based on Golub–Kahan bidiagonal-
ization; see [20,21,27]. Application of k steps of Golub–Kahan bidiagonalization to
the matrix A with initial vector b gives the decompositions

AVk = Uk+1Bk = UkLk + βk+1uk+1eT
k ,

AT Uk = VkLT
k ,

(7)

where the matrices Uk+1 = [u1, u2, . . . , uk+1] ∈ R
n×(k+1) and Vk = [v1, v2, . . . , vk] ∈

R
n×k have orthonormal columns, the first column of Uk+1 is b/‖b‖, and the matrix

Uk is made up of the first k columns of Uk+1. The vector ek is the kth column of
an identity matrix of appropriate order and the superscript T denotes transposition.
The columns of Vk form an orthonormal basis for the Krylov subspace (4). Finally,
the matrix Bk ∈ R

(k+1)×k is lower bidiagonal and the matrix Lk ∈ R
k×k is made up

of the first k rows and columns of Bk. Thus, Lk is lower bidiagonal and lower trian-
gular. The computation of the decompositions (7) requires k matrix-vector product
evaluations with A and k matrix-vector product evaluations with AT . This is the
dominating computational effort for computing the decompositions. We will assume
that k is small enough so that the decompositions (7) exist. This is the generic situ-
ation. The computations simplify in the rare situation when the decompositions (7)
only exist for some small value of k. We omit the details.

The decompositions (7) form the basis for the LSQR iterative method. The kth
iterate determined by LSQR lives in the Krylov subspace (4) and can be represented
as xk = Vkyk for some vector yk ∈ R

k that is determined by solving the small
minimization problem on the right-hand side of

‖Axk − b‖ = min
y∈Rk

‖AVky − b‖ = min
y∈Rk

‖Bky − e1‖b‖‖. (8)

LSQR is a clever implementation of the solution of these minimization problems for
increasing values of k. The method does not require storage of the whole matrices
Uk+1 and Vk; only a few of the most recently generated columns of the matrices
Uk+1 and Vk in (7) have to be stored simultaneously.

We turn to Craig’s method. The kth iterate determined by this method also can
be expressed with the aid of the decompositions (7). Denote this iterate by x̂k. Then
x̂k = Vkŷk, where ŷk ∈ R

k satisfies

Lkŷk = ‖b‖e1. (9)
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Algorithm 1, which is presented below, implements LSQR and the part of Craig’s
method that is of interest to us. Knowing the LSQR iterates xk and the norms of
the residual errors associated with the LSQR and Craig iterates, i.e., the norms of

rk = b − Axk, r̂k = b − Ax̂k, (10)

allows us to determine when to stop the iterations with LSQR. Specifically, we ter-
minate the iterations with Algorithm 1 as soon as

‖r̂k‖

‖rk‖
≥ δ (11)

for a user-supplied parameter δ > 1. This stopping criterion can be justified as
follows: LSQR is a minimal residual method. The ratio (11) therefore is bounded
below by one. The ratio typically is quite close to unity for k small, but increases
with k because Craig’s method is not a minimal residual method. Due to the property
(6) of the iterates x̂k generated by Craig’s method, they will converge faster towards
A†b than the iterates xk computed by LSQR. Illustrations of this behavior can be
found in [10]. This suggests that when the ratio (11) is significantly larger than unity,
the iterates determined by Craig’s method are contaminated substantially more by
propagated error stemming from the error e in b than the corresponding iterates
determined by LSQR. Numerous computed examples suggest that δ = 1.88 in (11)
to be a suitable choice. We will use this value in the computed examples reported in
Section 3. Of course, other values of the constant δ also can be used.

Algorithm 1 computes the LSQR iterates xk, k = 1, 2, . . . , and the norm of
the residual vectors (10). Each iteration of the algorithm requires the evaluation of
one matrix-vector product with the matrix A and one matrix-vector product with
the matrix AT , just like the LSQR algorithm. Algorithm 1 requires essentially the
same computational effort in each iteration as LSQR and furnishes the norms of the
residual errors (10) that are used in the stopping criterion (11).

The choice of the parameter k can be refined by a technique described by Morigi
et al. [19], who proposed its application to the modification of the termination index
obtained by the L-curve criterion. The sequence of iterates x0, x1, x2, . . . may be
thought of as a semi-convergent sequence, whose limit we seek to determine. A
good approximation of the limit of a semi-convergent often can be found at a local
minimum of the function

k → ‖xk+1 − xk‖. (12)

This lead Morigi et al. [19] to suggest that the iterate xj determined by the L-curve

criterion should be replaced by xk̆, where k̆ is an index close to j and the function

(12) achieves a local minimum at k̆; see [19] for further details and many computed
examples. We note that the approach used by Morigi et al. [19] is closely related
to the quasi-optimality criterion, which is discussed and analyzed in, e.g., [2]. The
latter criterion determines the index kmin that minimizes (12) and uses xkmin

as an
approximate solution of (1). The quasi-optimality criterion does not perform well
in our experience, while the “localized quasi-optimality criterion” proposed in [19]
performs better.

We will apply this technique to replace the iterate determined by the criterion
(11). Thus, let the iterate x

k̃
be determined by (11). Then we determine the index k̆

closest to k̃ such that the function (12) achieves a local minimum at k = k̆, and we
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Algorithm 1 LSQR and Craig’s methods run simultaneously.

Inputs: A ∈ R
n×n, b ∈ R

n, x0 ∈ R
n,

Output: Approximate solution xk of ill-posed problems.
1: Initialize: x0 = 0, β1u1 = b, α1v1 = AT u1, w1 = v1, φ̄1 = β1, ρ̄1 = α1, τ0 = 1, ̟0 = 0,

ζ0 = −1, v̂0 = 0, ŵ0 = 0.
2: for k = 1, 2, . . . until termination criterion satisfied do

3: Golub–Kahan bidiagonalization.

(1) βk+1uk+1 = Avk − αkuk

(2) αk+1vk+1 = AT uk+1 − αkvk

4: LSQR method

(1) ρk = (ρ̄2
k + β2

k+1
)1/2

(2) ck = ρ̄k/ρk

(3) sk = βk+1/ρk

(4) θk+1 = skαk+1

(5) ρ̄k+1 = −ckαk+1

(6) φk = ckφ̄k

(7) φ̄k+1 = skφ̄k

(8) xk = xk−1 + (φ/ρk)wk, rk = φ̄k+1

(9) wk+1 = vk+1 − (θk+1/ρk)wk

5: Craig’s method

(1) ζk = −ζk−1βk/αk, v̂k = v̂k−1 + ζkvk

(2) ̟k = (τk − βk̟k−1)/αk, ŵk = ŵk−1 + ̟kvk

(3) if (βk+1 = 0), then

(4) x̂k = v̂k, r̂k = b − Ax̂k;
(5) else

(6) τk = −τk−1αk/βk+1

(7) if (αk+1 = 0), then

(8) γ = βk+1ζk/(βk+1̟k − τk)

(9) x̂k = v̂k − γ · ŵk,
(10) r̂k = b − Ax̂k;
(11) endif

6: Stopping criterion (11)

(1) if ‖̂rk/rk‖ ≥ δ, then

(2) return k̃ = k, x
k̃

stop

7: end for

use the LSQR iterate xk̆ as an approximation of xexact. If the index k̆ is not uniquely

defined, then we let k̆ be the smallest of possible indices.

We conclude this section with a discussion on the conditioning of the matrices Bk

and Lk in (7) that are used to compute the LSQR iterate xk = Vkyk and the Craig
iterate x̂k = Vkŷk, respectively; cf. (8) and (9). We first describe how the singular
values of the matrices Bk and Lk relate.

Proposition 1 Let σ
(Bk)
1 ≥ σ

(Bk)
2 ≥ . . . ≥ σ

(Bk)
k ≥ 0 denote the singular values of

the matrix Bk in decreasing order, and let σ
(Lk)
1 ≥ σ

(Lk)
2 ≥ . . . ≥ σ

(Lk)
k ≥ 0 denote

the similarly ordered singular values of Lk. Then σ
(Bk)
j ≥ σ

(Lk)
j for j = 1, 2, . . . , k.

Generically, the inequalities are strict.
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Proof Denote the (k + 1, k)-entry of Bk by βk+1. Then

BT
k Bk = LT

k Lk + β2
k+1ekeT

k .

The eigenvalues of BT
k Bk are (σ

(Bk)
j )2, 1 ≤ j ≤ k, and the eigenvalues of LT

k Lk are

(σ
(Lk)
j )2, 1 ≤ j ≤ k. The positive semidefinite matrix BT

k Bk is a rank-one modifi-

cation of the positive semidefinite matrix LT
k Lk. It follows that the eigenvalues of

BT
k Bk interlace those of LT

k Lk, i.e., (σ
(Bk)
k )2 ≥ (σ

(Lk)
k )2 for k = 1, 2, . . . . Generically,

the inequalities are strict; see, e.g., [29, pp. 94–97] for a proof.

It is interesting to investigate whether the matrix Bk is better conditioned than
Lk. Define the condition numbers

κ(Bk) =
σ

(Bk)
1

σ
(Bk)
k

, κ(Lk) =
σ

(Lk)
1

σ
(Lk)
k

. (13)

We would like to determine whether

κ(Bk) ≤ κ(Lk). (14)

Let σ
(Bk)
1 = σ

(Lk)
1 + ǫ1 and σ

(Bk)
k = σ

(Lk)
k + ǫk. Assume that σ

(Bk)
k > 0. Then (14) is

equivalent to

κ(Lk) ≥
ǫ1

ǫk
.

In applications of Golub–Kahan bidiagonalization to the matrix A of a linear dis-
crete ill-posed problem, the condition numbers κ(Lk) may be large. In order for the
inequality (14) to hold, ǫk > 0 cannot be arbitrarily much smaller than ǫ1. Proposi-
tion 1 does not furnish information about the relative size of ǫ1 and ǫk. Example 5 of
Section 3 illustrates that for several linear discrete ill-posed problems (1) and bidi-
agonalization steps k, the inequality (14) holds. This property is in agreement with
the observation that the error e in b is propagated less severely into the computed
approximate solution when using LSQR than when applying the same number of
steps with Craig’s method.

3 Numerical examples

This section illustrates the stopping rule (11) when applied to the solution of several
linear discrete ill-posed problems from the MATLAB program package Regulariza-
tion Tools by Hansen [13]. All computations are carried out using MATLAB R2016b
with unit round-off εmachine ≈ 2.22 · 10−16. A Lenovo laptop computer running
Windows 10 with 4.87 GB of RAM was used.

Each code from Regularization Tools [13] provides a matrix A ∈ R
n×n that is the

discretization of a Fredholm integral equation of the first kind, a vector bexact that
represents the error-free right-hand side, and the desired solution xexact given by
(3). The noise vector e ∈ R

n is in all examples chosen to have normally distributed
random entries with zero mean. The vector is normalized to correspond to a specific
noise level

ǫ =
‖e‖

‖bexact‖
. (15)
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Fig. 1 Example 1. (a) Graph of log10 ‖xk − xexact‖ vs. iteration number k for 1 ≤ k ≤ 15,
and (b) log10 ‖Axk − b‖ vs. k for 1 ≤ k ≤ 15; ⊲ indicates results for LSQR and O stands for

the results for Craig’s method; ✩ denotes k̃, � denotes k̆ and + denotes kbest.

In the computed examples, we let ǫ ∈ {10−1, 10−2, 10−3}. Noise levels of these orders
of magnitude occur in many real-world problems. The error-contaminated right-hand
side in (1) is given by (2).

The computed indices are compared to the index kbest, which corresponds to an
iterate that is closest to xexact. Thus,

kbest = arg min
1≤k≤ℓ

‖xk − xexact‖, (16)

where ℓ is chosen large enough to secure that kbest is the smallest global minimum.
Clearly, kbest only can be computed when xexact is known and therefore can be
determined for certain test problems, only. We mark the points corresponding to the
approximate solutions xbest, x

k̃
, and xk̆ in the Figs. 1, 2, 4, and 5 below. The index

k̆ is chosen such that

‖xk̆+1 − xk̆‖ = min
k̂≤k≤k̃(3)

‖xk+1 − xk‖, (17)

where k̂ = max(2, k̃ − 3) and k̃(3) denotes the third smallest index k̃ that satisfies

(11). Note that k̃(3) may be larger than k̃+3. The choice of k̂ and k̃(3) is not critical;

the purpose of these parameters is to define an interval around k̃, where to apply
the localized quasi-optimality criterion. The matrices A in all examples are of size
500 × 500.

Example 1 Consider the Fredholm integral equation of the first kind

∫ π

0

exp(s · cos(t))x(t)dt = 2
sin(s)

s
, 0 ≤ s ≤

π

2
,

which is discussed by Baart [1]. It has the solution x(t) = sin(t). The integral equation
is discretized by a Galerkin method with piece-wise constant test and trial functions
using the function baart from [13].
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Fig. 2 Example 2. (a) Graph of log10 ‖xk − xexact‖ vs. iteration number k for 1 ≤ k ≤ 15,
and (b) log10 ‖Axk − b‖ vs. k for 1 ≤ k ≤ 15; ⊲ denote results for LSQR and O denote results

for Craig’s method; ✩ denotes k̃, � denotes k̆, and + denotes kbest.

Fig. 1 shows the error and residual error histories for the LSQR iterates deter-
mined when the noise level is ǫ = 1 · 10−3. The error norms ‖xk − xexact‖ for iterates
xk determined by LSQR are marked by green triangles (⊲), and the error norms for
iterates computed by Craig’s method are marked by blue circles (O). The red square
(�) marks the iterate determined by the criterion (11) and (17), the red star (✩)
denotes the iterate x

k̃
determined by (11), and the red plus sign (+) indicates the

iterate xbest, whose index is defined in (16). Thus, we can observe from Fig. 1 that

the termination index determined by (11) is k̃ = 4 and the closest local minimum of
the function (17) is at k̆ = 5, which is equal to the index kbest. Both LSQR iterate
x4 and x5 are accurate approximations of xbest. Details are reported in Table 1.

Example 2 Regard the Fredholm integral equation of the first kind discussed by
Phillips [23], ∫ 6

−6

K(s, t)x(t)dt = g(s), −6 ≤ s ≤ 6,

whose solution x(t), kernel K(s, t), and right-hand side g(s) are given by

x(t) =

{
1 + cos( πt

3 ), |t| < 3,
0, |t| ≥ 3,

K(s, t) = x(s − t),

g(s) = (6 − |s|)

(
1 +

1

2
cos(

πs

3
)

)
+

9

2π
sin

(
π|s|

3

)
.

This integral equation is discretized by a Galerkin method using the MATLAB func-
tion phillips from [13].

The numerical results are listed in Table 1. The index selection criteria based
on (11) and (17) can be seen to perform better for the noise level ǫ = 1 · 10−1 than
for the noise levels ǫ ≤ 1 · 10−2. The error and residual norms versus the number of
iteration steps are shown in Fig. 2 for the former noise level.
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Fig. 3 Example 2. Graph of ‖xk+1 − xk‖ vs. iteration number k for 1 ≤ k ≤ 14.
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Fig. 4 Example 3. (a) Graph of log10 ‖xk − xexact‖ vs. iteration number k for 1 ≤ k ≤ 15,
and (b) log10 ‖Axk − b‖ vs. k for 1 ≤ k ≤ 15. The symbol ⊲ denotes results for LSQR and O

denotes results for Craig’s method; ✩ denotes k̃, � denotes k̆, and + denotes kbest.

Fig. 3 displays for ǫ = 1 · 10−1 the function (12). The local minimum is achieved
at k = 5, which agrees with the index determined by (11) and (17).

Example 3 Consider the Fredholm integral equation of the first kind discussed by
Shaw [28], ∫ π

2

− π

2

K(s, t)x(t)dt = g(s), −
π

2
≤ s ≤

π

2
,

with kernel

K(s, t) = (cos(s) + cos(t))2

(
sin(π(sin(s) + sin(t)))

π(sin(s) + sin(t))

)2



Stopping criteria for the LSQR method 11

0 5 10 15
-2

0

2

4

6
(a)

0 5 10 15
-5

0

5

10
(b)

Fig. 5 Example 4. (a) Graph of log10 ‖xk − xexact‖ vs. iteration number k for 1 ≤ k ≤ 15,
and (b) log10 ‖Axk − b‖ vs. k for 1 ≤ k ≤ 15. The symbol ⊲ denotes results for LSQR and

O denotes results for Craig’s method; ✩ shows the index k̃, � the index k̆, and + the index
kbest.

and solution

x(t) = 2 exp(−6(t − 0.8)2) + exp(−2(t + 0.5)2),

which define the right-hand side function g. Discretization is carried out by a Nyström
method based on the midpoint quadrature rule using the function shaw from [13].

The stopping criteria perform well for this example for all noise levels. Fig. 4
displays the numerical results for noise level ǫ = 1 · 10−2. The error in xk̆ with k̆ = 6

is smaller than that in x
k̃

with k̃ = 5, where the former is the same as in xbest.
Detailed results are shown in Table 1.

Example 4 We consider a discretization of the Fredholm integral equation of the first
kind ∫ 1

0

(
s2 + t2

)1/2
x(t)dt =

1

3
(1 + s2)

3

2 − s3, 0 ≤ s ≤ 1,

with solution x(t) = t. This equation is discussed by Fox and Goodwin [9]. We use
the function foxgood from [13] to determine a discretization by a Nyström method.

Fig. 5 illustrates the performance of the stopping rules for the noise level ǫ =
1 · 10−2. In particular, Fig. 5(a) shows that the criteria (11) and (17) determine the
same index for approximate solutions, which is equal to kbest. Further details can be
found in Table 1.

Example 5 Figure 6 displays the condition numbers (13) for several linear discrete
ill-posed problems and different matrix sizes. The figure shows the inequality (14) to
hold. This is true for many linear discrete ill-posed problems and various numbers
of Golub–Kahan bidiagonalization steps.

Table 1 summarizes the numerical results obtained with the stopping criteria of
the present paper. The column labeled “Problem” displays the names of problems
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Fig. 6 Graphs of log10(κ(Lk)) (♦) and log10(κ(Bk)) (+) vs. the number of iteration steps k.
(a) Example 1 , ǫ = 1 · 10−3; (b) Example 2, ǫ = 1 · 10−1; (c) Example 3 , ǫ = 1 · 10−2; (d)
Example 4 , ǫ = 1 · 10−2.

from [13] and contains in parentheses the maximum number of iterations carried out.
The column “Noise level” shows the relative amount of error in the right-hand side
b; see (15). The table also displays the indices k̃, k̆, and kbest, defined by (11), (17)
and (16), respectively. In addition, columns 5, 7, and 9 of Table 1 show the relative
errors

E
k̃

=
‖x

k̃
− xexact‖

‖xexact‖
, Ek̆ =

‖xk̆ − xexact‖

‖xexact‖
, Ekbest

=
‖xkbest

− xexact‖

‖xexact‖
.

The table shows that for almost all examples the approximate solution xk̆ is a good
choice.
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Table 1 Numerical results of tested examples.

Problem Noise level k̃ E
k̃

k̆ Ek̆ kbest Ekbest

baart(15) 1 · 10−1 3 0.3549 4 1.6059 2 0.3451
baart(15) 1 · 10−2 4 0.2325 4 0.2325 3 0.1671
baart(15) 1 · 10−3 4 0.1169 5 0.1168 5 0.1168

deriv2(15) 1 · 10−1 2 0.4380 3 0.3526 4 0.3240
deriv2(15) 1 · 10−2 5 0.2664 6 0.2381 9 0.2230
deriv2(20) 1 · 10−3 7 0.2279 6 0.2279 19 0.1490

foxgood(15) 1 · 10−1 2 0.0332 4 2.0687 2 0.0332
foxgood(15) 1 · 10−2 3 0.0089 3 0.0089 3 0.0089
foxgood(15) 1 · 10−3 3 0.0074 3 0.0074 5 0.0061

gravity(15) 1 · 10−1 2 0.1370 2 0.1370 5 0.0636
gravity(15) 1 · 10−2 6 0.0418 7 0.0352 8 0.0346
gravity(15) 1 · 10−3 7 0.0399 7 0.0399 11 0.0202

heat(20) 1 · 10−1 5 0.3465 7 0.2439 10 0.1931
heat(30) 1 · 10−2 9 0.1855 9 0.1855 17 0.0686
heat(35) 1 · 10−3 10 0.1741 16 0.0709 20 0.0227

phillips(15) 1 · 10−1 4 0.0458 5 0.0442 5 0.0442
phillips(20) 1 · 10−2 5 0.0256 5 0.0256 7 0.0254
phillips(20) 1 · 10−3 5 0.0243 4 0.0244 9 0.0087

shaw(15) 1 · 10−1 4 0.1720 6 0.6932 4 0.1720
shaw(15) 1 · 10−2 5 0.1033 6 0.0536 6 0.0536
shaw(15) 1 · 10−3 7 0.0598 9 0.0480 9 0.0480

4 Conclusion

This work proposes novel approaches for terminating the iterations with the LSQR
iterative method. The stopping criteria described compare the norm of the residual
errors associated with iterates determined by the LSQR and Craig’s methods at the
same number of steps. A refinement of this strategy also is described. The attractions
of the new stopping rules are their ease of implementation, and low computing and
storage costs.
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