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Abstract

In many real world problems it is of interest to ascertain which factors are most
relevant for determining a given outcome. This is the so-called variable selection prob-
lem. The present paper proposes a new regression model for its solution. We show
that the proposed model satisfies continuity, sparsity, and unbiasedness properties.
A generalized Krylov subspace method for the practical solution of the minimization
problem involved is described. This method can be used for the solution of both
small-scale and large-scale problems. Several computed examples illustrate the good
performance of the proposed model. We place special focus on screening studies using
saturated and supersaturated experimental designs.
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1 Introduction

A crucial aspect in the design and analysis of experiments is the process of selection of
important experimental factors, called active factors, and elimination of factors that have
little to no effect on the response variable. This falls within the field of variable selection,
which has been a topic of great and increasing interest in Statistics. In the experimental
setting, this can take the form of a two-step process: a screening experiment, in which
many factors are considered and only a few are selected for the second step, a confirmatory
experiment. In the screening regime, the conclusions are not regarded as final, and it is
expected that any purported discoveries will be further scrutinized in follow-up studies.

Thus, selection procedures are very important in screening experiments, where a large
number of factors need to be considered but only a few are expected to influence the
outcome. This is common in industrial experiments, but has become popular in the sciences
as well. Typically, each experimental run is relatively expensive, and the goal is to produce
a low-cost identification of a few dominating factors.

Experimental Design Terminology. We will now quickly define a handful of basic
terms in the field of experimental design and analysis; readers familiar with the field can
skip this part. A full development can be found in, e.g., [29].

Formally, a factor is a qualitative variable with 2 or more possible values, called levels.
In practice, factors can be truly qualitative, but many times they are the result of picking
a finite set of values (levels) out of a quantitative variable; often, there are 2 levels, called
“low” and “high.” For regression models, qualitative variables are usually encoded using 0-
1 dummy variables; in experimental design, “low” often is encoded by −1 and “high”
by 1. A treatment is a particular combination of levels, specifying one level for each of the
factors considered. A run is a particular instance of the given experimental setup, using
one treatment and resulting in one measurement of the response. If there are multiple runs
using the same treatment, these are called replicates.

Then, an experimental design is a choice of treatments and (possibly) of replicates. A
full factorial design uses all possible treatments; if there are replicate runs, it is called a
replicated factorial design. Since the number of possible treatments grows exponentially
with the number of factors considered, it is often useful to consider fractions of a factorial
design, that is, using only a subset of all possible treatments; how to create good fractional
factorial designs is a large and important field of statistical experimental design.

Once an experiment has been performed, i.e., a value of the response has been recorded
for each run (together with the treatment used), several types of models can be fitted to the
data. In this article we will concern ourselves only with linear models, in which E(y) = Xβ,
where y is the vector of responses, X is the design matrix (or model matrix ), whose columns
are dummy variables for the factors, and rows correspond to run treatments, and β is the
vector of coefficients to be estimated. We will use the terms effect and coefficient inter-
changeably. The coefficients corresponding to levels of one factor are called main effects,
but interactions also can be included in the model: these are synthetic factors, derived
from the original ones, which capture the non-additive part of the combined influence of
two or more factors.
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Saturated and Supersaturated Models. A model is said to be saturated (with respect
to an experimental design) if it has as many coefficients to estimate as there are runs in the
design; in this case X is square. A model is supersaturated if it has more coefficients than
runs, i.e., X has more columns than rows. If there are k factors, each with 2 levels, the
full factorial model will have 2k runs, and the linear model with all interactions up to the
k-way interaction has 2k coefficients, resulting in a saturated model. On the other hand,
the linear model without interactions has only k + 1 coefficients (including the intercept);
a suitable fractional factorial design can be used, and that can make the model saturated,
or even supersaturated.

A well-known criterion for evaluating the efficiency of a supersaturated design (SSD)
is the E(s2) criterion proposed in [4]. This criterion measures the average correlation
between the factors; minimization of this value can be used as a criterion for designing good
SSDs. The correlation between the factors and the departure from orthogonality are of high
importance; they have significant influence on the detection of the true active factors. For
more details on the construction and analysis of SSDs; see [19]. A comprehensive review
on the construction and analysis of SSDs also is presented in [22].

The Regression Problem. We consider the problem

y = Xβ + ε, ε ∼ Nn(0n, σ
2In), (1)

where X ∈ Rn×(m+1), β ∈ Rm+1, σ ∈ R, and y, ε ∈ Rn. Further, 0n and In denote the zero
and identity matrices of order n, respectively. Since only few of the involved factors are
expected to be important, we may assume β to be sparse. This work considers two-level
supersaturated designs (SSDs), which are coded as −1 and 1 to denote the low and high
levels, respectively. We assume the SSDs to be balanced, i.e., in each column of the matrix
X, there are the same number of ‘−1’s and ‘1’s.

Standard regression techniques for fitting a linear prediction function using all candidate
variables fail in the supersaturated design setting, because the normal equations cannot be
solved uniquely. Specialized fitting and model selection techniques are required. Fan and
Li [17] introduce a penalized likelihood approach, which employs symmetric nonconcave
penalty functions on (0,∞) with singularities at the origin to produce sparse solutions,
Candès and Tao [10] describe a method for selecting variables based on linear programming,
and Georgiou [18] identifies the active factors by using the singular value decomposition of
X. This paper considers the regression model

β∗λ = arg min
β

{
1

p
‖Xβ − y‖pp + λ

1

q
‖β‖qq

}
, (2)

with 0 < p, q ≤ 2, for the determination of the sparse active factors, where z 7→ ‖z‖pp for

z = [z1, z2, . . . , zn]T ∈ Rn is defined as
∑n

i=1 |zi|p. Here and throughout this paper the
superscript T denotes transposition. Note that ‖·‖p is a norm for p ≥ 1, while it is not
a norm for 0 < p < 1 since the triangle inequality is not satisfied; see, e.g., [20]. We
will refer to the mapping z 7→ ‖z‖p as a quasinorm when 0 ≤ p < 1. The model (2)
appears in many applications in different areas, including numerical linear algebra [3, 39],
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compressive sensing [11,12,15,16,28], and image restoration [24,34]. The first term in the
right-hand side of (2) is commonly referred to as the fidelity term and the second term as
the regularization term.

We briefly discuss the choice of q. Since we assume β to be sparse, we would like
to choose q to promote sparsity in the solution of (2). We may be tempted to consider
using the `0-quasinorm ‖ · ‖0 instead of the quasinorm ‖ · ‖q for some 0 < q < 1, where
the `0-quasinorm ‖β‖0 counts the number of nonzero entries of the vector β. However,
minimizing the `0-quasinorm of a vector is very difficult. A common approach to overcome
this complication is to approximate the `0-quasinorm by the `1-norm. The main advantage
of this approximation is the convexity of the `1-norm, which makes the computation of a
solution of (2) easier. However, `q-quasinorms with 0 < q < 1 are better approximations of
the `0-quasinorm. In particular, the smaller q, the better the approximation. On the other
hand, using 0 < q < 1 results in a nonconvex minimization problem; see Lanza et al. [23]
for a recent discussion on the choice of q in the context of image restoration.

We turn to the choice of p. Since the p-norm measures the residual error, it follows
that p should depend on the type of noise in the data y. For white Gaussian noise, it is
common and appropriate to let p = 2. However, for other types of noise, p = 2 usually
produces solutions of poor quality. It has been shown, see, e.g., [7, 21, 23], that in the
context of image restoration, letting 0 < p < 1 in (2) gives accurate restorations in the case
of salt-and-pepper and other impulse noise.

Finally, we discuss the choice of λ > 0. This parameter determines the balance between
the fidelity and regularization terms in (2). A small value of λ > 0 typically gives a solution
with many non-vanishing coefficients, low bias (but high variance) and a closer fit to the
data y (which in fact may be an overfit); meanwhile, when 0 < q < 1 larger values of λ tend
to yield a sparser solutions, biased toward zero (shrunken) with lower variance, and worse
fit to the data y. Algorithms for the selection of this parameter are described in [7–9], but
are not always appropriate for supersaturated designs, as there are too few observations for
cross-validation. We will see that for the application considered in this paper, the solution
of (2) is not very sensitive to the choice of λ, as wide ranges of values result in essentially
equivalent solutions.

In this paper, we use the optimization problem (2) to fit the regression model (1). In
other words, from the minimizer β̂ of (2) we will select as active variables the ones that
correspond to nonzero entries of β̂. We first show, following [17], that this model satisfies
continuity, sparsity, and unbiasedness properties. Then we review the fast and accurate
numerical method for the solution of (2) proposed in [21]. This method employs generalized
Krylov subspaces (GKS) to speed up the computations. The use of these subspaces allows
us to analyze large data sets. To the best of our knowledge, this is the first time that GKS
methods have been used in the context of variable selection for SSDs. Finally, we illustrate
the performance of our approach when applied to some selected examples.

The present paper continues the investigation of the application of the minimization
problem (2) to regression problems begun in [5]. We show new theoretical results and ex-
ploit properties of SDDs, which has not been done before. In particular, we show continuity
of the solution.

This paper is structured as follows: Section 2 shows the continuity, sparsity, and unbi-
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asedness properties of the regression model (2). In Section 3, we describe the algorithm used
for the solution of the minimization problem (2). Section 4 reports numerical comparisons
between our approach and other methods in the literature when applied to both synthetic
and real data. Section 5 contains another example using real data, involving saturated
and supersaturated models with interaction terms. Finally, we draw some conclusions and
outline future work in Section 6.

2 Analysis of the Model

We discuss the theoretical properties of the minimization problem (2). In particular, we
address the sparsity, stability, and unbiasedness of the model; see [17] for related discussions.

Sparsity and Unbiasedness. The first issues that we would like to consider are the
sparsity inducing property and the unbiasedness of the method. These properties already
have been discussed in [5]. We report here the main points of that discussion for the
convenience of the reader.

We can derive the regression model (2) with a Bayesian argument as a maximum-a-
posteriori estimation. Consider the generalized error distribution (GED) [35],

ξν,λ,σ(x) = cν,σ exp

(
−|x− λ|

ν

νσν

)
,

with cν,σ > 0 chosen so that ξν,λ,σ(x) is a probability distribution. We may construct a
GED-based Bayesian version of the regression model (1). Let β = [β0, β1, . . . , βm]T be a
random vector with prior distribution

βj
i.i.d∼ fβ = fq,0,σβ , j = 0, 1, . . . ,m.

Assume that the x1, . . . , xn are either fixed or independent of β, and that the conditional
density for y is fy|β,x = ξp,xT β,σy . After observing independent samples y1, . . . , yn with
corresponding covariate vectors x1, x2, . . . , xn, the prior density for β is updated to the
posterior as follows:

fβ|y,X ∝ exp

(
− 1

pσpy

n∑
i=1

|yi − xTi β|p
)

exp

(
− 1

qσqβ

m∑
j=1

|βj|q
)

= exp

(
− 1

pσpy
||y −Xβ||pp −

1

qσqβ
||β||qq

)
.

Then the maximum-a-posteriori estimate for β is obtained by minimizing

1

p
||y −Xβ||pp +

σpy
σqβ

1

q
||β||qq,

which is the optimization problem (2) with λ = σpy/σ
q
β.
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Summarizing, we have shown that the regression (2) can be obtained by assuming that
the entries of β are realizations of a random variable with GED distribution. It is easy to
see that, if 0 < q < 1, this probability distribution will favor values that are close to 0,
thus, leading to sparse solutions.

In [5] the authors furnish a deeper analysis in the one-dimensional case, showing both
that the `p-`q method can be interpreted as a thresholding rule and that, if |y| is large
enough, then the method is unbiased. In more detail, let m+ 1 = n = 1 and X = 1. Then
(1) reduces to

y = β + ε,

with β ∼ ξq,0,λ and ε ∼ ξp,0,1, independently. Then the following holds:

Proposition 1 ( [5]). Assume 0 < q < 1 < p ≤ 2, and consider the function U : y 7→ β̂lplq

that associates to y the minimizer of J (β) = 1
p
|y − β|p + λ1

q
|β|q.

1. There exists t > 0 (which depends on p, q, and λ), such that U is constantly zero for
|y| < t.

2. U has jump discontinuities at −t and t.

3. For |y| > t, U(y) has the same sign as y, and |U(y)| < |y|.

4. A lower bound for t is λ1/(p−q).

5. An upper bound for t is (λp/q)1/(p−q).

6. As |y| → ∞, |y − U(y)| = |y| − |U(y)| → 0.

In particular, point 1 shows that `p-`q regression is a thresholding method and point
6 shows that the method is unbiased. The following discussion sheds further light on the
properties of the minimizer(s) of (2) and extends the analysis presented in [5].

Continuity. We turn to the continuity of the solution of the minimization problem (2),
namely, that if the data y is slightly perturbed, then the minimizer(s) of (2) do(es) not
change much. We establish this by showing that the minima of (2) are stable under
perturbation. First, we observe the following:

Lemma 2. Let {βj}j∈N be a sequence in Rm+1 and let q > 0. If for all j ∈ N, it holds
that ‖βj‖qq < c for a given c > 0, independent of βj, then there exists a constant c̃ > 0,

depending only on c and q, such that ‖βj‖2
2 < c̃ for all j ∈ N.

We omit the proof of this lemma since it follows immediately by the definition of the
q-(quasi)norm. We are now in a position to show our main result.

Theorem 3. Let {εj}j∈N be a sequence of vectors in Rn such that εj → ε as j →∞. Let
{yj}j∈N denote the sequence of vectors given by yj = Xβ+ εj, with X and β defined in (1).
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Let y = Xβ + ε. Then yj → y as j →∞. Introduce the functionals

Jj(β) =
1

p
‖Xβ − yj‖pp +

λ

q
‖β‖qq ,

J (β) =
1

p
‖Xβ − y‖pp +

λ

q
‖β‖qq . (3)

Let {βj}j∈N be a sequence such that βj ∈ arg minβ Jj(β) for all j ∈ N, i.e., βj belongs to
the set of minimizers of Jj. Then there exists a subsequence {βjk}jk∈N such that

βjk → β̄ as k →∞ and β̄ ∈ arg min
β
J (β),

where S denotes the closure of the set S.

Proof. Since βj is a minimizer of Jj, it holds that

Jj(βj) ≤ Jj(β) ∀β ∈ Rm+1. (4)

For any fixed β ∈ Rm+1, we have due to the continuity of Jj as a function of yj, that
Jj(β)→ J (β) as j →∞. It follows that there is a constant cβ (which depends on β) and
an index j0, such that Jj(β) ≤ cβ for all j ≥ j0.

Fix β ∈ Rm+1. Then for all j ≥ j0, we have by (4) that

cβ ≥ Jj(β) ≥ Jj(βj) ≥
λ

q
‖βj‖qq .

It follows from Lemma 2 that the sequence ‖βj‖2
2, k = 1, 2, . . . , is uniformly bounded and,

therefore, has a convergent subsequence {βjk}∞k=1. Let βjk → β̄ as k → ∞. Then, for all
β ∈ Rm+1, it holds

J (β̄) ≤ lim inf
j
Jj(βj) ≤ lim sup

j
Jj(β) = lim

j
Jj(β) = J (β),

where the second inequality follows from (4). In particular, let β∗ ∈ arg minβ J (β). Then,
by the inequality above, we have J (β̄) ≤ J (β∗). However, since β∗ is a minimizer of J ,
we also have that J (β̄) = J (β∗). Thus, β̄ is a minimizer of J .

3 The Numerical Method

We outline the computational method for the solution of the minimization problem (2)
that is used for the computed examples of Section 4. Further details can be found in [21].
First note that the functional J (β) defined in (3) is convex and smooth when 1 < p, q ≤ 2,
but nonconvex and nonsmooth when 0 < p < 1 or 0 < q < 1. The method of this section is
shown in [21] to determine a minimizer of J (β) when J is convex, and a stationary point
otherwise.
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The iteratively reweighted norm (IRN) algorithm [33], also known as the iteratively
reweighted least-squares (IRLS) algorithm [37], is among the most popular and effective
methods for the solution of minimization problems of the form (2), when

0 < p, q ≤ 2, with pq < 4. (5)

The IRN algorithm is an iterative procedure in which the functional (3) is approximated
by a sequence of weighted least-squares problems. At each iteration the diagonal weighting
matrix is updated and each least-square problem is solved by the conjugate gradient (CG)
algorithm; see [33]. We remark that the references [33,37] are concerned with 1 ≤ p, q ≤ 2,
but the method also can be used for p and q values that satisfy (5). The case p = q = 2 is
excluded, because it is of no interest to us, and because the solution can be computed by
a simpler method than the IRN algorithm.

The authors in [21,23] observed that the weighting matrices in the IRN method change
fairly slowly with the iterations. This suggested that the solution of the sequence of least-
squares problems be computed by a generalized Krylov subspace (GKS) method; see [21,
23]. Instead of solving each least-square problem separately, the solutions are determined
in nested generalized Krylov subspaces of increasing dimension. Computed examples in
[23] illustrate that this approach may require significantly fewer matrix-vector product
evaluations than the IRN scheme [33], thereby making it cheaper. The use of generalized
Krylov subspaces is well suited for large-scale problems. The computed examples of this
paper illustrate that these spaces also can be applied when solving small problems.

The GKS methods proposed in [21, 23] are majorization-minimization (MM) iterative
methods. At each iteration the minimization problem (3) is replaced by a convex quadratic
problem. Specifically, the functional J is approximated by a quadratic functional that ma-
jorizes J and is tangent to J at the current iterate. The quadratic majorant is minimized
to obtain the new iterate. Two quadratic majorization techniques are described in [21],
one of them is the “adaptive aperture” method, which we use in the computations of the
present paper.

We remark that other solution methods for the problem (2) have been described in the
literature; see, e.g., [12, 31, 38, 39]. It is outside the scope of the present paper to compare
these methods. Here we only note that the method used allows flexibility in the choice of
p and q, which makes it attractive for the problems considered in the present paper.

We outline the calculation of the quadratic tangent majorants used in the computations.
Let G(β) : Rm+1 → R be a continuously differentiable functional. Then the functional
Q(β, γ) : Rm+1 × Rm+1 → R is said to be a quadratic tangent majorant for G(β) if and
only if for any γ ∈ Rm+1 the following conditions hold:

c1) Q(β, γ) is quadratic in β,

c2) Q(γ, γ) = G(γ),

c3) ∇βQ(γ, γ) = ∇βG(γ),

c4) Q(β, γ) ≥ G(β) for all β ∈ Rm+1,
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where ∇β denotes the gradient with respect to the variable β.
Quadratic tangent majorants only can be determined for continuously differentiable

functionals, cf. condition c3) above. We therefore smooth the functional J in (3) when
either p or q are in the interval ] 0, 1 ]. Introduce the function

φz,θ(t) =
(√

t2 + θ2
)z

with

{
θ > 0 for 0 < z ≤ 1,

θ = 0 for 1 < z ≤ 2,

with smoothing parameter θ > 0. Define the smoothed version of the minimization problem
(2) by

min
β∈Rm+1

Jθ(β), Jθ(β) =
1

p

n∑
i=1

φp,θ
(
(Xβ − y)i

)
+

λ

q

m+1∑
j=1

φq,θ
(
βj
)
. (6)

Let β(k) be the current approximation of the minimizer of (6). One can show that

Q(β, β(k)) =
1

2

∥∥∥(W
(k)
fid )1/2(Xβ − y)

∥∥∥2

2
+
λ

2

∥∥(W (k)
reg )1/2β

∥∥2

2
+ c, (7)

is a quadratic tangent majorant for (6) at β = β(k) for a suitable constant c, which is

independent of β. The matrices W
(k)
fid and W

(k)
reg are defined by

W
(k)
fid = diag(w

(k)
fid ), w

(k)
fid =

((
Xβ(k) − y

)2
+ θ2

)p/2−1

,

W (k)
reg = diag(w(k)

reg), w(k)
reg =

((
β(k)

)2
+ θ2

)q/2−1

,

where all the operations are meant element-wise; see [21] for details. The minimizer β(k+1)

of (7) is the next approximate solution of (6).
The normal equations associated with the minimization of (7) are given by

(XTW
(k)
fid X + λW (k)

reg ) β = XT
(
W

(k)
fid

)1/2

y, (8)

It follows that the minimizer β(k+1) of (7) or, equivalently, the solution of (8), is uniquely
defined for all λ > 0 if

Ker
(
XTW

(k)
fid X

)
∩ Ker

(
W (k)

reg

)
= {0},

where Ker(M) denotes the null space of the matrix M . This condition typically is satisfied.
In particular it was satisfied in all our experiments.

To speed up the computations for large-scale problems, we determine approximations
of the minimizers β(k), k = 1, 2, . . . , in generalized Krylov subspaces. Let the matrix
Vk ∈ R(m+1)×dk , with 1 ≤ dk � m, have orthonormal columns. We seek to determine an
approximation of the minimizer of (7) in the subspace determined by the columns of Vk.
We also denote this minimizer by β(k+1). It is computed by evaluation

z(k+1) = arg min
z∈Rdk

∥∥∥∥∥∥∥

(
W

(k)
fid

)1/2

XVk

λ1/2
(
W

(k)
reg

)1/2

Vk

 z − [ (W (k)
fid

)1/2

y

0

]∥∥∥∥∥∥∥
2

2

(9)
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and letting
β(k+1) = Vkz

(k+1). (10)

The vector z(k+1) is computed by substituting the QR factorizations(
W

(k)
fid

)1/2

XVk = Q1R1 with Q1 ∈ Rn×dk , R1 ∈ Rdk×k ,(
W (k)

reg

)1/2
Vk = Q2R2 with Q2 ∈ R(m+1)×dk , R2 ∈ Rdk×dk

(11)

into (9). We recall that the matrices Q1 and Q2 have orthonormal columns, and the
matrices R1 and R2 are upper triangular. Combining (11) and (9) yields

z(k+1) = arg min
z∈Rdk

∥∥∥∥[ R1

λ1/2R2

]
z −

[
QT

1 y
0

]∥∥∥∥2

2

.

Substituting (10) into (8) gives the residual vector

r = XT
(
W

(k)
fid

)1/2
((

W
(k)
fid

)1/2

XVkz
(k+1) − y

)
+ λW (k)

regVkz
(k+1).

We expand Vk by adding the scaled residual vector vnew = r/‖r‖2 as a new column. Thus,
Vk+1 = [Vk, vnew] ∈ R(m+1)×dk+1 , dk+1 = dk + 1. Note that the vector vnew is orthogonal
to the columns of the matrix Vk. The columns of Vk+1 form an orthonormal basis for
the expanded solution subspace. The so determined solution subspaces are referred to as
generalized Krylov subspaces. We summarize the described procedure in Algorithm 1.

Algorithm 1 (MM-GKS). Let 0 < p, q ≤ 2 and λ > 0. Consider X ∈ R(m+1)×n. Fix
θ > 0.

β(0) = XTy;

V0 = β(0)/
∥∥β(0)

∥∥
2
;

for k = 0, 1, . . . do

w
(k)
fid =

((
Xβ(k) − y

)2
+ θ2

)p/2−1

;

W
(k)
fid = diag(w

(k)
fid );

w
(k)
reg =

((
β(k)

)2
+ θ2

)q/2−1

;

W
(k)
reg = diag(w

(k)
reg);

Compute the QR factorizations W
(k)
fig XVk = Q1R1 and W

(k)
regVk = Q2R2;

z(k+1) = (RT
1R1 + λRT

2R
T
2 )−1(RT

1Q1y);

r = XT
(
W

(k)
fid

)1/2
((

W
(k)
fid

)1/2

XVkz
(k+1) − y

)
+ λW

(k)
regVkz

(k+1);

vnew = r/ ‖r‖2;
Vk+1 = [Vk, vnew];

β(k+1) = Vkz
(k+1);

end
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To improve the computational performance of Algorithm 1, we store the matrix XVk at
each iteration, so that the matrices W

(k)
fig XVk and W

(k)
regVk can be computed very cheaply.

Thus, the main cost of Algorithm 1 is the matrix-vector product evaluations in each iter-
ation with the matrices X and XT . Here we assume that dk � m. Then the dominating
computational work in each iteration with Algorithm 1 requires O(nm) arithmetic floating
point operations (flops). We observe that for large-scale problems this approach is much
cheaper than the one proposed in [18], which requires the computation of a singular value
decomposition of the matrix X at a cost of O(m2n) flops.

4 Numerical Comparison

In this section we assess the performance of the proposed `p-`q method as a variable selection
procedure in terms of its ability to identify the true active factors of an experiment. In the
following examples all simulations are carried out using MATLAB.

4.1 An Illustrative Example

We first consider the example in [18, Section 2.1]. Here X = [x0, x1, . . . , x10] ∈ R6×11. Let

yexact = 5x0 + 4x2 + 3x5, y = 5x0 + 4x2 + 3x5 + ε, (12)

where ε is a “noise vector”, whose components model white Gaussian noise. The desired
solution, βexact, is a sparse vector that satisfies the noise-free system of equations Xβexact =
yexact. The available data vector is

y = [−1.54, 12.02, 6.82, 12.44, 4.62,−1.21]T .

We first would like to confirm that the optimal choice for p is 2, and that the smaller the
value of q > 0 is, the more accurate is the computed approximate solution. To this end
we solve (2) for several values of p and q. For each pair of p- and q-values, we determine
the optimal value of λ, i.e., the value that minimizes ‖β∗λ − βexact‖2, where β∗λ denotes the
solution of (2) and βexact is the desired solution of the noise-free problem associated with
(12). For each computed approximate solution β∗λ, we evaluate the relative restoration error
(RRE) defined by

RRE(β∗λ) =
‖β∗λ − βexact‖2

‖βexact‖2

.

Figure 1(a) displays the RRE for the different choices of p and q. It is evident by visual
inspection of this image that the best choice is p = 2. Moreover, for fixed p, we can observe
that the RRE decreases with q. This is in agreement with the theory developed in [5].

Let us now fix p = 2 and q = 0.1, and analyze how the computed restorations change
with λ. We determine approximate solutions β∗λ for several values of λ and compute the
associated RREs. Figure 1(b) shows the RRE as a function of λ. We can observe that the
error is stable with respect to different choices of λ, especially for small λ-values.

Variable selection seeks to determine which columns of X are the ones that contribute
to the response y. Figure 2 shows reconstructions obtained for several values of λ. We
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Figure 1: Illustrative example in [18, Section 2.1]: (a) RRE for different choices of p and
q. For each parameter pair (p, q), the parameter λ is chosen so that the RRE is minimal,
(b) RRE of the computed solutions versus λ for p = 2 and q = 0.1.

observe that all the reconstructions, regardless of the choice of λ, correctly identify the
columns x0, x2, and x5 of X as active. For very small values of λ > 0, also some other
columns are identified as active, however, the values of the associated coefficients βj are
very small.

Finally, we compare our reconstructed solutions to the one reported in [18]. To do so,
for each of the three active columns, we compare the relative error of the single entries of
β∗λ for several choices of λ. Figure 3 shows the values of

|(β∗λ)j − (βexact)j|
|(βexact)j|

, j ∈ {0, 2, 5},

for different values of λ and compares them to the ones obtained in [18]. We can observe
that, for most choices of λ our method is able to provide a better estimate of the coefficients
βj.

4.2 Random Examples

We would like to illustrate that the results shown in Section 4.1 are typical. To this end,
we consider a set of 20 test cases randomly generated. Thus, we generate at random 20
matrices Xi ∈ R6×11 such that the first column is made of only ones and the other columns
have 3 entries that are equal to −1 and 3 entries that are equal to 1. Moreover, we make
sure that all the columns of each Xi are different. For all i = 1, . . . , 20, we generated a
vector β∗i ∈ R11 as follows: Each vector β∗i has 3 non-vanishing entries, the first one, and
two picked at random between the other 10 entries. The nonzero entries of β∗i are random
integers between 1 and 10. We computed the right-hand sides yi by

yi = Xiβ
∗
i + εi,
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Figure 2: Illustrative example in [18, Section 2.1]: Reconstructions obtained with different
λs with p = 2 and q = 0.1.
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Figure 3: Illustrative example in [18, Section 2.1]: The solid curve represents the relative
error of the single component obtained for different values of λ, the dotted curve is the
relative error of the same component in the reconstruction computed in [18]. Panel (a)
displays the 0th component, (b) the 2nd component, and (c) the 5th component.
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Figure 4: Aggregated results for the randomly generated examples of Section 4.2: (a)
Averaged RREs for different choices of p and q, for each parameter pair (p, q), the parameter
λ is chosen so that the RRE is minimal, (b) Averaged ∂RRE for p = 2 and q = 0.1.

where εi represents Gaussian noise, i.e., εi ∼ Nn(0n, σ
2
i In), where σi is chosen such that

‖εi‖2 = 0.05 ‖Xiβ
∗
i ‖2.

For each example, we apply Algorithm 1 for several values of p, q, and λ. We first
illustrate that, as already mentioned, the value of p should be determined by the statistical
properties of the noise, and the choice of q should be informed by the desired sparsity of
β∗i . For each i and each p and q, we select the λ-value that produces the smallest RRE.
We average the RREs obtained for each choice of p and q, and display the results obtained
in Figure 4(a). We can clearly see that the best results are achieved when p = 2 (or very
close to it) and q is as small as possible. This confirms our theoretical analysis of the roles
of p and q.

We turn to the analysis of the behavior of the RRE with respect to the choice of λ. Our
aim is to show the stability of our approach to the selection of the regularization parameter.
Therefore, let RRE(λ) denote the RRE achieved for the parameter value λ. We would like
to illustrate that RRE(λ) does not vary quickly with small changes of λ. To do this we
approximate the derivative of λ → RRE(λ) by a first order finite difference. Thus, let
{λ1, . . . , λ`, λ`+1} define a grid of logarithmically equispaced λ-values and define the finite
differences

∂RRE(λj) =
RRE(λj+1)− RRE(λj)

λj+1 − λj
, j = 1, . . . , `.

The analysis above suggest that we fix p = 2 and q = 0.1. We average all the ∂RRE-values
in the considered examples and report the results in Figure 4(b). Note that ∂RRE(λ) is
fairly small over large intervals of λ-values. This implies that our approach is fairly stable
with respect of the choice of λ.
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4.3 The William Data

Synthetic Cases. We now turn our attention to William’s data [18,27]. This data set is
composed of 10 synthetic models and a single real one and the matrixX ∈ R14×24. This data
set has been studied in almost every paper that deals with the analysis of supersaturated
designs and thus it acts as a base of comparison among the various proposed methods.

Since the results of the analysis of the effects of the parameters p, q, and λ are the same
as for the previous example, we do not report them here. We first consider the synthetic
cases and report them in Table 1. The only model that differs in a significant way from
the other ones is the first one. In this model, since y ∼ 15x1 + 8x5 − 6x9 + 3x5x9 + ε, we
see that it contains the interaction of factors x5 and x9 which is unbalanced. The product
x5x9 is meant element-wise. To handle this case, we add the column x5x9 to the matrix X
and add an unknown to the problem.

Our analysis above suggests that we may fix p = 2 and q = 0.1. Moreover, we have
seen that the results obtained are fairly stable with respect to changes in λ. For the sake
of simplicity, we therefore fix λ = 10. Small changes in λ do not affect the overall results
that we are going to discuss.

To acquire more data, we simulate 1000 data vectors y with different realizations of ε,
and compute both the average of Type I and Type II errors. The Type I error is the ratio
of the number of zero entries of βexact that are incorrectly set to a nonzero value by the
method and the correct number of zero entries, while the Type II error is the ratio of the
number of nonzero entries of βexact that are incorrectly set to zero by the method and the
correct number of nonzero entries. Thus,

Error Type I(β) =
|{j : βj 6= 0, (βexact)j = 0}|
|{j : (βexact)j = 0}|

,

Error Type II(β) =
|{j : βj = 0, (βexact)j 6= 0}|
|{j : (βexact)j 6= 0}|

.

Table 2 reports the results obtained with our method and with six other methods described
in the literature. We observe that, except for the very first model, we obtain excellent results
with near-zero errors in all the considered cases. However, the first model turns out to be
challenging for our method. This may be due to the fact that the exact solution βexact is
close to the null space of the matrix X. To see this, we compute∥∥(I −X†X)βexact

∥∥
2
/ ‖βexact‖2 , (13)

whereX† denotes the Moore-Penrose pseudoinverse ofX. Thus, (I−X†X) is the orthogonal
projector onto the null space of X. The quantity (13) is reported in Table 1 for all models.
Observe that for the first model, this quantity is closer to 1 (its maximum value) than for
the other models. We remark that models that include interactions of the factors usually
are not considered in the analysis of supersaturated designs.

A Real Data Model. We now consider a real data model, which has been studied in
many papers that deal with the analysis of SSDs. Obviously, we do not have access to βexact,
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Table 1: William’s data synthetic models. We note that the product x5x9 in Model 1 is
meant element-wise. In all models ε ∼ N(014, I14).

Model no. Model

∥∥(I −X†X)βexact

∥∥
2

‖βexact‖2

1 y ∼ 15x1 + 8x5 − 6x9 + 3x5x9 + ε 0.7923
2 y ∼ 8x1 + 5x12 + ε 0.5811
3 y ∼ 20x1 + ε 0.7372
4 y ∼ 20x2 + 20x7 + ε 0.6921
5 y ∼ 14x2 + 20x7 + 20x16 + ε 0.5427
6 y ∼ 5x1 + 5x2 + ε 0.5145
7 y ∼ 5x1 + 5x2 + 5x3 + ε 0.5700
8 y ∼ 5x1 + 5x2 + 5x3 + 5x4 + ε 0.4048
9 y ∼ 5x1 + 5x2 + 5x3 + 5x4 − 5x5 + ε 0.4954
10 y ∼ 10x1 + 9x2 + 2x3 + ε 0.5181

Table 2: William’s data synthetic models. Type I and II errors obtained with our approach
and with the methods described in References [1,2,18,26,27,36]. In [18] the method is tuned
so that the Type I and II errors are the same. Therefore, we report them together. When
we write 0.00, we mean that the first two decimals equal 0, but the number is nonzero,
while when we write 0, we mean that we have an exact 0.

Model no.
Error in [18] for an opt.

Error for `p − `q Error in References signif. level α = 4%
Type I Type II Type I Type II Type I and II

1 0.16 0.59 0.20 0.12 0.01
2 0 0 0.06 0.07 0.04
3 0.00 0 0.08 0.14 0.00
4 0 0 0.01 0.01 0.00
5 0 0 0.00 0.00 0.00
6 0.00 0 0.09 0.18 0.02
7 0.00 0 0.02 0.11 0.01
8 0 0 0.08 0.10 0.00
9 0 0 0.11 0.17 0.00
10 0.00 0.33 0.12 0.22 0.26
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however, other studies suggest that very few entries of βexact should be non-vanishing. In
particular, the 15th entry should be nonzero. Observing the data vector y suggests that all
its entries are integers. This immediately implies that the noise that corrupts the data y
is not Gaussian. Therefore, we cannot expect the choice p = 2 to give satisfactory results.
We therefore set p = 0.8 in the computations. Similarly as above, we let q = 0.1 to promote
sparsity of the computed solution. We minimize (2) for several values of λ and analyze
the results. The solution β is expected to be sparser for larger values of λ. Moreover, we
expect the most important components of β to be non-vanishing also for large values of λ.
Figure 5 shows the computed solutions β for several values of λ, as well as the absolute
values of the components of the computed β (excluding the first component). We observe
that the first displayed component is larger than all the other ones and is nonzero for all
choices of λ. From the entries shown in Figure 5(b), we can see that the 15th entry of β
appears in most of the computed solutions. This entry is seen to be significantly larger
than the other displayed entries. This suggests that the three most important entries of
β are the first, the 15th and the 17th ones. This result is in agreement with the Dantzig
selector method [10], which identifies as important factors 15 and 17. Also in [18] the factor
15 is identified as the most influential one.

Finally, we determine the 3 entries of β that are nonvanishing for most of the considered
values of λ. We consider ` values of λ, denoted by λ1, . . . , λ`. For each λj, the minimization
of (2) produces an approximate solution β(j) ∈ R24. For each index i = 1, . . . , 24, we
compute

ι̂ = |{j : β
(j)
i 6= 0}|,

i.e., the number of times that the ith component is nonzero in the reconstructions β(j). We
then determine the indices with maximum index ι̂. We report in Table 3 the ratio ι̂/` and
the averaged value assumed by each entry (considering only nonzero entries), i.e.,

β̄i =

∑`
j=1(βj)i

ι̂
.

In our experiments, we set ` = 100 and let the λj be logarithmically spaced between 10−7

and 10−2.
We can observe that the first entry is always nonvanishing and that the 15th entry

is nonzero in 87% of the computed reconstructions. In fact, from Figure 5(b), we can
observe that the 15th entry vanishes only for very large values of λ, i.e., when we require
the solution to be extremely sparse. Our analysis shows that the 17th entry is relevant as
it is nonvanishing for 86% of the cases, even though, the magnitude of β17 is smaller than
the magnitude of β15.

Additional examples in [27]. In [27] the authors proposed three additional examples
with the William matrix. In particular they consider three cases:

Case I: One active factor, β1 = 10, and the other entries are equal to zero;

Case II: Three active factors, β1 = −15, β5 = 8, β9 = −2, and all the other entries
vanish;
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(a) (b)

Figure 5: William’s test data, real data case: (a) computed β for different values of λ, (b)
absolute values of the computed βj, for j = 2, 3, . . . ,m+ 1, for different values of λ.

Table 3: William’s test data, real data case: 3 most frequent nonvanishing entries in the
computed reconstructions. For each component we show the averaged values assumed
(counting only the non zero instances) and the ratio î/`, where î is the number of times
that the coordinate i is nonvanishing and ` is the number of values of λ tested.

Intercept β15 β17

Averaged value 6.2153 −0.8520 −0.4000
ι̂/` 1 0.87 0.86
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Table 4: William’s data additional examples in [27]. Type I and II errors obtained with
our approach. When we write 0.00, we mean that the first two decimals equal 0, but the
number is nonzero, while when we write 0, we mean that we have an exact 0. The results
are obtained averaging 1000 realizations of the noise.

Case Error Type I Error Type 2
I 0 0
II 0.00 0.33
III 0.00 0.20

Case III: Five active factors, β1 = −15, β5 = 12, β9 = −8, β13 = 6, β17 = −2, and other
components of β equal 0.

Our method is applied with p = 2, q = 0.1, and λ = 10. We generate 1000 realizations of
white Gaussian noise with variance 1, and recover β for each realization. The Errors of type
I and II are computed as well as their averages. Table 4 reports the results obtained. We
observe that our method never identifies a vanishing entry of β as nonvanishing, however,
it fails to identify the vanishing entries β in the cases II and III. In both cases, our method
fails to identify the smallest nonvanishing entry (in absolute value) of β and sets it to 0.
This behavior is consistent with the one described in [18].

5 Pollutant Absorption Example: Screening for Inter-

action Effects with Saturated and Supersaturated

Designs

Here we use data from a study on pollutant absorption by moss by Cesa et al. [14]. Bags
filled with moss are used in biomonitoring of water pollution, by submerging them at sites of
interest for a fixed interval of time, and then measuring the amount of pollutant absorbed;
knowing the uptake rate for each element, and how the presence of other pollutants can
increase or decrease such rates, is crucial for the successful application of this monitoring
method. The authors of [14] selected 11 chemical elements: Al, As, Cd, Cr, Cu, Fe, Hg, Mn,
Ni, Pb, and Zn. Their goal was to assess element uptake based on the concentration in the
water of the element itself, as well as interaction effects caused by the other elements, that
is, antagonism/competition (absorption of the element is reduced by high concentrations
of another element) or synergism (absorption is improved). They fitted 11 different linear
models, each one having the uptake of a different element as the response, but all with the
same design matrix, which we describe now.

Regarding each chemical element as a factor with two levels (high and low), the re-
searchers used a Rechtschaffner experiment design [32]: one run with all factors at the low
level; 11 runs with all but one factor at the high level; and 55 runs with all but two factors
at the low level. With this design, the linear model with first order interactions (which has
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67 parameters: intercept, 11 main effects, and 55 interaction effects) is a saturated model;
the corresponding design matrix X is of size 67× 67.

The coefficient estimates in [14] are given by X−1y, where y is the response (element up-
take measurements), leaving zero residual degrees of freedom. This is a common approach;
the authors applied Lenth’s method [25] to classify each one of the 66 factors (i.e., leaving
out the intercept) as inactive, possibly active, and probably active. (Lenth’s method is based
on comparing the magnitude of each fitted coefficient with some particular multiples of ro-
bust estimates of spread of the 66 fitted coefficients.) They concluded, for example, that
aluminum (Al) uptake has “probably active” factors Al and Al:Cu, with positive effects,
“probably active” factors Al:Cr, Al:Fe, Fe, and Cr, with negative effects, and “possibly
active” factors Al:Pb and Al:Cd, with negative effects. We will see below that there is
reason to doubt that Al:Cu is an active factor.

We have two goals in this section: first, to analyze the moss data from [14] using
`p-`q regression, and to compare the results with those obtained with existing methods
used in [14]. Second, to use `p-`q regression on subsets of the moss data, determined by
supersaturated fractions of the full Rechtschaffner design. We used three approximately
optimal fractions identified by Cela et al. [13] that use only 40, 33, and 24 of the 67
Rechtschaffner runs, respectively; for comparison we also use three random fractions of the
same sizes.

5.1 Methods

For this section we used a version of Algorithm 1 coded in R [30]. We considered all
combinations of p and q with p ∈ {0.8, 1, 1.1, 1.5, 1.9, 2} and q ∈ {0.1, 0.5, 0.9, 1, 1.5, 2}.
For each such combination, we produced a solution path by solving the `p-`q minimization
problem for 50 different values of λ, equally spaced in log scale from 10−2 to 104. In each
case, we started from the largest value of λ, which produces zeros for all fitted values, and
at each subsequent step used the previously fitted values as warm start for the fit with the
next smaller value of λ.

This was repeated 11 times, each time having as response the uptake for one of the
chemical elements. Furthermore, the process was repeated 7 times: once with the full
saturated design matrix, once for each of the 3 approximately optimal supersaturated
subdesigns from [13], and once for each of 3 (fixed) random subdesigns. This resulted in
138,600 sets of fitted values; to speed up the computations, parallel processing was used.

5.2 Results

Examination of the solution paths obtained yields the following results.

Regularization is Needed. Some effects can be dramatically different at different levels
of regularization. As an example, consider the solution path in Figure 6. The response is
aluminum uptake (Al), using p = q = 2 (ridge regression), with the full saturated design.
Very small values of λ result in a solution that is essentially equal to X−1y. The coefficient
for the interaction term Al:Cu is 54.6, which Lenth’s method classifies as “probably active,”
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as mentioned above. However, as λ increases, it’s magnitude decreases faster than for other
factors, and for λ ≥ 62.5 it actually becomes negative. This strongly suggests that the effect
of Al:Cu is not really active. Thus, what seemed like a large effect at zero regularization,
might not be truly interesting. Conversely, other factors whose coefficients become larger
(relatively to the others) at higher levels of regularization might be truly interesting, yet
are missed altogether following the traditional approach.

Strong evidence that some amount of regularization is needed arises when the same
analysis is performed on the 40-, 33-, and 24-run fragments of the design. Stronger cor-
relation between the fitted coefficients is obtained at higher values of λ, indicating that
the regularized estimates are more stable and reproducible. Figure 7 shows the correlation
between the coefficients estimated from the full saturated design and the coefficients esti-
mated using each of the three supersaturated fragments from [13], for different values of
λ. High concordance can be obtained between the estimated coefficients resulting from su-
persaturated fragments and the full saturated design, as long as regularization is used ; see
Figure 8. This shows that supersaturated designs, which are considerably more economical,
can be used with some success in screening for active factors. Of course, in general, the
larger the subdesign, the better the concordance, but even the small 24-run fragment can
consistently capture the largest effects.

Properties of the Solution Paths. The choices of p and q affect the overall properties
of the solution path. Here are some important properties:

Having 0 < q ≤ 1 gives a sparse coefficient vector for larger intervals of λ than when
q = 1; q > 1 does not give a sparse coefficient vector. However, very small values of q (like
q = 0.1) tend not to be useful for obtaining sparse solutions: Typically, there is a threshold
λ0 such that the coefficients are all nonzero when 0 < λ < λ0, and all zero when λ ≥ λ0.
Better results are obtained for q close to 1 (like q = 0.9), which gives several intervals for
λ with different levels of sparsity. The Lasso approach, that is, p = 2 and q = 1, succeeds
in producing sparse solutions, yet the coefficients are often highly shrunken.

Having 0 < p < 2 results in paths that are nearly piece-wise constant with respect to
λ, that is, the coefficients are nearly unchanged on intervals of values of λ, with abrupt
changes in between. There is some evidence as well that the correlation between coefficient
estimates from the saturated and supersaturated models is improved as well for 0 < p < 2;
see Figure 9. This is likely due to the increased ability to deal with outliers for these
p-values.

Random Subsets. Compared with the supersaturated fractions from [13], random frac-
tions of the same size produced different solution paths. The estimated coefficients tend
to be less correlated with the full data estimates, and the curves tend to have worse spar-
sity properties, dropping suddenly from low sparsity to all zeros. This agrees with the
observation in [4] that random fractions of saturated designs are suboptimal.
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Figure 6: Solution paths for two `p-`q models on the same data. (Based on the experiment
data from [14], using aluminum uptake as response.) The top panel uses p = 2 and q = 2
(i.e., ridge regression). The bottom panel uses p = 1.5 and q = 0.9. Colors correspond to
the factor classification from [14], using Lenth’s method [25]. Notice that the coefficient for
factor Al:Cu starts out large (and positive), for small values of the regularization parameter
λ; in the top panel, it becomes smaller and eventually negative, while in the bottom panel
it becomes zero at about λ = 50. The second model offers several ranges of values of λ
with different levels of sparsity, with essentially constant coefficient values.
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Figure 7: Coefficient correlation between full saturated design and supersaturated fragments.
(Based on the experiment data from [14], using aluminum uptake as response.) Each
curve describes how the correlation between the estimated coefficients from an `2-`2 model
fitted to the full saturated design and to each of three supersaturated fractions described
in [13]. Substantially better concordance is obtained for larger values of the regularization
parameter λ. This is evidence both that regularization is needed, and that even small
supersaturated fractions can capture information about the likely active factors.

23



5e−01 5e+00 5e+01 5e+02

−
50

0
50

10
0

Full Saturated Design (67 runs)

Regularization parameter λ

C
oe

ffi
ci

en
ts

5e−01 5e+00 5e+01 5e+02

−
50

0
50

10
0

Supersaturated Design (24 runs)

Regularization parameter λ
C

oe
ffi

ci
en

ts

Lenth Classification

Probably Active
Possibly Active
Inactive
Intercept

●

●

●●

●

●

●

●

●

●

● ● ●●● ●●

●

●

●
●

●

●●
●

●

●

●
● ●●

●● ●

●

●
●●

● ●
●●

●

●

●
●●

●
●

●● ●

●
●

●

●

●
●

●●●●
●●

●●●

−50 0 50 100

−
40

0
20

40
60

80

Coefficient Scatterplot, at dashed lines

Supersaturated Model, lambda = 0.39

S
up

er
sa

tu
ra

te
d 

M
od

el
, l

am
bd

a 
=

 0
.3

9

●

●

●

●

●

●

●

●

●

●●●●●

●

●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−40 −20 0 20 40 60 80

−
20

0
20

40

Coefficient Scatterplot, at dotted lines

Supersaturated Model, lambda = 145.63

S
up

er
sa

tu
ra

te
d 

M
od

el
, l

am
bd

a 
=

 6
2.

51

Figure 8: Scatterplots for `p-`q coefficients from saturated and supersaturated designs.
(Based on the experiment data from [14], using aluminum uptake as response.) The top
panels use, p = 1.5 and q = 0.9, one on the full saturated design and the other in the
24-run fragment from [13]. Colors correspond to the factor classification from [14], using
Lenth’s method [25]. The bottom panels show scatterplots of fitted coefficients; the bottom
left shows coefficients estimated using small values of λ, while the bottom right shows the
coefficients at large values of λ. This is evidence both that regularization is needed, and
that even small supersaturated fractions can detect the most of the likely active factors.
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Figure 9: Solution paths for two `p-`q models on the same data. (Based on the experiment
data from [14], using aluminum uptake as response.) The top panel uses p = 2 and
q = 0.9, while the bottom panel uses p = 1.5 and q = 0.9. Colors correspond to the
factor classification from [14], using Lenth’s method [25]. Notice that changing p from 2
to 1.5 results in a path that is more strongly piece-wise constant with respect to λ, that
is, the coefficients are nearly unchanged on intervals of values of λ, with abrupt changes in
between.
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6 Conclusions

This paper describes a method for the solution of the variable selection problem. We
considered a model that is well studied in the literature. A new theoretical property of
our model, namely continuity, is shown. Our model is able to outperform state-of-the-art
methods and provides accurate estimations. Thanks to the usage of generalized Krylov
subspaces, the method described may be applied to the solution of large-scale problems.
Following the ideas in [6], the introduction of constraints in the model will be subject of
future research.

Our work here is focused mostly on data from designed experiments, and in particular
for saturated and supersaturated designs. Supersaturated designs have been proposed over
the decades as a way to perform screening experiments in an economical way. They have not
gained much popularity, partly due to the impossibility of performing classical regression
inference. However, they seem promising as a way to perform more economical screening
studies, when coupled with regularization methods like the one described in this paper.

Choice of λ. The usual methods for choosing the regularization parameter λ are based on
either an a priori estimate of the magnitude of the error term, or on using a cross-validation
scheme. In principle, cross-validation can be applied to saturated designs, but it is usually
not applicable to supersaturated designs, because there are few observations to start with.
Furthermore, the designs are carefully chosen for balance and to minimize aliasing of effects
[19]; these properties are lost when choosing random subsets of observations for cross-
validation. Besides, cross-validation seeks to minimize prediction error, while the goal in
our case is variable selection.

Based on the fact that screening studies are not meant to provide formal inference on
the significance of particular effects, but rather provide a reduced list of factors for follow-up
studies, it seems reasonable to choose λ based on the expected or desired level of sparsity.
By choosing 0 < q < 1 close to 1, and 1 < p < 2, we tend to obtain solution paths that
are approximately piece-wise constant (i.e., relatively unchanged on intervals of λ, with
abrupt changes in between), and with staggered levels of sparsity. This often will provide
an interval of values for λ with the appropriate level of sparsity. That is, the step-wise
behavior makes it less crucial to identify a single correct value of λ.

Identifying Likely Active Factors. We propose a criterion for deciding on interesting
coefficients, or likely active factors, based on sparse fitted coefficients. This is an alternative
to Lenth’s method [25]. It starts by fitting a solution path for the `p-`q model with q < 1
but close to 1 (say, q = 0.9) and 1 < p < 2 (say, p = 1.5). In the solution path, identify an
interval of values for λ for which only a small proportion (say, approximately 10%) of the
coefficients are nonzero. The factors with nonzero coefficients are classified as likely active.
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