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Abstract. This paper is concerned with computing approximations of matrix functionals of the form
F (A) := vT f(A)v, where A is a large symmetric positive definite matrix, v is a vector, and f is a Stieltjes
function. We approximate F (A) with the aid of rational Gauss quadrature rules. Associated rational
Gauss–Radau and rational anti-Gauss rules are developed. Pairs of rational Gauss and rational Gauss–Radau
quadrature rules, or pairs of rational Gauss and rational anti-Gauss quadrature rules, can be used to determine
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Gauss rules, instead of standard Gauss rules, is beneficial when the function f has singularities close to the
spectrum of A.
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1. Introduction. We are interested in computing approximations of matrix functionals
of the form

F (A) := vT f(A)v (1.1)

by quadrature rules, where A ∈ RN×N is a large symmetric positive definite matrix, the
vector v ∈ RN\{0} is of unit Euclidean norm, the superscript T denotes transposition, and
f is a Stieltjes function, i.e., f has the representation

f(z) =

∫ ∞
0

1

t+ z
dµ(t), z ∈ C \ (−∞, 0], (1.2)

where the nonnegative measure dµ is such f(z) is well defined; see, e.g., [4, 6, 11, 12, 16, 20, 22]
for discussions and illustrations of Stieltjes functions. Examples include

f(z) = z−a =
sin(aπ)

π

∫ ∞
0

1

t+ z
dµ(t), with dµ(t) = t−adt, a ∈ (0, 1), (1.3)

f(z) =
log(1 + z)

z
=

∫ ∞
0

1

t+ z
dµ(t), with dµ(t) =

{
0, 0 ≤ t ≤ 1,

t−1dt, t > 1.

Let the matrix A have the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λN ], (1.4)

where the matrix U ∈ RN×N is orthogonal and the eigenvalues λi of A are ordered according
to 0 < λ1 ≤ · · · ≤ λN . The spectral factorization is used in the derivation of the quadrature
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rules of this paper, but application of these rules does not require the computation of this
factorization.

Define the vector [ν1, ν2, . . . , νN ] := vTU . Using the factorization (1.4), the expression
(1.1) with f defined by (1.2) can be written as

vT f(A)v = vTUf(Λ)UTv =

∫ ∞
0

vTU(tI + Λ)−1UTv dµ(t)

=

∫ ∞
0

N∑
i=1

(t+ λi)
−1ν2i dµ(t)

=

∫ ∞
0

∫ ∞
0

(t+ y)−1dν(y)dµ(t)

=

∫ ∞
0

f(y)dν(y) =: I(f), (1.5)

where the nonnegative measure dν(y) has support at the eigenvalues λi of A. The associated
distribution function ν(y) can be chosen to be a nondecreasing piece-wise constant function
with jumps of height ν2i at the eigenvalues λi of A. We discuss the use of rational Gauss-type
quadrature rules to approximate the integral (1.5). This is useful when the matrix A is large
and the distribution function ν(y) has many points of increase.

The approximation of expressions f(A)v when f is a Stieltjes function, as well as the
computation of error bounds or estimates, has received considerable attention; see, e.g.,
[4, 11, 12, 22] and references therein. Frommer and Schweitzer [11, 12] approximate f(A)
by a polynomial, while Massei and Robol [22] use a rational function. A difficulty with
polynomial approximants is that their degree may have to be large to yield the desired
accuracy of the computed approximation of (1.1). This is illustrated in Section 5.

Our contribution differs from the works [11, 12, 22] in that we use rational Gauss
quadrature rules for the approximation of (1.1). These rules were introduced in [25] and
are based on orthogonal rational functions that satisfy short recurrence relations and have
prescribed poles. Rational Gauss quadrature rules associated with the measure dν in (1.5)
can be computed by applying a few steps of a rational Lanczos process to the matrix A
with initial vector v. These rules are exact for certain rational functions with prescribed
poles. This paper defines rational Gauss–Radau quadrature rules, and shows how pairs of
rational Gauss and Gauss–Radau rules can be applied to determine upper and lower bounds
for the functional (1.1). These bounds are analogues of bounds provided by pairs of standard
Gauss and Gauss–Radau rules that have been described by Golub and Meurant [14]. The
evaluation of these bounds requires that bounds for extreme eigenvalues of A be available.

We also define rational anti-Gauss quadrature rules and simplified rational anti-Gauss
rules. Pairs of rational Gauss and rational anti-Gauss rules or pairs of rational Gauss and
simplified rational anti-Gauss rules also provide upper and lower bounds for the functional
(1.1) under suitable conditions, and do not require knowledge of extreme eigenvalues of
A. Rational anti-Gauss rules provide an extension to rational Gauss quadrature of the
anti-Gauss rules associated with (standard) Gauss quadrature rules that were introduced by
Laurie [21]. Other modifications and extensions of the anti-Gauss rules by Laurie [21] are
discussed in [1, 2, 7, 10, 23].

This paper is organized as follows. Section 2 reviews how (standard) Gauss quadrature
rules for the approximation of (1.5) can be determined by carrying out a few steps of the
Lanczos process applied to the symmetric matrix A with initial vector v. Section 3 discusses
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available results on recursion formulas for orthonormal bases for rational Krylov subspaces
associated with orthogonal rational functions with several fixed poles. The recursion formulas
are determined by the vector v, the symmetric matrix A, and by shifted matrices (A−αiI)−1.
In our computations, the αi are negative numbers, which are poles of the rational functions
that determine the rational Gauss, rational Gauss–Radau, rational anti-Gauss, and simplified
rational anti-Gauss quadrature rules used to approximate (1.1). It also is possible to let some
poles appear in complex conjugate pairs. Recursion relations for rational orthogonal functions
with poles αi are reviewed in Section 3, and their application to rational Gauss, rational
Gauss–Radau, rational anti-Gauss, and simplified rational anti-Gauss quadrature rules is
discussed in Section 4. A nice introduction to rational Gauss rules and their properties is
provided by Gautschi [13, Section 3.1.4]. Section 5 presents a few computed examples, and
concluding remarks can be found in Section 6.

2. Gauss quadrature rules. This section reviews the application of the symmetric
Lanczos process to the symmetric positive definite matrix A ∈ RN×N to evaluate Gauss
quadrature rules for the approximation of the functional (1.1); see, e.g., Golub and Meurant
[14] for further details. The application of 1 ≤ m � N steps of the symmetric Lanczos
process to A with initial unit vector v gives the Lanczos decomposition

AVm = VmTm + tm−1,mvmeTm, (2.1)

where the matrix Vm = [v0,v1, . . . ,vm−1] ∈ RN×m, with v0 := v, has orthonormal columns
that form a basis for the Krylov subspace

Km(A,v) = span{v, Av, . . . , Am−1v}.

Moreover, the unit vector vm ∈ RN satisfies V Tmvm = 0, and Tm = [tij ]
m−1
i,j=0 ∈ Rm×m is a

symmetric positive definite tridiagonal matrix; the scalar tm−1,m is nonnegative. Here and
below ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth axis vector. We assume that 1 ≤ m� N
is chosen small enough so that the decomposition (2.1) with the stated properties exists.
This is the generic situation.

It follows from the recursion relation (2.1) for the columns of Vm that the jth column
can be expressed as

vj−1 = pj−1(A)v, j = 1, 2, . . . ,m,

where pj−1 is a polynomial of degree j− 1. Golub and Meurant [14] show that the expression

Gm(f) := eT1 f(Tm)e1 (2.2)

is the m-point Gauss quadrature rule for the approximation of (1.1), i.e.,

Gm(f) = vT f(A)v, ∀f ∈ P2m,

where P2m denotes the space of all polynomials of degree at most 2m− 1, i.e., a space of
dimension 2m. This Gauss rule is associated with the bilinear form

〈f, g〉 := (f(A)v)T (g(A)v), (2.3)

which is an inner product for polynomials f and g of sufficiently low degree. This can be
seen by substituting the spectral factorization (1.4) into (2.3). Substituting the spectral
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factorization of the matrix Tm into the right-hand side of (2.2) shows that Gm(f) indeed is a
quadrature rule with m nodes.

When the integrand f has one or several singularities close to the support of the
measure dν in (1.5), Gauss rules (2.2) with a moderate number of nodes, m, may yield poor
approximations of the functional (1.1). This difficulty can be remedied by using rational
Gauss rules. They were first discussed by Gonchar and López Lagomasino [15], and have
subsequently received considerable attention; see, e.g., [5, 13, 17, 19].

We will use the rational Gauss quadrature rules described in [25] and define associated
rational Gauss–Radau rules, as well as rational anti-Gauss and simplified anti-Gauss rules.
The computation of the rational Gauss rules described in [25] is based on the observation in
[24] that a sequence of certain orthogonal rational functions satisfy short recursion relations,
i.e., the number of terms in the recursion relations can be bounded independently of the
number of orthogonal rational functions in the sequence. We note that different sequences of
orthogonal rational functions that satisfy a three-term recursion relation have been developed
by Deckers and Bultheel [8]. These sequences also can be used to construct rational Gauss
rules; see [9]. We use the rational Gauss quadrature rules described in [25], because their
computation requires fewer linear systems of equations with matrices that are determined
from A to be solved than the approach in [9].

3. Recursion relations for rational Krylov subspaces. The first part of this
section reviews results in [24] on recursion relations for certain orthogonal rational functions.
The number of terms in the recursion relations depends on the number of distinct poles of
the rational functions and on the ordering of certain elementary rational basis functions. The
recursion relations are applied in a rational Lanczos process, which is described in Subsection
3.1.

Introduce linear spaces of rational functions with finite poles,

Qi,ki = span

{
1

(y − αi)j
: j = 1, 2, . . . , ki

}
, i = 1, 2, . . . , `, (3.1)

where the αi are real distinct poles of multiplicity ki, i = 1, 2, . . . , `. They are assumed to lie
outside the convex hull of the support of the measure dν. In the application of this paper,
they will lie on the negative real axis.

Now let α`+2i, i = 1, 2, . . . , ˆ̀, denote distinct complex conjugate poles with nonvanishing
imaginary part, and assume that each pole and its complex conjugate are adjacent, i.e.,
α`+2i = ᾱ`+2i−1, where the bar denotes complex conjugation. Since we are interested in
integrating functions f , such that f(y) ∈ R for y > 0, we replace each pair of rational
functions

1

(y − α`+2i−1)
j
,

1

(y − ᾱ`+2i−1)
j

by a pair

1

(y2 + βiy + γi)
j
,

y

(y2 + βiy + γi)
j
,

where the coefficients βi, γi ∈ R are defined by y2 + βiy + γi = (y − α`+2i−1)(y − ᾱ`+2i−1).
Analogously to (3.1), we define the spaces

Wi,2si = span

{
1

(y2 + βiy + γi)
j
,

y

(y2 + βiy + γi)
j

: j = 1, 2, . . . , si

}
, i = 1, 2, . . . , ˆ̀,
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where si is the multiplicity of the complex conjugate poles α`+2i−1 and α`+2i.
Let

k =
∑̀
i=1

ki, s =

ˆ̀∑
i=1

si, (3.2)

and introduce the (m+ 1)-dimensional linear space

Sm+1 := Pm+1−k−2s ⊕Q1,k1 ⊕ · · · ⊕Q`,k` ⊕W1,2s1 ⊕ · · · ⊕Wˆ̀,2sˆ̀
, (3.3)

where we assume that the ki and si are chosen so that 0 ≤ k + 2s ≤ m− 1. Then the space
(3.3) contains linear functions. Let

Ψm+1 = {ψ0, ψ1, . . . , ψm} (3.4)

denote an elementary basis for the space Sm+1, i.e., ψ0(y) = 1 and each basis function ψi(y),
for i = 1, 2, . . . ,m, is one of the functions

yj ,
1

(y − αi)j
,

1

(y2 + βiy + γi)
j
,

y

(y2 + βiy + γi)
j

(3.5)

for some positive integers i and j. The notation ψs ≺ ψt indicates that the basis function ψs
comes before ψt. We say that the ordering of the basis functions (3.4) is natural if ψ0(y) = 1
and the remaining functions ψj , j = 1, 2, . . . ,m, satisfy:

1. yp ≺ yp+1 for all integers p > 0,
2. 1

(y−αi)
p ≺ 1

(y−αi)
p+1 for all integers p > 0 and every real pole αi,

3. 1
(y2+βiy+γi)

p ≺ y
(y2+βiy+γi)

p ≺ 1
(y2+βiy+γi)

p+1 for all positive integers p and every

pair {βi, γi},
4. if ψj(y) = 1

(y2+βiy+γi)
p , then ψj+1(y) = y

(y2+βiy+γi)
p .

In particular, if ψj = yp for some p > 1, then some preceding elementary basis function ψi
with i < j equals yp−1. An analogous statement also holds for negative powers (y − αi)−p
and (y2 + βiy + γi)

−p for p > 1.
It is shown in [24] that a Stieltjes procedure for orthogonalizing elementary basis functions

with respect to some inner product only requires short recursion relations when the basis
functions are in natural order. The same holds if we orthogonalize the elementary basis
functions with respect to a bilinear form [f, g] = L(fg), where L is a linear functional on
Sm+1, as long as L(φ2j ) 6= 0. In this section, we orthogonalize the elementary basis functions
with respect to the bilinear form (2.3); in Section 4 also other bilinear forms will be used.
The bilinear form (2.3) is an inner product for all elementary basis functions of low enough
order.

A recursion relation is said to be short if the number of terms in the relation can be
bounded independently of the number of orthogonal functions generated. A well-known
special case is furnished by the situation when all elementary basis functions are monomials,
i.e., ψj(y) = yj , j = 0, 1, 2, . . . . Then φ0, φ1, φ2, . . . form a family of orthonormal
polynomials with φj of degree j for all j. These polynomials satisfy a three-term recurrence
relation. When the elementary basis functions are allowed to be of the form (3.5), the
number of terms required in the recurrence relation depends on how often powers of the
same function appear in the sequence (3.4). This is explained below.
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We mention three types of recursion relations from [24] that are needed in this paper
and start with the recursion relation for yφr:

yφr(y) =

n2∑
j=−n1

cr,r+jφr+j(y), r = 0, 1, . . . , (3.6)

where r − n1 is the largest integer smaller than r such that ψr−n1 is a monomial if there is
such a monomial (otherwise r − n1 = 0), and r + n2 is the smallest integer larger than r
such that ψr+n2

is a monomial.
In order to introduce a real pole αi we need the following recursions:

1

y − αi
φr(y) =

n4∑
j=−n3

c
(i)
r,r+jφr+j(y), r = 0, 1, 2, . . . , (3.7)

where r− n3 is the largest integer smaller than r such that ψr−n3
is a rational function with

a pole at αi if there is such a rational function (otherwise r − n3 = 0), and r + n4 is the
smallest integer larger than r such that ψr+n4

is a rational function with a pole at αi.
To introduce a pair of complex conjugate poles, we use the following formulas with

p ∈ {0, 1}:

yp

y2 + βjy + γj
φr(y) =

n6∑
i=−n5

c
(j)
r,r+iφr+i(y), r = 0, 1, 2, . . . , (3.8)

where r − n5 is the largest integer smaller than r such that ψr−n5
(y) = (y2 + βjy + γj)

s if
there is such a rational function (otherwise r − n5 = 0), and r + n6 is the smallest integer
larger than r such that ψr+n6(y) = y(y2 + βjy + γj)

s. Note that the first orthonormal
rational functions φi and the first elementary basis functions ψi span the same space.

Define the vector of orthonormal rational functions,

Φm(y) := [φ0(y), φ1(y), . . . , φm−1(y)].

If ψm is a monomial and m− d is the largest integer smaller than m such that ψm−d is a
monomial, then the recursion formulas (3.6) can be written in the matrix form

yΦm(y) = HmΦm(y) +

d∑
j=1

hm−j,mφm(y)em+1−j . (3.9)

The matrix Hm has the following block-diagonal structure: it has m − k − 2s − 1 square
blocks along the diagonal such that any two consecutive blocks overlap in one diagonal
element. The jth block of Hm is of dimension r × r, where r − 2 is the number of rational
functions between consecutive monomials yj−1 and yj . More precisely, the jth block of
Hm is the submatrix Hm (r1 : r2, r1 : r2) (in MATLAB notation) with the entries hij for
r1 ≤ i, j ≤ r2, where ψr1(y) = yj−1 and ψr2(y) = yj . Also, r = r2 − r1 + 1. The non-zero
entries of Hm = [hij ]

m−1
i,j=0 are recursion coefficients for the functions φi, i = 0, 1, . . . ,m− 1.

They satisfy

hi,j = 〈yφi(y), φj(y)〉 = 〈yφj(y), φi(y)〉 = hj,i, (3.10)
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which shows that the matrix Hm depends only on the first m elementary basis functions ψj ,
j = 0, 1, . . . ,m− 1, and does not depend on ψm. In this paper we will always assume that
ψm (or ψm+1 if we deal with Hm+1) is a monomial for only one reason: then the zeros of
φm are eigenvalues of Hm.

The following example illustrates the structure of the matrix Hm.

Example 3.1. Let αi, βj , γj be defined as described in the beginning of this section and
consider the elementary basis{

1,
1

y − α1
, y,

1

(y − α1)2
, y2, . . . ,

1

y − α`
, yk−k`+1, . . . ,

1

(y − α`)k`
, yk,

1

y2 + β1y + γ1
,

y

y2 + β1y + γ1
, yk+1, . . . ,

1

(y2 + β1y + γ1)s1
,

y

(y2 + β1y + γ1)s1
, yk+s1 ,

1

y2 + β2y + γ2
,

y

y2 + β2y + γ2
, yk+s1+1, . . . ,

1

(y2 + βˆ̀y + γˆ̀)sˆ̀
,

y

(y2 + βˆ̀y + γˆ̀)sˆ̀
, yk+s

}
.

This basis together with the function ψm(y) = yk+s+1, where k and s are defined by (3.2),
and m = 1 + 2k + 3s, satisfy the requirements of natural ordering and make up the space
Sm+1. The matrix Hm in this case has k 3× 3 blocks and s trailing 4× 4 blocks along the
diagonal:

Hm =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


.

Matrix entries that may be nonvanishing are marked by ∗. If we place one more rational
function between two consecutive monomials yj−1 and yj in the elementary basis, then the
size of the jth block of Hm increases by one. Similarly, removing one rational function
between two consecutive monomials decreases the size of the corresponding block by one.

�

3.1. The rational Lanczos process. In the rest of the paper we focus on functionals
I defined by (1.1) when A is a symmetric positive definite matrix, and v is a normalized
vector. If the functions φj , j = 0, 1, . . . ,m, are orthonormal with respect to the bilinear form
(2.3), then the vectors

{v0 = φ0(A)v, . . . ,vj = φj(A)v} (3.11)

form an orthonormal basis for the rational Krylov subspace

Kj+1(A,v) = span{ψ0(A)v, ψ1(A)v, . . . , ψj(A)v}, (3.12)
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for j = 0, 1, . . . ,m. Indeed,

vTj vi = (φj(A)v)T (φi(A)v) = 〈φj , φi〉.

The vectors vj satisfy the same recursion relations as rational functions φj and can be
constructed by the rational Lanczos process. This process is analogous to the Stieltjes-type
procedure [24, Algorithm 3.1] for computing an orthonormal basis for the space Sm+1 which
is based on the recursion relations (3.6), (3.7) and (3.8).

Algorithm 1 The rational Lanczos process.

1: Input: v ∈ RN\{0}, a sequence of matrix-valued elementary basis functions
ψ0, ψ1, . . . , ψm, and functions for evaluating matrix-vector products with A and for
solving linear systems of equations with matrices of the form A−α`I and A2 +βˆ̀A+γˆ̀I.
Thus, we do not explicitly form the elementary basis functions Aj , (A − α`I)−j , and
(A2 + βˆ̀A+ γˆ̀I)−j . The given sequence of elementary basis functions implicitly defines

the integers j, `, and ˆ̀ used below.
2: Output: Orthonormal basis {vr}mr=0.
3: Initialization: v0 := v/‖v‖; r := 1;
4: while r ≤ m do
5: if ψr = Aj for some j ∈ N then
6: u := Avr−1;
7: for i = r̂ : r − 1 do
8: cr−1,i := vTi u; u := u− cr−1,ivi;
9: end for

10: δr := ‖u‖; vr := u/δr;
11: r = r + 1
12: else if ψr = (A− α`I)−j for some j, ` ∈ N then
13: u := (A− α`I)−1vr−1;
14: for i = r̂ : r − 1 do
15: cr−1,i := vTi u; u := u− cr−1,ivi;
16: end for
17: δr := ‖u‖; vr := u/δr;
18: r = r + 1
19: else if ψr = (A2 + βˆ̀A+ γˆ̀I)−j for some j, ˆ̀∈ N then
20: u := (A2 + βˆ̀A+ γˆ̀I)−1vr−1;
21: w := A(A2 + βˆ̀A+ γˆ̀I)−1vr−1;
22: for i = r̂ : r − 1 do
23: cr−1,i := vTi u; u := u− cr−1,ivi;
24: dr−1,i := vTi w; w := w − dr−1,ivi;
25: end for
26: δr := ‖u‖; vr := u/δr;
27: η := vTr w; w := w − ηvr;
28: δ′r := ‖w‖; vr+1 := w/δ′r;
29: r = r + 2
30: end if
31: end while

The implementation of the rational Lanczos process requires the solution of linear systems

8



of equations with matrices of the forms A − αiI and A2 + βiA + γiI, where αi, βi, γi are
suitable real scalars. Throughout this paper the matrix A is assumed to have a structure
that allows fairly efficient computation of (A− αiI)−1vr−1 and (A2 + βiA+ γiI)−1vr−1 by
direct or iterative methods. This is the case, for instance, when A is banded with a small
bandwidth or when A is obtained by discretizing an elliptic partial differential equation and
the required vectors can be computed by a multigrid method. The norm ‖ · ‖ in Algorithm 1
denotes the Euclidean vector norm.

We assume in Algorithm 1 that the basis (3.4) satisfies conditions 1-4 of natural ordering.
The value of r̂ is such that ψr̂ is a basis function having the same pole(s) as ψr but of smaller
order; otherwise r̂ = 0. Performing m steps of Algorithm 1 yields an orthonormal basis
{v0,v1, . . . ,vm} for the rational Krylov subspace Km+1(A,v). The matrix

Vm = [v0,v1, . . . ,vm−1] ∈ RN×m, with v0 = v,

and the symmetric matrix

Hm = [hi,j ]
m−1
i,j=0 ∈ Rm×m, hi,j = I(yφiφj) = vTi Avj ,

satisfy the decomposition

AVm = VmHm +

d∑
j=1

hm−j,mvmeTm+1−j , (3.13)

where vm ∈ RN is such that V Tmvm = 0. The orthonormal basis Vm for the subspace
Km+1(A,v) is nested, i.e., K1 ⊆ K2 ⊆ . . ., where Ki is spanned by the first i columns of the
matrix Vm. The orthogonal projection of A onto the rational Krylov subspace (3.12) is given
by

Hm = V TmAVm.

We tacitly assume that m is small enough so that the decomposition (3.13) with the stated
properties exists. This is the generic situation. Algorithm 1 breaks down before m steps have
been carried out if δr = 0 or δ

′

r = 0. Ramification of breakdown is out of scope of this paper.

4. Application to rational Gauss quadrature. This section discusses rational
Gauss quadrature rules for the approximation of functionals (1.1) when f is a Stieltjes
function (1.2) and A is a symmetric positive definite matrix. Then

F (A) = vT f(A)v =

∫ ∞
0

vT (tI +A)−1v dµ(t) = I(f). (4.1)

It is shown in [25] that the expression

Ĝm(f) := eT1 f(Hm)e1 (4.2)

is a rational Gauss quadrature rule for the approximation of the expression (4.1). It is
characterized by the property

Ĝm(f) = I(f), ∀f ∈ S2m, (4.3)

9



where

S2m := P2m−2k−4s ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k` ⊕W1,4s1 ⊕ · · · ⊕Wˆ̀,4sˆ̀
=

P2m

w2

denotes a 2m-dimensional linear space of certain rational functions and

w(y) =
∏̀
i=1

(y − αi)ki
ˆ̀∏

j=1

(
y2 + βjy + γj

)sj
(4.4)

is a polynomial of degree k + 2s with k and s defined by (3.2). The scalars αi, βj , γj are
determined as described in the beginning of Section 3. Thus, the m-point rational Gauss rule
(4.2) is exact for all function in the space S2m of dimension 2m. This is analogous to the
situation for standard Gauss rules: the m-point Gauss rule (2.2) is exact for all polynomials
in the space P2m of dimension 2m.

In view of (1.5), the rational Gauss rule (4.2) can be written as

Ĝm(f) =

∫ ∞
0

eT1 (tI +Hm)−1e1dµ(t) = eT1 f(Hm)e1, (4.5)

where we recall that the measure dµ defines the function f ; the rational Gauss rule is with
respect to the measure dν in (1.5).

The orthonormal rational function φm has m distinct zeros {yi}mi=1 that lie in the convex
hull of the support of the measure dν, and they are the eigenvalues of Hm in (3.9); see [25,
Theorem 2.5]. Recall that we assume ψm to be a monomial. Thus the rational function φm
in (3.9) can be represented as

φm(y) = cm

∏m
i=1(y − yi)
w(y)

∈ Sm+1, (4.6)

where cm is a constant.
The remainder term for rational Gauss rules (4.5) can be derived by considering rational

Hermite interpolation. The following result is shown similarly as [19, Theorem 5.4]. The
Lagrange fundamental functions associated with the function (4.6) are defined by

li(y) :=
φm(y)

φ′m(yi)(y − yi)
, i = 1, 2, . . . ,m,

and satisfy

li(yj) =

{
1 if j = i,
0 if j 6= i.

Introduce the rational Hermite interpolation function

L̂(y) :=

m∑
i=1

(
l̂i(y)f(yi) + l̃i(y)f ′(yi)

)
, (4.7)

where

l̂i(y) = [1− 2(y − yi)l′i(yi)] l2i (y), l̃i(y) = (y − yi)l2i (y).

Then the function L̂(y) satisfies the interpolation conditions

L̂(yi) = f(yi), L̂′(yi) = f ′(yi), i = 1, 2, . . . ,m.
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Theorem 1. Let L̂ be the rational Hermite function (4.7) determined by the interpolation
nodes y1 < y2 < . . . < ym, which are the m zeros of φm ∈ Sm+1. Assume that f is 2m times
continuously differentiable in the interval between the nodes y1 and ym. Then for some scalar
c = c(y) depending on y in this interval, we have

f(y) = L̂(y) +
d2m

dt2m
(
w(t)2f(t)

)
t=c

φ2m(y)

c2m(2m)!
. (4.8)

Proof. If y = yi for some i = 1, 2, . . . ,m, then

f(y) = L̂(y),

in (4.8). Thus, the error vanishes. The result holds for an arbitrary constant c. Now, assume
that y 6= yi for all i. In this case, we consider

g(t) = w2(t)(f(t)− L̂(t))− w2(y)(f(y)− L̂(y))
m∏
i=1

(t− yi)2

(y − yi)2
,

where w2(x)L̂(x) is a polynomial of degree 2m− 1. The function g is 2m times continuously
differentiable and has 2m + 1 zeros. By Rolle’s theorem, there exists a scalar c = c(y)
depending on y in the interval between the nodes y1 and ym, for which

0 =
d2m

dt2m
(g(t))t=c

=
d2m

dt2m
(
w(t)2f(t)

)
t=c
− w2(y)(f(y)− L̂(y))

d2m

dt2m

(
m∏
i=1

(t− yi)2

(y − yi)2

)
t=c

=
d2m

dt2m
(
w(t)2f(t)

)
t=c
− w2(y)(f(y)− L̂(y))

(2m)!∏m
i=1(y − yi)2

.

Rearranging terms, and dividing by w2 yields (4.8).

Theorem 1 can be used to construct an error term for the m-point rational Gauss
quadrature rule Ĝm. The following results can be shown similarly as [19, Corollary 5.5].

Corollary 2. Assume that f is 2m times continuously differentiable in the convex hull of the
spectrum of A. Then the remainder term for the rational Gauss rule (4.5) can be expressed
as

Em(f) := I(f)− Ĝm(f) =
d2m

dy2m
(w2(y)f(y))y=c ·

1

(2m)!

∫ ∞
0

∏m
j=1(y − yj)

2

w2(y)
dν(y) (4.9)

for some scalar c in an interval that contains the spectrum of A.

Proof. Theorem 1 shows that the rational Hermite interpolation function L̂ lies in S2m. It
now follows from (4.3) that

Ĝm(L̂) = I(L̂),

and we obtain

(I − Ĝm)(f) = I(f − L̂) =
d2m

dt2m
(
w(t)2f(t)

)
t=c

I(φ2m(y))

c2m(2m)!
.

This shows (4.9).

11



Assume that f satisfies the conditions of Corollary 2, and that

d2m

dy2m
(
w2(y)f(y)

)
≥ 0, (4.10)

in some open interval containing the spectrum of A. Then Corollary 2 gives a lower bound
for I(f). We have

Ĝm(f) ≤ I(f).

4.1. Rational Gauss–Radau quadrature rules. This subsection discusses the com-
putation of rational Gauss–Radau rules and error bounds that can be determined with these
rules. This approach of bracketing (1.1) is a rational analogue of the technique advocated by
Golub and Meurant [14] for computing upper and lower bounds for (1.1) by evaluating pairs
of (standard) Gauss and Gauss–Radau quadrature rules.

The (m+ 1)-point rational Gauss–Radau quadrature rule with a prescribed node θ can
be expressed as

R̂θm+1(f) =

∫ ∞
0

eT1 (tI +Hθ
m+1)−1e1dµ(t) = eT1 f(Hθ

m+1)e1 (4.11)

for a suitable matrix Hθ
m+1 ∈ R(m+1)×(m+1). This quadrature rule is characterized by the

property

R̂θm+1(f) = I(f), ∀f ∈ S2m+1,

where

S2m+1 := P2m+1−2k−4s ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k` ⊕W1,4s1 ⊕ · · · ⊕Wˆ̀,4sˆ̀
=

P2m+1

w2
.

The standard (m+ 1)-point Gauss–Radau rule for the approximation of (1.1) can be
determined by modifying the tridiagonal matrix Tm+1 in (2.1). Analogously, we will show
that the rational Gauss–Radau rule (4.11) can be determined by modifying the last diagonal
entry of the matrix Hm+1.

Note that in our definition of the rational (m+ 1)-point Gauss–Radau rule we assume

exactness on the space P2m+1

w2 with the same w as in definition of Ĝm. In other words, we do
not introduce a new finite pole. Thus, we can introduce the finite poles in the same order as
in the construction of Ĝm: take ψm to be a monomial, and determine the matrix Hm+1 such
that

yΦm+1(y) = Hm+1Φm+1(y) + ϕm+1(y)em+1, (4.12)

and

eT1 f(Hm+1)e1 = I(f), ∀f ∈ P2m+2

w2
.

We will show that the rational Gauss–Radau rule (4.11) with a fixed node θ ≤ λ1 can be
determined by replacing the last diagonal entry hm,m of Hm+1 by hθm,m so that the resulting
matrix

Hθ
m+1 =

[
Hm wm

wT
m hθm,m

]
∈ R(m+1)×(m+1), wm = [0, . . . , 0, hm,m−d, . . . , hm,m−1]

T ∈ Rm,
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has an eigenvalue at θ ≤ λ1. Only d trailing entries of the vector wm might be nonvanishing,
where d is the same as in (3.9). We use ϕm+1 = hm,m+1φm+1 instead of φm+1 for simplicity.
The last equation in (4.12) can be written in the form

ϕm+1(y) = (y − hm,m)φm(y)−
m−1∑
i=m−d

hm,iφi(y).

First we show that

eT1 f(Hθ
m+1)e1 = I(f), ∀f ∈ P2m+1

w2
, (4.13)

for any hθm,m. Replacing hm,m in the matrix Hm+1 by hm,m + c, we obtain the recursion
coefficients for the rational functions φ0, φ1, . . . , φm, ϕ̃m+1, where

ϕ̃m+1 = ϕm+1 − cφm.

We see that ϕ̃m+1 is orthogonal to the space Pm

w = span{φ0, . . . , φm−1} with respect to
the bilinear form defined by the integral I. Then we can construct the new functional
Ĩ on the space P2m+2

w2 such that Ĩ(f) = I(f) for f ∈ P2m+1

w2 and Ĩ(ϕ̃m+1φm) = 0. Thus,

φ0, φ1, . . . , φm, ϕ̃m+1 is the sequence of orthogonal rational functions with respect to Ĩ, and

eT1 f(Hθ
m+1)e1 = Ĩ(f), ∀f ∈ P2m+2

w2
.

The formula (4.13) follows from the fact that Ĩ(f) = I(f) for f ∈ P2m+1

w2 .
We finish the construction of the rational Gauss–Radau quadrature by choosing c so

that ϕ̃m+1(θ) = 0. Thus, we get

c =
ϕm+1(θ)

φm(θ)
.

The rational function ϕ̃m+1 can be written in the form

ϕ̃m+1(y) = a
(y − θ)qm(y)

w(y)
,

where a is a constant and qm is a polynomial of degree m. Since ϕ̃m+1 is orthogonal to
the space Pm

w , we see that qm
w is orthogonal to the space Pm

w with respect to the integral
I(f) = I((y − θ)f) with nonnegative measure (y − θ)dν(y). Thus, we conclude that the

rational Gauss–Radau quadrature Ĝm+1 has a node at θ and m distinct nodes in the open
interval that contains the spectrum of A.

Similarly, we may define rational Gauss–Radau rules with a fixed node θ ≥ λN . The
following result is shown in the same manner as [19, Theorem 7.1].
Theorem 3. Assume that f is 2m+ 1 times continuously differentiable in the convex hull
of the spectrum of A and θ. Then the remainder term for the rational Gauss–Radau rule
(4.11) can be written as

Em+1(f) :=I(f)− R̂θm+1(f) (4.14)

=
d2m+1

dy2m+1
(w2(y)f(y))y=c ·

1

(2m+ 1)!

∫ ∞
0

(y − θ)
∏m
j=1(y − yj)2

w2(y)
dν(y),

where the scalar c lies in an interval that contains the spectrum of A and θ.
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Proof. Let the function φm in Theorem 1 have an additional node θ and assume that the
rational Hermite interpolation function L̂θ ∈ S2m+1 also interpolates f at y1, y2, . . . , ym and
θ. Then by modifying the error term (4.8) and applying Corollary 2, we obtain (4.14).

Assume that f satisfies the conditions of Theorem 3, and that

d2m+1

dy2m+1

(
w2(y)f(y)

)
≥ 0 (4.15)

in some open interval containing the spectrum of A and θ. Since∫ ∞
0

(y − λ1)

∏m
j=1(y − yj)2

w2(y)
dν(y) ≥ 0,∫ ∞

0

(y − λN )

∏m
j=1(y − yj)2

w2(y)
dν(y) ≤ 0,

(4.16)

the remainder terms for the rational Gauss–Radau rule with a prescribed node θ ≤ λ1 or
θ ≥ λN are of opposite sign. It follows that

R̂λ1
m+1(f) ≤ I(f) ≤ R̂λN

m+1(f). (4.17)

Analogously to (4.17), when the derivative (w2f)(2m) in (4.9) is of constant sign in an
interval that contains the spectrum of A, and the derivative (w2f)(2m+1) in (4.14) is of
constant sign in an interval that contains the spectrum of A and θ, and the Radau point
θ ≤ λ1 or θ ≥ λN is suitably chosen, the values Ĝm(f) and R̂θm+1(f) bracket (1.1). We

tacitly assume here that θ is chosen so that R̂θm+1(f) can be evaluated.
It is known that for every Stieltjes functions f , we have for all nonnegative integers k

and `,

(−1)k
dk+`

dxk+`
(x`f(x)) ≥ 0, x > 0; (4.18)

see, e.g., Sokal [26, Theorem 1] and references therein. Setting ` = 0 shows that Stieltjes
functions are completely monotonic. Formula (4.18) demonstrates that for certain simple
polynomials (4.4), such as w(x) = x, the properties (4.10) and (4.15) hold. Then pairs of
rational Gauss and rational Gauss–Radau rules, or pairs of rational Gauss–Radau rules, can
be used to bracket (1.1); this is a consequence of Corollary 2 and Theorem 3. However, the
bracketing cannot be guaranteed for all polynomials (4.4). Moreover, we recall that the
application of a Gauss–Radau rule to bounding the error requires knowledge of the location
of the largest or smallest eigenvalues of A in order to allocate the Radau point.

4.2. Rational anti-Gauss quadrature rules. When the derivatives (w2f)(2m) or
(w2f)(2m+1) change sign on the convex hull of the spectrum of A, pairs of rational Gauss
and rational Gauss–Radau quadrature rules are not guaranteed to bracket (1.1). In this case,
estimates of upper and lower bounds for (1.1) can be determined by evaluating appropriate
pairs of rational Gauss and anti-Gauss quadrature rules. An advantage of this approach is
that the sign of derivatives of (w2f) are allowed to change in an interval that contains the
spectrum of A. Moreover, knowledge of the location of the largest or smallest eigenvalues of
A is not required.

Laurie [21] introduced the (standard) (m + 1)-point anti-Gauss quadrature rule that
gives an error of the same magnitude and of opposite sign as the (standard) m-point Gauss
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quadrature rule when applied to polynomials in P2m+2. The evaluation of the standard
(m + 1)-point anti-Gauss quadrature rule requires the computation of m + 1 steps of the
(standard) Lanczos process; see, e.g., [7] for details. In this subsection, we will show that
rational anti-Gauss rules can be computed in an analogous fashion.

The (m+1)-point rational anti-Gauss rule G̃m+1 associated with the functional I defined
by (1.5) is determined by the requirement that

(I − G̃m+1)(f) = −(I − Ĝm)(f), ∀f ∈ S2m+2, (4.19)

where

S2m+2 := P2m+2−2k−4s ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k` ⊕W1,4s1 ⊕ · · · ⊕Wˆ̀,4sˆ̀
=

P2m+2

w2
.

We will show that G̃m+1(f) can be expressed as

G̃m+1(f) =

∫ ∞
0

eT1 (tI + H̃m+1)−1e1dµ(t) = eT1 f(H̃m+1)e1 (4.20)

for a suitable matrix H̃m+1 ∈ R(m+1)×(m+1).

The relation (4.19) shows that G̃m+1 is the (m + 1)-point rational Gauss rule for the
functional

J (f) := (2I − Ĝm)(f).

Define, analogously to (3.11), the vectors

ṽj = φ̃j(A)v, j = 0, 1, . . . ,m+ 1,

where the φ̃j are orthonormal rational functions with respect to the bilinear form

{f, g} := J (fg), (4.21)

i.e, {φ̃i, φ̃j} = 0 for i 6= j, and {φ̃j , φ̃j} = 1 for all j. These orthonormal functions satisfy
recurrence relations of the form

yΦ̃m+1(y) = H̃m+1Φ̃m+1(y) + ϕ̃m+1(y)em+1, (4.22)

where Φ̃m+1(y) = [φ̃0, φ̃1, . . . , φ̃m]T , and the remainder term ϕ̃m+1(y)em+1 in (4.22) is of the
form h̃m,m+1φ̃m+1(y)em+1 since the elementary basis functions ψm and ψm+1 are monomials.

Analogously to (3.10), the matrix H̃m+1 = [h̃ij ]
m
i,j=0 is determined by the coefficients of the

recursion relation that express the bilinear form (4.21),

h̃i,j = {yφ̃i, φ̃j} = {yφ̃j , φ̃i} = h̃j,i. (4.23)

Introducing the elementary basis functions ψi in the same way as in construction of the
rational Gauss–Radau rule gives the matrix H̃m+1 with the same block-diagonal structure
as Hm+1. It follows from (4.3) and (4.19) that for rational functions f and g such that
fg ∈ S2m, we have

{f, g} = 〈f, g〉 = I(fg).
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These equalities show that

h̃i,j = hi,j , i, j = 0, 1, . . . ,m− 1.

Therefore, φ̃j = φj for 0 ≤ j < m, and

H̃m+1 =

[
Hm w̃m

w̃T
m h̃m,m

]
∈ R(m+1)×(m+1), w̃m =

[
0, . . . , 0, h̃m−d,m, . . . , h̃m−1,m

]T
∈ Rm.

Further, we get

hm−1,mφm(y) = (y − hm−1,m−1)φm−1(y)−
m−2∑
j=m−d

hm−1,jφj(y) = h̃m−1,mφ̃m(y).

We use the previous equality, (4.23), and the fact that Ĝm(φmg) = 0 for any function g to
show that φm =

√
2φ̃m. Indeed,

h̃m−1,m = J (yφ̃m−1φ̃m) =
hm−1,m

h̃m−1,m
J (yφm−1φm) =

hm−1,m

h̃m−1,m
2 I(yφm−1φm) =

2h2m−1,m

h̃m−1,m
.

The same relation holds for the other not necessarily vanishing entries of w̃m:

h̃m−j,m = J (yφ̃m−j φ̃m) =
1√
2

2 I(yφm−jφm) =
√

2hm−j,m, j = d, . . . , 2.

Finally,

h̃m,m = J (yφ̃mφ̃m) = 2I(y
φm√

2

φm√
2

) = hm,m.

Therefore, the matrix H̃m+1 associated with the rational anti-Gauss rule G̃m+1 is given by

H̃m+1 =

[
Hm

√
2wm√

2wT
m hm,m

]
∈ R(m+1)×(m+1), (4.24)

Analogously to formula (4.5), the rational anti-Gauss quadrature rule can be evaluated
according to (4.20).

We are now in a position to provide some sufficient conditions for Ĝm(f) and G̃m+1(f)
to bracket I(f). Assume that we can carry out N steps of Algorithm 1 without breakdown.
This yields an orthonormal basis {vj}N−1j=0 of RN , and an associated sequence of orthonormal

rational function {φj}N−1j=0 determined by (3.11).
Theorem 4. Let λ(A) denote the spectrum of A, and consider the expansion of the integrand

f(y) =

N−1∑
j=0

ωjφj(y), y ∈ λ(A), (4.25)

in terms of the rational functions φj determined by (3.11), and assume that the coefficients
ωj in (4.25) are such that∣∣∣∣∣∣

2m+1∑
j=2m

ωj Ĝm(φj)

∣∣∣∣∣∣ ≥ max


∣∣∣∣∣∣
N−1∑

j=2m+2

ωj Ĝm(φj)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
N−1∑

j=2m+2

ωj G̃m+1(φj)

∣∣∣∣∣∣
 . (4.26)

Then the quadrature rules Ĝm(f) and G̃m+1(f) bracket I(f).
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Proof. Since

I(f) = ω0I(φ0), I(φj) = 0, ∀j > 0,

we have, in view of (4.3) and (4.19), that

Ĝm(f) =

N−1∑
j=0

ωj Ĝm(φj) =

2m−1∑
j=0

ωj Ĝm(φj) +

N−1∑
j=2m

ωj Ĝm(φj)

=I(f) + ω2mĜm(φ2m) + ω2m+1Ĝm(φ2m+1) +

N−1∑
j=2m+2

ωj Ĝm(φj) (4.27)

and

G̃m+1(f) =

N−1∑
j=0

ωj G̃m+1(φj) =

2m+1∑
j=0

ωj(2I − Ĝm)(φj) +

N−1∑
j=2m+2

ωj G̃m+1(φj)

=I(f)− ω2mĜm(φ2m)− ω2m+1Ĝm(φ2m+1) +

N−1∑
j=2m+2

ωj G̃m+1(φj). (4.28)

Combining (4.27) and (4.28) shows (4.26).

Theorem 4 shows that if the coefficients ωj decay sufficiently rapidly with increasing
index j, then rational Gauss and anti-Gauss rules provide quadrature errors that are of
opposite sign and of roughly the same magnitude. Since it is difficult to verify for a given
expression (1.1) whether the conditions of the theorem hold, we say that pairs of rational
Gauss and rational anti-Gauss quadrature rules provide estimates of upper and lower bounds
for (1.1).

It is natural to consider the average quadrature rule

A2m+1(f) :=
1

2
(Ĝm + G̃m+1)(f). (4.29)

It follows from (4.27) and (4.28) that

A2m+1(f) = I(f) +

N−1∑
j=2m+2

ωjA2m+1(φj).

This shows that

A2m+1(f) = I(f), f ∈ S2m+2.

This rule is an extension to the average rule defined by Laurie [21].

The computation of the matrix Hm that determines the rational rule Ĝm(f) requires

that m steps of Algorithm 1 be carried out, while the calculation of the matrix H̃m+1 that

defines the associated rational anti-Gauss rules G̃m(f) demands m+ 1 steps of Algorithm 1.
The last step of the algorithm determines the last diagonal entry, hm,m, of (4.24). We can
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reduce the number of steps by replacing this entry by an arbitrary scalar, h̆. This defines
the matrix H̆m+1 ∈ R(m+1)×(m+1). We refer to the quadrature rule so obtained,

Ğm+1(f) =

∫ ∞
0

eT1 (tI + H̆m+1)−1e1dµ(t) = eT1 f(H̆m+1)e1, (4.30)

as a simplified rational anti-Gauss rule. This rule is an extension to rational Gauss quadrature
of the simplified anti-Gauss rules associated with (standard) Gauss rules discussed in [1]. In

the computed examples of Section 5, we found the choice h̆ = hm−1,m−1, where hm−1,m−1 is
the last diagonal element of the matrix Hm to yield good results.

The following result provides sufficient conditions for the quadrature rules Ĝm(f) and

Ğm+1(f) to bracket (1.1), and holds for an arbitrary scalar h̆.
Theorem 5. The simplified rational anti-Gauss rule (4.30) satisfies

Ğm+1(f) = I(f), ∀f ∈ S2m, (4.31)

Ğm+1(f) = (2I − Ĝm)(f), ∀f ∈ S2m+1. (4.32)

Consider the expansion (4.25) with the rational function φj determined by (3.11), and assume
that the coefficients ωj in (4.25) are such that

∣∣∣ω2mĜm(φ2m)
∣∣∣ ≥ max


∣∣∣∣∣∣
N−1∑

j=2m+1

ωj Ĝm(φj)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
N−1∑

j=2m+1

ωj Ğm+1(φj)

∣∣∣∣∣∣
 . (4.33)

Then the quadrature rules Ĝm(f) and Ğm+1(f) bracket (1.1).

Proof. The rational anti-Gauss rule G̃m+1(f) satisfies G̃m+1(f) = (2I−Ĝm)(f) for all rational

functions in S2m+2. This rule is determined by the matrix H̃m+1, while the simplified rational
anti-Gauss rule, Ğm+1(f), is defined by the matrix H̆m+1. These matrices have the same
entries except for the last diagonal element. In the same way as in Subsection 4.1, we
conclude that the simplified rational anti-Gauss rule satisfies

Ğm+1(f) = G̃m+1(f) = (2I − Ĝm)(f), ∀f ∈ S2m+1.

This shows (4.32). Property (4.31) follows from (4.32) since Ĝm(f) = I(f) for f ∈ S2m.
Property (4.33) can be shown similarly as Theorem 4.

Similarly to (4.29), we define the average quadrature rule

Ă2m+1(f) :=
1

2
(Ĝm + Ğm+1)(f).

It follows from Theorem 5 that this rule satisfies

Ă2m+1(f) = I(f), f ∈ S2m+1.

5. Computed examples. In this section, we illustrate the performance of the rational
Gauss rules when applied to Stieltjes matrix functions of a symmetric matrix. All compu-
tations for this paper were carried out using MATLAB R2017b on a 64-bit MacBook Pro
personal computer with about 15 significant decimal digits.
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The examples of this section compare the performance of standard Gauss and rational
Gauss rules. We also illustrate in Example 5.4 that rational Gauss rules (4.5) with several
distinct poles may give higher accuracy than rational Gauss rules with a single pole at the
origin with the same number of nodes.

In all examples, when m ≥ k + 2s, where k + 2s is the degree of w(y) defined by (4.4),
we observed that the derivative (w2f)(2m) in (4.9) is positive in an interval that contains
the spectrum of A, and the derivative (w2f)(2m+1) in (4.14) is negative in an interval that
contains the spectrum A and θ. It follows from (4.16) that pairs of rational Gauss and
rational Gauss–Radau rules with a fixed node at θ ≥ λN do not bracket F (A), while pairs of
rational Gauss and rational Gauss–Radau rules with a fixed node at θ ≤ λ1 give lower and
upper bounds for F (A), respectively. We also will illustrate that error bounds for certain
functionals (1.1) can be computed by pairs of rational Gauss–Radau rules, and estimates of
upper and lower bounds can be determined by pairs of rational Gauss and simplified rational
anti-Gauss quadrature rules. To determine the quadrature error we explicitly evaluate
the functionals (1.1). This limits the size of the matrices A considered. To compute the
quadrature rule (4.30), we require the elementary basis function ψm−1 to be a monomial. In
all examples, we let the elementary basis functions ψm and ψm+1 be monomials.

Example 5.1. Consider the Stieltjes function (1.3) with a = 1/2. We would like to
approximate the functional

F (A) := vTA−1/2v, (5.1)

where A ∈ R1000×1000 is a symmetric Toeplitz matrix with first row [1, 1/2, . . . , 1/1000], and
v = [1/

√
1000, . . . , 1/

√
1000]T ∈ R1000. The smallest eigenvalue of A is λ1 = 0.3863 and the

largest one is λ1000 = 12.1259. The value of F (A) is approximately 0.2897. Approximations
of (5.1) determined by standard and rational Gauss rules, rational Gauss–Radau rules,
rational anti-Gauss and simplified rational anti-Gauss quadrature rules are presented. The
computations require the solution of linear system of equations with the symmetric positive
definite Toeplitz matrices A− αiI, where the αi are poles. We remark that fast algorithms
for the solution of systems of equations with this kind of matrix are available; see, e.g., [3].

Consider the rational Krylov subspace

Km(A,v) = span

{
v, Av, (A− α1I)−1v, A2v, . . . , (A− α1I)−k1v, Ak1+1v,

(A− α2I)−1v, Ak1+2v, . . . , (A− α2I)−k2v, Ak1+k2+1v, . . . , (5.2)

(A− α`I)−1v, . . . , (A− α`I)−k`v, Ak+1v

}
,

where k is determined by (3.2). The Stieltjes function (1.3) is defined in the complex plane
except for on the interval (−∞, 0]. It therefore is natural to allocate poles on this interval.
We consider rational Krylov subspaces Km(A,v) with poles allocated on (−∞, 0] in three
different ways:

(i) K6(A,v) is determined by a simple pole, α1 = −1/2 of multiplicity two.
(ii) K8(A,v) is determined by two distinct poles, α1 = −0.4310 of multiplicity two

and α2 = −0.9024 of multiplicity one. These poles are the zeros of the Chebyshev
polynomial of the first kind of degree two for the interval [−1,−1/3].

(iii) K10(A,v) is determined by four equidistant poles αi ∈ {0,−1/2,−1,−3/2} of
multiplicity one.
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The poles in K6(A,v) are the zeros of the polynomial w(y) defined by (4.4). We have

w(y) = y2 + y +
1

4
.

In the same manner, we can define w(y) associated with K8(A,v) and K10(A,v). We evaluate
(5.1) as vTA−1/2v, where the vector A−1/2v is calculated by first computing the matrix
square root and then solving a linear system of equations. The square root of the matrix is
computed with the MATLAB function sqrtm. Evaluation of the standard Gauss rule

eT1 T
−1/2
m e1

requires the computation of m steps of the standard Lanczos process. The rational Gauss
rule is evaluated as

eT1H
−1/2
m e1,

where H
−1/2
m e1 is determined by first computing the matrix square root and then solving a

linear system of equations. Analogously to the rational Gauss rule, the simplified rational
anti-Gauss, and Gauss–Radau rules with a fixed node θ ≤ λ1 or θ ≥ λ1000 can be computed
by carrying out m steps of the Algorithm 1, while the rational anti-Gauss rule is determined
by m+ 1 steps of Algorithm 1.

Columns 2 and 3 of Table 5.1 display the errors in approximations determined by standard
and rational Gauss rules. We observe that rational Gauss rules yield higher accuracy than
the standard Gauss rules. Column 4 of Table 5.1 displays the errors achieved with the
rational Gauss–Radau rules. We chose the Radau point θ = 0.3. A comparison with the
errors in column 3 shows that pairs of rational Gauss, Ĝm(f), and rational Gauss–Radau

rules, R̂0.3
m (f), provide lower and upper bounds for (5.1), respectively.

Columns 5 and 7 of Table 5.1 display the errors in approximations obtained by rational
anti-Gauss and simplified rational anti-Gauss rules, respectively. It can be seen that the
errors of these quadrature rules are of opposite sign and of about the same magnitude as the
errors in the corresponding rational Gauss rules. In this example, we chose the last diagonal
entry of the matrix H̆m+1 that determines the simplified rational anti-Gauss rules to be
h̆ = hm−1,m−1. We also observe that the choice of h̆ = (hm−1,m−1 + hm−2,m−2)/2 yields
similar results. For instance, we found for m = 8 that

F (A)− Ğm+1(f) = −9.21 · 10−11.

This illustrates that the results achieved with simplified rational anti-Gauss rules are fairly
insensitive to the choice of h̆. Therefore, simplified rational anti-Gauss rules can be used to
reduce the computational cost. Table 5.1 also shows that the pairs of rules {Ĝm, G̃m+1} and

{Ĝm, Ğm+1} yield tighter error bounds than the pairs of {Ĝm, R̂θm+1}.
Columns 6 and 8 of Table 5.1 show the errors in computed approximations determined

by the average rules associated with rational Gauss and anti-Gauss rules, and rational Gauss
and simplified rational anti-Gauss rules, respectively. These quadrature rules yield more
accurate approximations of (5.1) than the corresponding rational Gauss rules.

Table 5.2 displays the errors in the computed rational Gauss–Radau quadrature rules with
fixed nodes at θ = 0.3 and θ = 13. The table illustrates that pairs of rational Gauss–Radau
rules provide upper and lower bounds for (5.1); we have

R̂0.3
m+1(f) ≥ F (A) ≥ R̂13

m+1(f), ∀m.
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m F (A)− Gm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− G̃m+1(f) F (A)−A2m+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)
6 5.79 · 10−7 2.75 · 10−9 −6.09 · 10−9 −2.86 · 10−9 −5.57 · 10−11 −2.38 · 10−9 1.85 · 10−10

8 7.28 · 10−8 3.95 · 10−11 −1.16 · 10−10 −4.10 · 10−11 −7.65 · 10−13 −3.45 · 10−11 2.48 · 10−12

10 9.20 · 10−9 5.46 · 10−14 −2.23 · 10−13 −5.71 · 10−14 −1.22 · 10−15 −4.99 · 10−14 2.38 · 10−15

Table 5.1
Example 5.1: Errors for computed approximations of F (A) = vTA−1/2v with A a symmetric Toeplitz

matrix. The Radau node is fixed at θ = 0.3

m F (A)− R̂0.3
m+1(f) F (A)− R̂13

m+1(f)
6 −6.09 · 10−9 2.21 · 10−9

8 −1.16 · 10−10 3.32 · 10−11

10 −2.23 · 10−13 4.61 · 10−14

Table 5.2
Example 5.1: Errors for computed approximations of F (A) = vTA−1/2v by rational Gauss–Radau

rules with A a symmetric Toeplitz matrix. The Radau nodes are θ = 0.3 and θ = 13.

�
Example 5.2. This example determines an approximation of the functional

F (A) := vT log(A+ I)A−1v,

where A ∈ R1000×1000 is symmetric Toeplitz matrix with first row [3, 3/2, . . . , 3/1000]. The
vector v ∈ R1000 and the rational Krylov subspaces K6(A,v) and K8(A,v) are defined to be
the same as in Example 5.1. The subspace K10(A,v) is determined by four equidistant poles
αi ∈ {0,−1/4,−1/2,−1} of multiplicity one. The smallest eigenvalue of A is λ1 = 1.1589
and the largest one is λ1000 = 36.3776. Thus, F (A) is defined by the Stieltjes function

f(y) =
log(1 + y)

y
=

∫ ∞
1

t−1

t+ y
dt.

The value of F (A) is approximately 0.1009.
Columns 2 and 3 of Table 5.3 show the difference between the exact value and the

approximations determined by the standard and rational Gauss rules. We note that the
quadrature error for the rational Gauss rules is the smallest for all values of m. Column 4
of Table 5.3 displays the errors in approximations obtained by rational Gauss–Radau rules
with a fixed node at θ = 1.1. The table illustrates that pairs of rational Gauss rules, Ĝm(f),

and associated Gauss–Radau rules, R̂1.1
m+1(f), bracket the exact value.

Columns 3 and 5 of Table 5.3 show the errors in the rational Gauss rules, Ĝm(f), and in

rational anti-Gauss rules, G̃m+1(f), to have opposite sign and be of about the same magnitude.

Similarly, Columns 3 and 7 of Table 5.3 show the errors in rational Gauss rules, Ĝm(f), and

in simplified rational anti-Gauss rules, Ğm+1(f), with h̆ = (hm−1,m−1 + hm−2,m−2)/2 to be
of opposite sign and of about the same magnitude. Columns 6 and 8 of Table 5.3 illustrate
that the average rules yield the best approximations of F (A).

Table 5.4 displays the errors in approximations obtained by rational Gauss–Radau
quadrature rules. The table illustrates that

R̂1.1
m+1(f) ≥ F (A) ≥ R̂37

m+1(f), ∀m.

�

21



m F (A)− Gm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− G̃m+1(f) F (A)−A2m+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)
6 9.65 · 10−8 1.88 · 10−9 −7.92 · 10−9 −1.91 · 10−9 −1.57 · 10−11 −3.13 · 10−9 −6.25 · 10−10

8 5.93 · 10−9 1.32 · 10−11 −3.98 · 10−11 −1.33 · 10−11 −8.45 · 10−14 −2.01 · 10−11 −3.44 · 10−12

10 3.56 · 10−10 1.99 · 10−13 −5.21 · 10−13 −2.01 · 10−13 −1.05 · 10−15 −2.97 · 10−13 −4.87 · 10−14

Table 5.3
Example 5.2: Errors for computed approximations of F (A) := vT log(A+ I)A−1v with A a symmetric

Toeplitz matrix. The Radau node is θ = 1.1.

m F (A)− R̂1.1
m+1(f) F (A)− R̂37

m+1(f)
6 −7.92 · 10−9 1.23 · 10−9

8 −3.98 · 10−11 8.60 · 10−12

10 −5.21 · 10−13 1.31 · 10−13

Table 5.4
Example 5.2: Errors for computed approximations of F (A) := vT log(A+ I)A−1v by rational Gauss–

Radau rules with A a symmetric Toeplitz matrix. The Radau nodes are fixed at θ = 1.1 and θ = 37.

Example 5.3. We would like to approximate the functional

F (A) := vT (log(I +A))−1v,

where the matrix A ∈ R1000×1000 is the same as in Example 5.2. The vector v ∈ R1000 has
normally distributed random entries with zero mean and is normalized to be of unit norm.
The value of F (A) is approximately 0.9472. We consider the rational Krylov subspace (5.2)
with poles αi in (−∞, 0] allocated in three different ways:

(i) K8(A,v) is determined by two equidistant poles, α1 = 0 of multiplicity two and
α2 = −1/2 of multiplicity one.

(ii) K10(A,v) is determined by four equidistant poles αi ∈ {0,−1,−2,−3} of multiplicity
one.

(iii) K14(A,v) is determined by three equidistant poles αi ∈ {0,−1/4,−1/2} of multi-
plicity two.

Columns 2 and 3 of Table 5.5 report the errors in approximations determined by the
standard and rational Gauss rules. Columns 4 and 5 of Table 5.5 show the approximations
determined by rational Gauss–Radau and simplified rational anti-Gauss rules. The table
illustrates that pairs of rational Gauss and Gauss–Radau rules with fixed node at θ = 1.1, or
pairs of rational Gauss and simplified rational anti-Gauss rules with h̆ = hm−1,m−1, bracket
the exact value. Column 6 of Table 5.5 illustrates that the average rules can yield much
higher accuracy than rational Gauss and anti-Gauss rules. Table 5.6 shows that the values
determined by rational Gauss–Radau quadrature rules bracket F (A).

�

m F (A)− Gm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)
8 1.10 · 10−3 1.81 · 10−8 −1.11 · 10−7 −1.36 · 10−8 2.24 · 10−9

10 1.81 · 10−4 2.18 · 10−12 −4.13 · 10−12 −1.80 · 10−12 1.93 · 10−13

14 5.84 · 10−6 3.60 · 10−14 −1.70 · 10−13 −3.91 · 10−14 −1.55 · 10−15

Table 5.5
Example 5.3: Errors for computed approximations of F (A) := vT (log(I +A))−1v with A a symmetric

Toeplitz matrix. The Radau node is θ = 1.1.
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m F (A)− R̂1.1
m+1(f) F (A)− R̂37

m+1(f)
8 −1.11 · 10−7 1.14 · 10−8

10 −4.13 · 10−12 1.24 · 10−12

14 −1.70 · 10−13 2.29 · 10−14

Table 5.6
Example 5.3: Errors for computed approximations of F (A) := vT (log(I +A))−1v with A a symmetric

Toeplitz matrix. The Radau nodes are θ = 1.1 and θ = 37.

Example 5.4. In our last example, we compute an approximation of

F (A) := vT (π(I +
√
A)−1)v, (5.3)

where the matrix A is obtained from the discretization of the self-adjoint differential operator
L(u) = 1

10uxx+uyy in the unit square. Each derivative is approximated by the standard three-
point stencil with 40 equally spaced interior nodes in each space-dimension. Homogeneous
boundary conditions are used. This gives a symmetric positive definite matrix A ∈ R1600×1600.
The vector v is given by v = e1 ∈ R1600. The extreme eigenvalues of A are λ1 = 0.0646 and
λ1600 = 43.9354. Define the Stieltjes function

f(y) =
π

1 +
√
y

=

∫ ∞
0

1

(y + t)
(

√
t

1 + t
)dt,

and consider the subspace (5.2) with a single pole, α1 = −1/2, of high multiplicity.
We compare the performance of the methods of this paper with rational Gauss rules

that are presented in [19]. The latter rule is exact for Laurent polynomials, which are
rational functions, whose only finite pole is at the origin, and it is known as a Gauss–Laurent
quadrature rule. We will denote these rules by ĜLm(f); they are described in [19]. Algorithm
1 requires the solution of linear systems of equations with the matrix (A − α1I), where
α1 = −1/2. An algorithm for computing an approximation of (5.3) by Gauss–Laurent rules
is presented in [18]. The computation of this rule requires the solution of linear systems of
equations with the matrix A.

Columns 2 and 3 of Table 5.7 display the difference between the exact value, F (A) ≈
0.5983, and the approximations obtained by rational Gauss rules, Ĝm(f), and Gauss–Laurent

rules, ĜLm(f). We find that rational Gauss rules associated with the rational Krylov subspace
(5.2) give higher accuracy than Gauss–Laurent rules for all values of m. Columns 3, 4, and 5

of Table 5.7 show the pairs {Ĝm(f), R̂0.05
m+1(f)} and {Ĝm(f), Ğm+1(f)} to bracket F (A). The

average rules, which are displayed in column 6 of Table 5.7, are seen to be quite accurate.
Table 5.8 display the errors in approximations obtained by the rational Gauss–Radau

rules. The table illustrates that

R̂0.05
m+1(f) ≥ F (A) ≥ R̂45

m+1(f), ∀m.

�

6. Conclusion. This paper discusses the approximation of the expression vT f(A)v,
where A is a symmetric positive definite matrix and f is a Stieltjes function, by rational
Gauss rules with preselected poles. Associated rational Gauss–Radau and anti-Gauss rules
are introduced. Computed examples show that when the integrand f has singularities close
to the spectrum of A, rational Gauss rules with poles at or close to these singularities give
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m F (A)− ĜLm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)
8 1.70 · 10−5 3.85 · 10−7 −1.99 · 10−6 −3.90 · 10−7 −2.82 · 10−9

10 3.17 · 10−6 2.28 · 10−8 −1.24 · 10−7 −2.33 · 10−8 −2.75 · 10−10

14 9.77 · 10−8 1.09 · 10−10 −4.67 · 10−10 −1.13 · 10−10 −1.83 · 10−12

Table 5.7
Example 5.4: Errors for computed approximations of F (A) := vT (π(I +

√
A)−1)v when A is a

discretization of a differential operator. The Radau node is fixed at θ = 0.05

m F (A)− R̂0.05
m+1(f) F (A)− R̂45

m+1(f)
8 −1.99 · 10−6 2.51 · 10−7

10 −1.24 · 10−7 1.51 · 10−8

14 −4.67 · 10−10 8.33 · 10−11

Table 5.8
Example 5.4: Errors for computed approximations of F (A) := vT (π(I +

√
A)−1)v when A is a

discretization of a differential operator. The Radau nodes are θ = 0.05 and θ = 45

higher accuracy than standard Gauss rules and Gauss–Laurent rules with a pole at the
origin with the same number of nodes. The examples also illustrate that pairs of rational
Gauss and Gauss–Radau rules, or pairs of rational Gauss and rational anti-Gauss rules, or
simplified rational anti-Gauss rules, provide error bounds, or estimates of bounds.
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