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Abstract

This paper describes solution methods for linear discrete ill-posed problems defined by third
order tensors and the t-product formalism introduced in [M. E. Kilmer and C. D. Martin, Fac-
torization strategies for third order tensors, Linear Algebra Appl., 435 (2011), pp. 641–658]. A
t-product Arnoldi (t-Arnoldi) process is defined and applied to reduce a large-scale Tikhonov
regularization problem for third order tensors to a problem of small size. The data may be
represented by a laterally oriented matrix or a third order tensor, and the regularization oper-
ator is a third order tensor. The discrepancy principle is used to determine the regularization
parameter and the number of steps of the t-Arnoldi process. Numerical examples compare re-
sults for several solution methods, and illustrate the potential superiority of solution methods
that tensorize over solution methods that matricize linear discrete ill-posed problems for third
order tensors.

Key words: discrepancy principle, linear discrete ill-posed problem, tensor Arnoldi process,
t-product, tensor Tikhonov regularization.

1 Introduction

We are concerned with the solution of large-scale least squares problems of the form

min
~X∈Rm×1×n

‖A ∗ ~X − ~B‖F , (1.1)

where A = [aijk]m,m,ni,j,k=1 ∈ Rm×m×n is a third order tensor of ill-determined tubal rank, i.e., the
Frobenius norm of the singular tubes of A, which are analogues of the singular values of a matrix,
decay rapidly to zero with increasing index, and there are many nonvanishing singular tubes of
tiny Frobenius norm of different orders of magnitude (cf. Definition 2.2 below). Least squares
problems with a tensor of this kind are referred to as linear discrete ill-posed problems. The
tensors ~X ∈ Rm×1×n and ~B ∈ Rm×1×n in (1.1) are laterally oriented m × n matrices, and the
operator ∗ denotes the tensor t-product introduced in the seminal work by Kilmer and Martin [23].
We will review the t-product in Section 2.

An advantage of the formulation (1.1) with the t-product, when compared to other products, is
that the t-product avoids loss of information inherent in the flattening of a tensor; see Kilmer et al.
[22]. The t-product preserves the natural ordering and higher correlations embedded in the data,
and has been found useful in many application areas, including completion of seismic data [11],
image deblurring problems [10, 22, 23, 35], facial recognition [18], tomographic image reconstruction
[40], and tensor compression [42].
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Throughout this paper, ‖ · ‖F denotes the Frobenius norm of a third order tensor, which for
A = [aijk]m,m,ni,j,k=1 ∈ Rm×m×n is defined by

‖A‖F =

√√√√ m∑
i=1

m∑
j=1

n∑
k=1

a2ijk.

In applications of interest to us, such as image and video restoration, the data tensor ~B ∈
Rm×1×n is contaminated by measurement error (noise) that is represented by a tensor ~E ∈ Rm×1×n.
Thus,

~B = ~Btrue + ~E , (1.2)

where ~Btrue ∈ Rm×1×n represents the unavailable error-free data tensor that is associated with the
known data tensor ~B. We assume the unavailable linear system of equations

A ∗ ~X = ~Btrue

to be consistent and let ~Xtrue denote its (unknown) solution of minimal Frobenius norm.

We would like to compute an accurate approximation of ~Xtrue. Straightforward solution of
(1.1) typically does not yield a meaningful approximation of ~Xtrue, because due to the severe ill-

conditioning of A, the error in ~B gives rise to a large propagated error in the computed solution.
We remedy this difficulty by replacing (1.1) by a nearby problem, whose solution is less sensitive

to perturbations of the right-hand side ~B, i.e., we solve the penalized least squares problem

min
~X∈Rm×1×n

{
‖A ∗ ~X − ~B‖2F + µ−1‖L ∗ ~X‖2F

}
, (1.3)

where L ∈ Rs×m×n is a regularization operator and µ > 0 is a regularization parameter. This
replacement is commonly referred to as Tikhonov regularization. Let N (M) denote the null space
of the tensor M under ∗ and assume that L satisfies

N (A) ∩N (L) = { ~O}, (1.4)

where ~O denotes an m × n zero matrix oriented laterally; see below. Then (1.3) has a unique

solution ~Xµ ∈ Rm×1×n for any µ > 0 (cf. Theorem 3.1). The closeness of ~Xµ to ~Xtrue and the

sensitivity of ~Xµ to the error ~E in ~B depends on the value of µ. We determine µ by the discrepancy
principle, which is described and analyzed in, e.g., [12]. Application of the discrepancy principle
requires that a bound

‖~E‖F ≤ δ (1.5)

be available. The parameter µ > 0 then is determined so that ~Xµ satisfies

‖ ~B −A ∗ ~Xµ‖F = ηδ, (1.6)

where η > 1 is a user-specified constant independent of δ > 0. It can be shown that ~Xµ → ~Xtrue as
δ ↘ 0; see [12] for a proof in a Hilbert space setting.

Many other methods, including generalized cross validation (GCV) and the L-curve criterion,
also can be used to determine the regularization parameter; see, e.g., [5, 13, 15, 16, 24, 25, 36] for

discussions and illustrations for the situation when A is a matrix and ~B is a vector.
It is well known that a few steps of the (standard) Arnoldi process can be used to reduce a

large square matrix to a matrix of small size. The small matrix so obtained can be used to define a
small Tikhonov regularization problems that is easy to solve; see [5, 7, 14, 27] for discussions and
illustrations. It is the purpose of the present paper to extend the (standard) matrix version of the
Arnoldi process, described, e.g., in [37], to third order tensors using the t-product formalism. This
gives us the t-Arnoldi process. Application of ` ≥ 1 steps of this process, generically, furnishes an
orthonormal basis for the `-dimensional tensor Krylov (t-Krylov) subspace

K`(A, ~B) = t-span
{
~B,A ∗ ~B,A2 ∗ ~B, . . . ,A`−1 ∗ ~B

}
. (1.7)
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The meaning of t-span is discussed in Sections 3 and 4. Each step of the t-Arnoldi process requires
one tensor-matrix product evaluation with A. Often fewer tensor-matrix product evaluations are
required to solve Tikhonov minimization problems (1.3) than when the t-product Golub-Kahan
bidiagonalization (tGKB) process, described by Kilmer et al. [22] is used, because each step of the
latter demands two tensor-matrix product evaluations, one with A and one with AT , where the
superscript T denotes transposition.

We refer to our solution scheme for (1.3) as the t-product Arnoldi-Tikhonov (tAT) regularization
method. It is based on reducing the tensor A ∈ Rm×m×n to a small upper Hessenberg tensor. We
also describe a global tAT (G-tAT) method for the solution of (1.3). This method works with a data

tensor slice ~B ∈ Rm×1×n and is closely related to the T-global Arnoldi-Tikhonov regularization
method recently described by El Guide et al. [10], which takes L equal to the identity tensor,
denoted by I, determines the regularization parameter by the GCV method, and works with a
general data tensor B ∈ Rm×p×n, p > 1. Differently from the tAT method, the G-tAT and the T-
global Arnoldi-Tikhonov regularization methods involve matricization of the tensor A. Specifically,
the G-tAT method first reduces A in (1.3) to an upper Hessenberg matrix by carrying out a few
steps of the global t-Arnoldi (G-tA) process. This process furnishes an orthonormal basis for
a t-Krylov subspace (1.7). It differs from the t-Arnoldi process in the choice of inner product.
Algorithm 13 in Section 5 provides the details of the G-tA process. Numerical examples with the
t-Arnoldi and G-tA processes are presented in Section 6. The tAT and G-tAT methods based on
these processes determine the regularization parameter by the discrepancy principle.

We also describe an extension of the (standard) generalized minimal residual (GMRES) method
proposed by Saad and Schultz [38] to third order tensors based on the t-product formalism. This
extension will be referred to as the t-product GMRES (tGMRES) method. The tGMRES method
for the solution of (1.1) computes iterates in t-Krylov subspaces of the form (1.7); the `th approx-

imate solution ~X` ∈ K`(A, ~B) determined by tGMRES method with initial approximate solution
~X0 = ~O satisfies

‖A ∗ ~X` − ~B‖F = min
~X∈K`(A, ~B)

‖A ∗ ~X − ~B‖F , ` = 1, 2, . . . . (1.8)

Another extension of the (standard) GMRES method by Saad and Schulz [38] for the solution
of tensor equations is provided by the global tGMRES (G-tGMRES) method, which is described
in Subsection 5.2. This method is closely related to the T-global GMRES method recently pre-
sented by El Guide et al. [10]. The methods differ in that the data for the G-tGMRES method is

represented by a lateral slice ~B, while the data for the T-global GMRES method is a general third
order tensor B ∈ Rm×p×n, p > 1. Moreover, our implementation of the t-GMRES and G-tGMRES
methods uses the discrepancy principle to determine when to terminate the iterations. Differently
from the tGMRES method, the G-tGMRES and T-global GMRES methods involve matricization
of the tensor A. While the tGMRES method is based on the t-Arnoldi process described in Section
3, the G-tGMRES method is based on the global t-Arnoldi (G-tA) process.

Many other methods for solving (1.3) and (1.8) that do not apply the t-product have been
described in the literature; see, e.g., [2, 8, 9, 39]. These methods replace matrix-vector products
by tensor-matrix products and involve matricization. A careful comparison of all these methods is
outside the scope of the present paper. Here we note that computed examples of Section 6 indicate
that methods that avoid matricization often determine approximate solutions of higher quality
than methods that involve matricization.

We also are interested in solving minimization problems analogous to (1.1), in which ~B is
replaced by a general third order tensor B. This leads to the Tikhonov minimization problem

min
X∈Rm×p×n

{
‖A ∗ X − B‖2F + µ−1‖L ∗ X‖2F

}
, B ∈ Rm×p×n, p > 1. (1.9)

Besides our work [35], no literature is available on solution methods for (1.3) and (1.9) for L 6= I.
The present paper focuses on developing tensor Arnoldi-Tikhonov-type methods for this situation.

Four methods for the solution of (1.9) will be described. Three of them are based on the tAT

and G-tAT methods applied to the lateral slices ~Bj , j = 1, 2, . . . , p, of B, independently. The other
method generalizes the T-global Arnoldi-Tikhonov regularization method recently presented by El
Guide et al. [10] to allow for L 6= I. This method works with the lateral slices of the data tensor
B simultaneously, and will be referred to as the generalized global tAT (GG-tAT) method.
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A comparison of the solution methods for (1.9) is presented in Section 6. Computed examples
show the GG-tAT method to require less CPU time, but the G-tAT method may yield higher
accuracy. The fact that the GG-tAT requires less CPU time is to be expected since it uses larger
chunks of data at a time.

We remark that the G-tAT and GG-tAT methods belong to the AT BTF (Arnoldi-Tikhonov
Based Tensor Format) family of methods recently described by Beik et al. [2]. They involve flat-
tening and require additional product definitions to the t-product.

Finally, we will discuss a variant of the T-global GMRES method that recently has been de-
scribed by El Guide et al. [10] and is based on the t-product formalism. We will refer to our
variant as the generalized global tGMRES (GG-tGMRES) method. This method replaces the data

tensor ~B in (1.8) by a general third order tensor B and determines iterates in t-Krylov subspaces
K`(A,B). The `th iterate X` ∈ K`(A,B) determined by the GG-tGMRES method with initial
iterate X0 = O ∈ Rm×p×n solves

‖A ∗ X` − B‖F = min
X∈K`(A,B)

‖A ∗ X − B‖F , ` = 1, 2, . . . . (1.10)

In the T-global GMRES method by El Guide et al. [10], the iterations are terminated based on a
residual Frobenius norm and a set tolerance that is independent of the error in B. Differently from
the T-global GMRES method, our approach for solving (1.10) uses the discrepancy principle to
determine the number of iterations to carry out with the GG-tGMRES method.

This paper is organized as follows. Section 2 introduces notation and preliminaries associated
with the t-product. Methods based on the t-Arnoldi process are described in Section 3. This
includes Tikhonov regularization methods, one of which is based on a nested t-Krylov subspace,
and GMRES-type methods for the computation of approximate solutions of (1.1) and the analogous

minimization problem obtained by replacing the tensor slice ~B by a third order tensor B. Thus, we
can consider color image and video restoration problems. For the former, B represents a blurred
and noisy RGB image of dimension m × p × 3, while for gray-scale video restoration problems,
B is of dimension m × p × n with a sequence of n consecutive blurred and noisy video frames.
Section 4 describes algorithms that are based on the generalized global t-Arnoldi (GG-tA) process
with data tensor B. The algorithms of Section 5 are obtained by modifying algorithms of Section
4 to be applicable to each lateral slice of B separately. This allows us to consider, for instance, the
restoration of gray-scale images. Section 6 presents some numerical examples that illustrate the
performance of the described methods. Concluding remarks can be found in Section 7.

2 Notation and Preliminaries

This section reviews results on the t-product introduced by Kilmer et al. [22, 23] and defines
notation from [10, 26] to be used in the sequel. In this paper, a tensor is of third order, i.e., a

three-dimensional array of real scalars denoted by calligraphic script letters, say, A = [aijk]`,m,ni,j,k=1 ∈
R`×m×n with real entries aijk. Matrices and vectors are second and first order tensors, respectively.
We use capital letters to denote matrices, lower case letters to denote vectors, and bold face lower
case letters to denote tube fibers (tubal scalars or tubes). A fiber of a third order tensor is a 1D
section obtained by fixing two of the indices. Using MATLAB notation, A(:, j, k), A(i, :, k), and
A(i, j, :) denote mode-1, mode-2, and mode-3 fibers, respectively. A slice of a third order tensor is
a 2D section obtained by fixing one of the indices. With MATLAB notation, A(i, :, :), A(:, j, :), and
A(:, :, k) denote the ith horizontal, jth lateral, and kth frontal slices, respectively. The jth lateral

slice is also denoted by ~Aj . It is a tensor and will be referred to as a tensor column. Moreover, the
kth frontal slice, which also will be denoted by A(k), is a matrix.

Given A ∈ R`×m×n with ` × m frontal slices A(i), i = 1, 2, . . . , n, the operator unfold(A)
returns a block `n ×m matrix made up of the faces A(i) of A. The fold operator folds back the
unfolded A, i.e.,

unfold(A) =


A(1)

A(2)

...
A(n)

 , fold(unfold(A)) = A.
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The operator bcirc(A) generates an `n×mn block circulant matrix with unfold(A) forming the
first block column,

bcirc(A) =


A(1) A(n) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n) A(n−1) . . . A(1)

 .
Definition 2.1. (t-product [23]) Let A ∈ R`×m×n and B ∈ Rm×p×n. Then the t-product A ∗ B is
the tensor C ∈ R`×p×n defined by

C := fold(bcirc(A) · unfold(B)), (2.1)

where “·” denotes the standard matrix-matrix product.

We can view C in (2.1) as an `× p matrix of tubes oriented along the third dimension with its
(i, j)th tube given by

C(i, j, :) =

p∑
k=1

B(i, k, :) ∗ C(k, j, :).

This shows that the t-product is analogous to matrix multiplication, except that multiplication
between scalars is replaced by circular convolution between tubes.

The matrix bcirc(A) can be block diagonalized by the discrete Fourier transform (DFT) matrix
combined with the Kronecker product. Suppose that A ∈ R`×m×n and let Fn ∈ Cn×n denote the
unitary DFT matrix. Then

Ā := blockdiag(Â(1), Â(2), . . . , Â(n)) = (Fn ⊗ I`) · bcirc(A) · (F ∗n ⊗ Im), (2.2)

where ⊗ is the Kronecker product and F ∗n denotes the conjugate transpose of Fn. The matrix Ā

is an `n×mn block diagonal matrix with `×m blocks Â(i), i = 1, 2, . . . , n. The matrices Â(i) are
the frontal slices of the tensor Â obtained by applying the discrete Fourier transform along each
tube of A. We remark that

‖A‖F =
1√
n
‖Ā‖F .

The t-product is a natural extension of matrix multiplication for third order tensors [23]. Higher
order tensors allow the definition of analogues of the t-product; see [30]. Matrix algorithms for QR
and SVD factorizations have analogues for third order tensors; see Kilmer et al. [22].

We may choose to evaluate A ∗ B according to Definition 2.1 if the tensors A and B are sparse.
For general tensors A ∈ R`×m×n and B ∈ Rm×p×n, the t-product A ∗ B can be computed efficiently
by using the transformation (2.2), i.e.,

A ∗ B = fold
(
(F ∗n ⊗ I`)Ā(Fn ⊗ Im) · unfold(B)

)
. (2.3)

The right-hand side of (2.2) can be evaluated in O(`mn log2(n)) arithmetic floating point opera-
tions (flops) using the fast Fourier transform (FFT); see [23].

The t-product is readily computed in MATLAB. We often will use the superscript ̂ to denote
objects that are obtained by taking the FFT along the third dimension. Using MATLAB notation,
let Ĉ := fft(C, [ ], 3) be the tensor obtained by applying the FFT to C along the third dimension.
Then the t-product A∗B can be computed by first taking the FFT along the tubes of A and B to
get Â = fft(A, [ ], 3) and B̂ = fft(B, [ ], 3), multiplying each pair of the frontal slices of Â and B̂,

Ĉ(:, :, i) = Â(:, :, i) · B̂(:, :, i), i = 1, 2, . . . , n,

and then taking the inverse FFT along the third dimension to obtain C = ifft(Ĉ, [ ], 3). The
t-product (2.3) can be computed by using the MATLAB tensor-tensor product toolbox1; see [28].
Certain symmetry properties can be utilized during the computations. This is done in the compu-
tations reported in Section 6.

1https//github.com/canyilu/tproduct
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Let A ∈ R`×m×n. The tensor transpose, AT ∈ Rm×`×n, is the tensor obtained by transposing
each one of the frontal slices of A, and then reversing the order of the transposed frontal slices
2 through n; see [23]. The tensor transpose has similar properties as the matrix transpose. For
instance, if A and B are two tensors such that A ∗ B and BT ∗ AT are defined, then (A ∗ B)T =
BT ∗ AT .

The identity tensor I ∈ Rm×m×n is a tensor, whose first frontal slice, I(1), is the m×m identity
matrix and all other frontal slices, I(i), i = 2, 3, . . . , n, are zero matrices; see [23].

The concept of orthogonality is well defined under the t-product formalism; see Kilmer and
Martin [23]. A tensor Q ∈ Rm×m×n is said to be orthogonal if QT ∗Q = Q∗QT = I. Analogously
to the columns of an orthogonal matrix, the lateral slices of an orthogonal tensorQ are orthonormal,
i.e.,

QT (:, i, :) ∗ Q(:, j, :) =

{
e1 i = j,
0 i 6= j,

where e1 ∈ R1×1×n is a tubal scalar whose (1, 1, 1) entry equals 1 and the remaining entries vanish.
It is shown in [23] that if Q is an orthogonal tensor, then

‖Q ∗ A‖F = ‖A‖F . (2.4)

The tensor Q ∈ R`×m×n with ` > m is said to be partially orthogonal if QT ∗ Q is well defined
and equal to the identity tensor I ∈ Rm×m×n; see [23].

A tensor A ∈ Rm×m×n is said to have an inverse, denoted by A−1, provided that A ∗A−1 = I
and A−1 ∗ A = I. Moreover, a tensor is said to be f-diagonal if each frontal slice of the tensor is a
diagonal matrix; see [23].

The tensor singular value decomposition (tSVD) of A ∈ R`×m×n, introduced by Kilmer and
Martin [23], is given by

A = U ∗ S ∗ VT ,

where U ∈ R`×`×n and V ∈ Rm×m×n are orthogonal tensors, and the tensor

S = diag[s1, s2, . . . , smin{`,m}] ∈ R`×m×n

is f-diagonal with singular tubes sj ∈ R1×1×n, j = 1, 2, . . . ,min{`,m}, ordered according to

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖smin{`,m}‖F .

The number of nonzero singular tubes of A is referred to as the tubal rank of A; see Kilmer et al.
[22]. The singular tubes of A are analogues of the singular values of a matrix A. In linear discrete
ill-posed problems that require the solution of a linear system of equations or of a least squares
problem with a matrix A, this matrix has many singular values of different orders of magnitude
close to zero. Definition 2.2 describes linear discrete ill-posed tensor problems.

Definition 2.2. The tensor least squares problems (1.1) is said to be a linear discrete ill-posed
problem for third order tensors under ∗ if A has ill-determined tubal rank, i.e., the Frobenius
norm of the singular tubes of A decays rapidly to zero with increasing index, and there are many
nonvanishing singular tubes of tiny Frobenius norm of different orders of magnitude.

We remark that this definition is not in terms of the frontal slices A(i), i = 1, 2, . . . , n, of A, but
describes a property of the whole tensor A, i.e., of the singular tubes of A. The singular tubes are
computed by finding the singular value decomposition of each frontal slice Â(i), i = 1, 2, . . . , n, of
Â in the Fourier domain; see [23] for details.

The norm of a nonzero tensor column ~X ∈ Rm×1×n is defined as

‖ ~X‖ :=
‖ ~X T ∗ ~X‖F
‖ ~X‖F

,

and ‖ ~X‖ = 0 if ~X = ~O; see [22] for details. The Frobenius norm of a tensor column ~X ∈ Rm×1×n
is given by

‖ ~X‖F =

√(
~X T ∗ ~X

)
(:,:,1)

;
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see [22]. Thus, the square of the Frobenius norm of ~X is the first frontal face of the tube ~X T ∗ ~X ∈
R1×1×n denoted by

(
~X T ∗ ~X

)
(:,:,1)

.

Algorithm 1, which takes a nonzero tensor ~X ∈ Rm×1×n and returns the normalized tensor
~V ∈ Rm×1×n and the tubal scalar a ∈ R1×1×n, such that

~X = ~V ∗ a and ‖~V‖ = 1,

is important in the sequel. Note that the tubal scalar a might not be invertible; see [22] for details.
We mention that a is invertible if there is a tubal scalar b such that a ∗ b = b ∗ a = e1. The scalar
a(j) is the jth face of the 1× 1× n tubal scalar a, while ~V(j) is a vector with m entries, and is the
jth frontal face of ~V ∈ Rm×1×n. The call of the MATLAB function randn(m, 1) in Algorithm 1
generates a pseudo-random m-vector with normally distributed entries with zero mean and variance
one. In Algorithm 1 and elsewhere in this paper, ‖ · ‖2 denotes the Euclidean vector norm.

Algorithm 1: Normalize [21]

Input: ~X ∈ Rm×1×n 6= ~O
Output: ~V, a with ‖~V‖ = 1

1 ~V ← fft( ~X , [ ], 3)
2 for j = 1 to n do

3 a(j) ← ‖~V(j)‖2 (~V(j) is a vector)

4 if a(j) > tol then

5 ~V(j) ← 1
a(j)

~V(j)

6 else

7 ~V(j) ← randn(m, 1); a(j) ← ‖~V(j)‖2; ~V(j) ← 1
a(j)

~V(j); a(j) ← 0

8 end

9 end

10 ~V ← ifft(~V, [ ], 3); a← ifft(a, [ ], 3)

The t-product-based tensor QR (tQR) factorization implemented by Algorithm 2 is described
by Kilmer et al. [22]. Let A ∈ R`×m×n. Then its tQR factorization is given by

A = Q ∗R,

where the tensor Q ∈ R`×m×n is partially orthogonal and the tensor R ∈ Rm×m×n is f-upper
triangular (i.e., each face is upper triangular).

Algorithm 2: tQR factorization [22]

Input: A ∈ R`×m×n, ` ≥ m
Output: Q ∈ R`×m×n, R ∈ Rm×m×n such that A = Q ∗R

1 Â ← fft(A, [ ], 3)
2 for i = 1to n do

3 Factor Â(:, :, i) = QR, where Q is unitary

4 Q̂(:, :, i)← Q, R̂(:, :, i)← R

5 end

6 Q ← ifft(Q̂, [ ], 3), R ← ifft(R̂, [ ], 3)

We introduce additional definitions used by El Guide et al. [10]. They will be needed when
discussing the G-tAT, GG-tAT, G-tGMRES and GG-tGMRES methods in Sections 4 and 5. Let

Ck := [C1, C2, . . . , Ck] ∈ Rm×kp×n, Ck := [~C1, ~C2, . . . , ~Ck] ∈ Rm×k×n,

where Cj ∈ Rm×p×n and ~Cj ∈ Rm×1×n. Suppose that y = [y1, . . . , yk]T ∈ Rk. Then El Guide et al.
define the product ~ as

Ck ~ y =

k∑
j=1

yjCj , Ck ~ y =

k∑
j=1

yj ~Cj .
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It can be shown that for orthogonal tensors Q ∈ Rm×kp×n and Q ∈ Rm×k×n, one has

‖Q~ y‖F = ‖y‖2, ‖Q~ y‖F = ‖y‖2; (2.5)

see [10] for details.

Consider the tensors C = [cijk] and D = [wijk] in Rm×p×n with lateral slices ~C = [ci1k] and
~D = [di1k] in Rm×1×n, respectively. Define the scalar products

〈C,D〉 =

m∑
i=1

p∑
j=1

n∑
k=1

cijkdijk, 〈~C, ~D〉 =

m∑
i=1

n∑
k=1

ci1kdi1k.

Let

A := [A1,A2, . . . ,Am] ∈ R`×km×n, B := [B1,B2, . . . ,Bp] ∈ R`×kp×n,

A := [ ~A1, ~A2, . . . , ~Am] ∈ R`×m×n, B := [ ~B1, ~B2, . . . , ~Bp] ∈ R`×p×n,
(2.6)

where Ai ∈ R`×k×n, ~Ai ∈ R`×1×n, i = 1, 2, . . . ,m, and Bj ∈ R`×k×n, ~Bj ∈ R`×1×n, j = 1, 2, . . . , p.
Following El Guide et al. [10], we define the T-diamond products AT♦B and AT♦B. They define
m× p matrices with entries

[AT♦B]ij = 〈Ai, Bj〉, [AT♦B]ij = 〈 ~Ai, ~Bj〉, i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

The generalized global tensor QR (GG-tQR) factorization is described in [35] and implemented
by Algorithm 3. Given A in (2.6), this factorization is defined by

A = Q~R,

where R ∈ Rm×m is an upper triangular matrix, and the tensor Q ∈ R`×km×n with ` ≥ k has k
partially orthogonal tensor columns such that

QT♦Q = Im,

where Im is the m×m identity matrix.

Algorithm 3: Generalized global tQR (GG-tQR) factorization [35]

Input: A := [A1,A2, . . . ,Am] ∈ R`×km×n, Aj ∈ R`×k×n, j = 1, 2, . . . ,m, ` ≥ k
Output: Q := [Q1,Q2, . . . ,Qm] ∈ R`×km×n, R = (rij) ∈ Rm×m such that A = Q~R and

QT♦Q = Im
1 Set r11 ← 〈A1,A1〉1/2, Q1 ← 1

r11
A1

2 for j = 1, 2, . . . ,m do
3 W → Aj
4 for i = 1, 2, . . . , j − 1 do
5 rij ← 〈Qi,W〉
6 W ←W − rijQi
7 end

8 rjj ← 〈W,W〉1/2
9 Qj ←W/rjj

10 end

We also will need a special case of the GG-tQR factorization, which works with each lateral
slice ~Ai, i = 1, 2, . . . ,m, of the tensor A in (2.6). This factorization method is implemented by
Algorithm 4; it is also described in [35], and is there referred to as the global tQR (G-tQR)
factorization method.
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Algorithm 4: Global tQR (G-tQR) factorization [35]

Input: A := [ ~A1, ~A2, . . . , ~Am] ∈ R`×m×n, ~Aj ∈ R`×1×n, j = 1, 2, . . . ,m, ` ≥ m
Output: Q := [ ~Q1, ~Q2, . . . , ~Qm] ∈ R`×m×n, ~Qj ∈ R`×1×n, R̄ = [rij ] ∈ Rm×m such that

A = Q~ R̄ and QT♦Q = Im
1 r11 ← 〈 ~A1, ~A1〉1/2, ~Q1 ← 1

r11
~A1

2 for j = 1, 2, . . . ,m do

3 ~W ← ~Aj
4 for i = 1, 2, . . . , j − 1 do

5 rij ← 〈 ~Qi, ~W〉
6 ~W ← ~W − rij ~Qi
7 end

8 rjj ← 〈 ~W, ~W〉1/2

9 ~Qj ← ~W/rjj
10 end

We conclude this section with the definition of some tensor operators that will be convenient
to apply in Section 6. The matrix X ∈ Rm×n is associated with the tensor ~X ∈ Rm×1×n by the
squeeze and twist operators, defined by Kilmer et al. [22], i.e.,

~X = twist(X) and X = squeeze( ~X ).

Note that the squeeze operator is identical to the MATLAB squeeze function.
We also define the multi squeeze and multi twist operators that enable us to squeeze and

twist a general third order tensor. The tensor C ∈ Rm×p×n is associated with D ∈ Rm×n×p by

D = multi twist(C) and C = multi squeeze(D),

where multi twist(C) twists each one of the frontal slices C(i), i = 1, 2, . . . , n, of C by using the

twist operator, and stacks them as lateral slices ~Di, i = 1, 2, . . . , n, of D. Moreover, the operator
multi squeeze(D) squeezes the lateral slices of D using the squeeze operator and stacks them as
faces of C.

3 Methods based on the t-Arnoldi process

We first describe an algorithm for the t-Arnoldi process. This algorithm is applied in Subsections
3.1 and 3.2 to reduce the large-scale problem (1.1) to a problem of small size.

Let A ∈ Rm×m×n. The t-Arnoldi process described by Algorithm 5 (cf. the matrix version in
[37, Chapter 5]) reduces the tensor A to an upper Hessenberg tensor (t-Hessenberg), whose every
face is an upper Hessenberg matrix.

Algorithm 5: The t-Arnoldi process

Input: A ∈ Rm×m×n, ~B ∈ Rm×1×n 6= ~O
1 [ ~Q1, z1]← Normalize( ~B) with z1 invertible, and such that ~B = ~Q1 ∗ z1 and ‖ ~Q1‖ = 1
2 for j = 1, 2, . . . , ` do

3 ~W ← A ∗ ~Qj
4 for i = 1, 2, . . . , j do

5 hij ← ~QTi ∗ ~W

6


~W ← ~W − ~Qi ∗ hij (no reorthogonalization)

~W ← ~W − ~Qi ∗ hij , ~W ← ~W −
i∑

k=1

~Qk ∗ ( ~QTk ∗ ~W) (with reorthogonalization)

7 end

8 [ ~Qj+1,hj+1,j ]← Normalize( ~W) with hj+1,j invertible

9 end
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The t-Arnoldi process is said to break down if any of the subdiagonal tubal scalars hj+1,j for
j = 1, 2, . . . , `, is not invertible. This is analogous to a break down of the (standard) Arnoldi
process. We will assume that the number of steps, `, of the t-Arnoldi process is small enough to
avoid break down, i.e., that ` is chosen small enough so that every subdiagonal tubal scalar hj+1,j

is invertible for j = 1, 2, . . . , `. This means, in particular, that the transformed tubal scalars ĥj+1,j

of hj+1,j do not have zero Fourier coefficients.
Algorithm 5 produces the partial t-Arnoldi decomposition

A ∗ Q` = Q`+1 ∗ H̄`, (3.1)

where

H̄` =



h11 . . . h1`

h21 h22

h32 h33

...
. . .

. . .

h`,`−1 h`,`
h`+1,`


∈ R(`+1)×`×n

is of upper t-Hessenberg form. The lateral slices ~Qj , j = 1, 2, . . . , `, of Q` ∈ Rm×`×n form an
orthonormal tensor basis for the t-Krylov subspace (1.7), where t-span refers to the set of all tensor
linear (t-linear) combinations, whose coefficients are tubal scalars, ci ∈ R1×1×n, i = 1, 2, . . . , `.
Thus,

K`(A, ~B) =

{
~Z ∈ Rm×1×n, ~Z =

∑̀
i=1

(A(i−1) ∗ ~B) ∗ ci, ci ∈ R1×1×n
}
, A0 = I. (3.2)

The t-Arnoldi process generates an orthonormal tensor basis for the t-Krylov subspace (3.2) by

applying the standard Arnoldi process to each frontal slice Â(i), i = 1, 2, . . . , n, of Â simultaneously.
This process requires normalization, which is carried out by Algorithm 1.

We comment on the complexity of the standard Arnoldi and t-Arnoldi processes. Let A ∈ Rm×m
be a dense matrix and 1 ≤ `� m the number of steps carried out by the standard Arnoldi process.
Then this process requires O(`2m+ `m2) flops, since ` matrix-vector product evaluations with A
cost O(`m2) flops and O(`2m) flops are required for orthogonalization.

We implement the t-Arnoldi process with transformations to and from the Fourier domain. For
a dense tensor A ∈ Rm×m×n, application of 1 ≤ ` � m steps of this process requires application
of ` steps of the standard (matrix) Arnoldi process to the frontal slices A(i), i = 1, 2, . . . , n, of A
simultaneously in the Fourier domain, and orthogonalization. Each transformation of A and ~Qj
to and from the Fourier domain in step 3 of Algorithm 5 costs O(m2n log(n)) and O(mn log(n))

flops, respectively. Moreover, ` matrix-vector products of the faces of A and ~Qj in the Fourier
domain cost O(`m2) flops. For n frontal slices, it has a complexity of O(`m2n) flops in the Fourier
domain. Similarly, the orthogonalization steps 4-7 in the Fourier domain cost O(`2mn) flops for n
frontal slices. Note that it costs O(n log(n)) flops to transform each tubal scalar hij to and from the
Fourier domain. Hence, the total flop count for carrying out ` steps of the t-Arnoldi process in the
Fourier domain is O((`m2 + `2m)n) flops. The cost is the same for the G-tA process implemented
by Algorithm 13 in Section 5.

We will use the decomposition (3.1) to determine an approximate solution of the Tikhonov
minimization problems (1.3) and (1.9) in Subsection 3.1, and of the minimization problems (1.8)
and (1.10) in Subsection 3.2.

3.1 Tensor Arnoldi-Tikhonov Regularization Methods

This subsection discusses the computation of an approximate solution of the tensor Tikhonov
regularization problem (1.3) with the aid of the t-Arnoldi process. We describe how this process
can be used in conjunction with the discrepancy principle (1.6), and show that the penalized least

squares problem (1.3) has a unique solution ~Xµ; see, e.g., [6] for a proof of the matrix case.
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Theorem 3.1. Let µ > 0 be the regularization parameter. The minimization problem (1.3) has a
unique solution

~Xµ = (AT ∗ A+ µ−1LT ∗ L)−1 ∗ AT ∗ ~B (3.3)

that satisfies the normal equations

(AT ∗ A+ µ−1LT ∗ L) ∗ ~X = AT ∗ ~B. (3.4)

Proof: The function
Jµ( ~X ) := ‖A ∗ ~X − ~B‖2F + µ−1‖L ∗ ~X‖2F

can be written as

Jµ( ~X ) =

∥∥∥∥ [ A
µ−1/2L

]
∗ ~X −

[
~B
~O

] ∥∥∥∥2
F

,

where [
A

µ−1/2L

]
∈ R(m+s)×m×n,

[
~B
~O

]
∈ R(m+s)×1×n, ~O ∈ Rs×1×n.

Thus, ~Xµ is a minimizer of Jµ( ~X ) if and only if ~Xµ is the solution of the normal equations[
A

µ−1/2L

]T
∗
[
A

µ−1/2L

]
∗ ~X =

[
A

µ−1/2L

]T
∗
[
~B
~O

]
,

which can be written as (3.4). Due to (1.4) the solution is unique. �
The normal equations (3.4) with L = I have been used by Kilmer et al. [22] and Martin et al.

[30].
When the regularization operator L is the identity tensor, the solution (3.3) simplifies to

~Xµ = (AT ∗ A+ µ−1I)−1 ∗ AT ∗ ~B. (3.5)

Using this expression for ~Xµ, define the function

φ(µ) := ‖A ∗ ~Xµ − ~B‖2F . (3.6)

Then equation (1.6) (for L = I) can be written as

φ(µ) = η2δ2. (3.7)

A zero-finder, such as bisection, Newton’s method, or a related method [3, 34], can be used to

solve (3.7) for µdiscr = µ > 0. We assume here and below that δ > 0. Then ~Xµdiscr
satisfies the

discrepancy principle (1.6) (when L = I).
The following properties of φ are shown in [35]. We remark that while the solution (3.5) is

meaningful for µ > 0 only, we may define φ(µ) for µ ≥ 0 by continuity.

Proposition 3.1. Assume that AT ∗ ~B 6= ~O and let φ(µ) be given by (3.6) with ~Xµ defined by
(3.5). Then

φ(µ) =
(
~BT ∗ (µA ∗ AT + I)−2 ∗ ~B

)
(:,:,1)

, µ > 0,

and φ(0) = ‖ ~B‖2F . Moreover,
φ′(µ) < 0 and φ′′(µ) > 0

for µ > 0.
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3.1.1 The tAT method for the solution of (1.3)

We develop the t-product Arnoldi-Tikhonov (tAT) regularization method for the approximate solu-
tion of least squares problems of the form (1.3). The method will be used to illustrate the potential
superiority of tensorizing as opposed to vectorizing or matricizing ill-posed tensor equations in
general. This method will be generalized in Subsection 3.1.2 to the least squares problems (1.9)
with a general data tensor B.

Let ~X = Q` ∗ ~Y for some ~Y ∈ R`×1×n and substitute the decomposition (3.1) into (1.3). This
yields

min
~Y∈R`×1×n

{‖H̄` ∗ ~Y −QT`+1 ∗ ~B‖2F + µ−1‖L ∗ Q` ∗ ~Y‖2F }. (3.8)

Using the fact that ~B = ~Q1 ∗ z1 (cf. Algorithm 5), we obtain

QT`+1 ∗ ~B = ~e1 ∗ z1 ∈ R(`+1)×1×n, (3.9)

where the (1, 1, 1)th entry of ~e1 ∈ Rm×1×n equals 1 and the remaining entries vanish. Substitute
(3.9) into (3.8) to obtain

min
~Y∈R`×1×n

{‖H̄` ∗ ~Y − ~e1 ∗ z1‖2F + µ−1‖L ∗ Q` ∗ ~Y‖2F }. (3.10)

In the computed examples of Section 6, we use the regularization operators L1 ∈ R(m−2)×m×n

and L2 ∈ R(m−1)×m×n, where the tensor L1 has the tridiagonal matrix

L(1)
1 =

1

4

−1 2 −1
. . .

. . .
. . .

−1 2 −1

 ∈ R(m−2)×m (3.11)

as its first frontal slice, and the remaining frontal slices L(i)
1 ∈ R(m−2)×m, i = 2, 3, . . . , n, are zero

matrices. The first face of the tensor L2 is the bidiagonal matrix

L(1)
2 =

1

2


1 −1

1 −1
. . .

. . .

1 −1

 ∈ R(m−1)×m, (3.12)

and the remaining faces L(i)
2 ∈ R(m−1)×m, i = 2, 3, . . . , n, are zero matrices.

Our approach of handling these regularization operators is analogous to the technique used
in [19]. It can be applied to many other regularization operators as well. We use Algorithm 2 to
compute the tQR factorization

L ∗ Q` = QL,` ∗ RL,`,

where the tensor QL,` ∈ Rs×`×n has ` orthonormal tensor columns and the tensor RL,` ∈ R`×`×n
is f-upper triangular. In view of (2.4), the minimization problem (3.10) simplifies to

min
~Y∈R`×1×n

{‖H̄` ∗ ~Y − ~e1 ∗ z1‖2F + µ−1‖RL,` ∗ ~Y‖2F }. (3.13)

For the regularization operators L defined by (3.11) and (3.12) as described above, as well as for
many other regularization operators L, the tensor RL,` is invertible and not very ill-conditioned.
In this situation, we may form

~Z = RL,` ∗ ~Y, H̃` = H̄` ∗ R−1L,`, (3.14)

where H̃` is computed by solving ` linear systems of equations. Substituting the above expressions
into (3.13) yields

min
~Z∈R`×1×n

{
‖H̃` ∗ ~Z − ~e1 ∗ z1‖2F + µ−1‖ ~Z‖2F

}
. (3.15)
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The minimization problem (3.15) can be solved fairly stably by computing the solution of

min
~Z∈R`×1×n

∥∥∥∥ [ H̃`
µ−1/2I

]
∗ ~Z −

[
~e1 ∗ z1
~O

] ∥∥∥∥
F

(3.16)

using Algorithm 6 below. The solution of (3.16) can be expressed as

~Zµ,` = (H̃T` ∗ H̃` + µ−1I)−1 ∗ H̃T` ∗ ~e1 ∗ z1, (3.17)

and the associated approximate solution of (1.3) is given by

~Xµ,` = Q` ∗ R−1L,` ∗ ~Zµ,`.

Algorithm 6: Solution of a generic tensor least squares problem [35]

Input: C ∈ R`×m×n, where its Fourier transform has nonsingular frontal slices;
~D ∈ R`×1×n, ~D 6= ~O

Output: The solution ~Y ∈ Rm×1×n of min~Y∈Rm×1×n ‖C ∗ ~Y − ~D‖F
1 C ← fft(C, [ ], 3)

2 ~D ← fft( ~D, [ ], 3)
3 for i = 1 to n do

4 ~Y(:, :, i) = C(:, :, i)\ ~D(:, :, i), where \ denotes MATLAB’s backslash operator
5 end

6 ~Y ← ifft(~Y, [ ], 3)

We use the discrepancy principle (1.6) to determine the regularization parameter µ > 0 and
the required number of steps of the t-Arnoldi process as follows. Define the function

φ`(µ) := ‖H̃` ∗ ~Zµ,` − ~e1 ∗ z1‖2F , (3.18)

which is analogous to (3.6). Substituting (3.17) into (3.18), and using the identity

I − H̃` ∗ (H̃T` ∗ H̃` + µ−1I)−1 ∗ H̃T` = (µH̃` ∗ H̃T` + I)−1,

we obtain
φ`(µ) =

(
(~e1 ∗ z1)T ∗ (µH̃` ∗ H̃T` + I)−2 ∗ ~e1 ∗ z1

)
(:,:,1)

. (3.19)

The following proposition shows that we can apply the discrepancy principle (1.6) to the reduced
problem to determine µ > 0, i.e., we require µ to be such that

‖H̃` ∗ ~Zµ,` − ~e1 ∗ z1‖F = ηδ.

Proposition 3.2. Let µ = µ` solve φ`(µ) = η2δ2 and let ~Zµ,` solve (3.16). Let ~Yµ,` and ~Zµ,` be

related by (3.14). Then the associated approximate solution ~Xµ,` = Q` ∗ ~Yµ,` of (1.1) satisfies

‖A ∗ ~Xµ,` − ~B‖2F =
(
(~e1 ∗ z1)T ∗ (µH̃` ∗ H̃T` + I)−2 ∗ ~e1 ∗ z1

)
(:,:,1)

.

Proof : Substituting ~Xµ,` = Q` ∗ ~Yµ,` into (1.6) and using the decomposition of (3.1), as well as
(3.9) and (2.4), gives

‖A ∗ ~Xµ,` − ~B‖2F = ‖Q`+1 ∗ H̄` ∗ ~Yµ,` − ~B‖2F = ‖H̄` ∗ ~Yµ,` − ~e1 ∗ z1‖F = ‖H̃` ∗ ~Zµ,` − ~e1 ∗ z1‖F . �

It can be shown analogously as Proposition 3.1 that the function φ`(µ) is decreasing and convex
with φ`(0) = ‖~e1 ∗ z1‖2F . Therefore, Newton’s method can be used for the solution of

φ`(µ)− η2δ2 = 0 (3.20)

without safeguarding for any initial approximate solution µ0 ≥ 0 smaller than the solution of
(3.20). In particular, we may use µ0 = 0 when φ`(µ) and φ′`(µ) are suitably defined at µ = 0.
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Note that when the regularization parameter µ > 0 in (1.3) is replaced by 1/µ, the analogue of the
function φ` obtained is not guaranteed to be convex. Then Newton’s method has to be safeguarded.
An algorithm for Newton’s method can be found in [35].

We refer to the solution method for (3.8) described above as the tAT method. It is implemented
by Algorithm 7 with p = 1. It follows from Proposition 3.1, with φ replaced by φ`, that φ`(µ) is a
decreasing function of µ. A lower bound for φ`(µ) on the right-hand side of (3.21) can be established
similarly as in the proof of [35, Proposition 4.4].

Proposition 3.3. Let φ`(µ) be given by (3.19). Then

lim
µ→∞

φ`(µ) =
(
zT1 ∗ U(1, :, :) ∗ D ∗ U(1, :, :)T ∗ z1

)
(:,:,1)

, (3.21)

where D ∈ R(`+1)×(`+1)×n is a tensor whose first frontal slice D(1) has the entry 1 at the (` +
1, `+1)st position, and the remaining frontal slices D(i), i = 2, . . . , n, are zero matrices. The tensor

U ∈ R(`+1)×(`+1)×n is the left singular tensor of H̃`.

The values
`→ lim

µ→∞
φ`(µ)

typically decrease quite rapidly as ` increases, because making ` larger increases the dimension of
the subspace over which the least squares problem (3.8) is minimized. Therefore, generally, only a
fairly small number of steps of Algorithm 7 are required to satisfy (3.20) for some 0 < µ <∞.

3.1.2 tAT methods for the solution of (1.9)

This subsection generalizes the solution methods of Subsection 3.1.1 to the solution of least squares
problems of the form (1.9). The methods of this subsection can be applied to color image and
video restorations. Several matrix-based methods for the solution of these restoration problems
have recently been described by Beik et al. [1, 2] and El Guide et al. [8, 10].

We present two algorithms for the solution of (1.9). They both consider (1.9) as p separate
Tikhonov minimization problems

min
~Xj∈Rm×1×n

{‖A ∗ ~Xj − ~Bj‖2F +
1

µ
‖L ∗ ~Xj‖2F }, j = 1, 2, . . . , p, (3.22)

where ~B1, ~B2, . . . , ~Bp are tensor columns of the data tensor B in (1.9). Both algorithms are based
on the t-Arnoldi process and the tAT method described in Subsection 3.1.1.

Let ~Bj,true denote the unknown error-free tensor (slice) associated with the available error-

contaminated tensor (slice) ~Bj , and assume that bounds δj for the norm of the errors

~Ej := ~Bj − ~Bj,true, j = 1, 2 . . . , p,

are available or can be estimated, i.e.,

‖~Ej‖F ≤ δj , j = 1, 2, . . . , p, (3.23)

cf. (1.2) and (1.5). Algorithm 7 solves each one of the p least squares problems (3.22) independently.
We refer to this approach of solving (3.22) as the tATp method.
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Algorithm 7: The tATp method for the solution of (1.9) by solving the p problems (3.22)
independently

Input: A, p, ~B1, ~B2, . . . , ~Bp, δ1, δ2, . . . , δp, L, η > 1, `init = 2
1 for j = 1, 2, . . . , p do

2 `← `init, [ ~Q1, z1]← Normalize( ~Bj).
3 Compute Q`,Q`+1, and H̄` by Algorithm 5
4 Construct RL,` by computing the tQR factorization of L ∗ Q` using Algorithm 2

5 Compute H̃` ← H̄` ∗ R−1L,` and let ~e1 ← I(:, 1, :)

6 Solve the minimization problem

min
~Z∈R`×1×n

‖H̃` ∗ ~Z − ~e1 ∗ z1‖F

for ~Z` by using Algorithm 6
7 while ‖H̃` ∗ ~Z` − ~e1 ∗ z1‖F ≥ ηδj do
8 `← `+ 1
9 Go to step 3

10 end
11 Determine the regularization parameter by the discrepancy principle, i.e., compute the

zero µ` > 0 of
ξ`(µ) := ‖H̃` ∗ ~Zj,µ`

− ~e1 ∗ z1‖2F − η2δ2j

and the associated solution ~Zj,µ`
of

min
~Z∈R`×1×n

∥∥∥∥
[
H̃`

µ
−1/2
` I

]
∗ ~Z −

[
~e1 ∗ z1
~O

] ∥∥∥∥
F

by using Algorithm 6
12 Compute ~Yj,µ`

← R−1L,` ∗ ~Zj,µ`
, ~Xj,µ`

← Q` ∗ ~Yj,µ`

13 end

Algorithm 8 generates a t-Krylov subspace K`(A, ~B1) of sufficiently large dimension ` to contain
accurate enough approximate solutions of all the p least squares problems (3.22). Thus, we first
solve the least squares problem (3.22) for j = 1 by Algorithm 8, and then seek to solve the least

squares problem (3.22) for j = 2 using the same t-Krylov subspace K`(A, ~B1). If the discrepancy
principle cannot be satisfied, then the dimension ` of the t-Krylov subspace is increased until
the discrepancy principle can be satisfied. Having solved this least squares problem, we proceed
similarly to solve the problems (3.22) for j = 3, 4, . . . , p. The details are described by Algorithm
8. The t-Arnoldi process is implemented with reorthogonalization when applied in Algorithm 8
to ensure that the quantities QT`+1 ∗ ~Bj are evaluated with sufficient accuracy. When the required
number of t-Arnoldi steps, `, for solving the least squares problem is large, it may be beneficial to
restart Algorithm 8 with the tensor ~Bj . Restarting was not required in the computations reported in
Section 6. We refer to this approach based on using nested t-Krylov subspaces as the nested tATp
method.
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Algorithm 8: The nested tATp method for the solution of (1.9) by solving the p problems
(3.22) using a nested t-Krylov subspace

Input: A, p, ~B1, ~B2, . . . , ~Bp, δ1, δ2, . . . , δp, L, η > 1, `init = 2

1 `← `init, [ ~Q1,∼]← Normalize( ~B1) by Algorithm 1
2 Compute Q`,Q`+1 and H̄` by Algorithm 5 with reorthogonalization of the tensor columns

of Q` and Q`+1

3 Construct RL,` by computing the tQR factorization of L ∗ Q` by using Algorithm 2

4 Compute H̃` ← H̄` ∗ R−1L,`
5 Solve the minimization problem

min
~Z∈R`×1×n

‖H̃` ∗ ~Z −QT`+1 ∗ ~B1‖F

for ~Z` by using Algorithm 6
6 while ‖H̃` ∗ ~Z` −QT`+1 ∗ ~B1‖F ≥ ηδ1 do
7 `← `+ 1
8 Go to step 2

9 end
10 Determine the regularization parameter µ` by the discrepancy principle, i.e., compute the

zero µ` > 0 of
ξ`(µ) := ‖H̃` ∗ ~Z1,µ`

−QT`+1 ∗ ~B1‖2F − η2δ21

Compute the associated solution ~Z1,µ`
of

min
~Z1∈R`×1×n

∥∥∥∥∥
[
H̃`

µ
−1/2
` I

]
∗ ~Z1 −

[
QT`+1 ∗ ~B1

~O

]∥∥∥∥∥
F

by using Algorithm 6
11 Compute ~Y1,µ`

← R−1L,` ∗ ~Z1,µ`
, ~X1,µ`

← Q` ∗ ~Y1,µ`

12 for j = 2, . . . , p do

13 [ ~Q1,∼]← Normalize( ~Bj)
14 while ‖H̃` ∗ ~Z` −QT`+1 ∗ ~Bj‖F ≥ ηδj do
15 `← `+ 1

16 Repeat steps 2-5 with the present tensors H̃`, QT`+1, and ~Bj
17 end

18 Repeat step 10 with the present δj and the tensors H̃`, QT`+1, and ~Bj to compute ~Zj,µ`

19 Compute ~Yj,µ`
← R−1L,` ∗ ~Zj,µ`

, ~Xj,µ`
← Q` ∗ ~Yj,µ`

20 end

3.2 The tGMRES method for the solution of (1.8) and (1.10)

We first describes the t-product GMRES (tGMRES) method for the approximate solution of (1.8).
This method subsequently will be generalized to the solution of problems of the form (1.10). We
remark that the tGMRES method is analogous to the (standard) GMRES method introduced by
Saad and Schultz [38]. Regularizing properties of the (standard) GMRES method for the situation
when A is a matrix are discussed in [4, 33].

Substituting ~X = Q` ∗ ~Y into the right-hand side of (1.8), using (3.1) as well as (3.9) and (2.4),
gives the reduced minimization problem

min
~Y∈R`×1×n

‖H̄` ∗ ~Y − ~e1 ∗ z1‖F .

We refer to this solution method for (1.8) as the tGMRES method. It is implemented by Algorithm
9 with p = 1. The number of t-Arnoldi steps required by the tGMRES method is determined by
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the discrepancy principle
‖H̄` ∗ ~Y − ~e1 ∗ z1‖F ≤ ηδ (3.24)

in Algorithm 9, where η > 1 is a user-specified constant that is independent of δ; cf. (1.6). Thus,

we terminate the tGMRES iterations as soon as an iterate ~Y = ~Y` that satisfies (3.24) has been
found. Generally, only fairly few iterations are needed. Restarting tGMRES therefore typically is
not required.

We turn to a tGMRES method for the solution of (1.10), which we refer to as the tGMRESp
method. This method, implemented by Algorithm 9, considers (1.10) as p separate minimization

problems for ~Xj,` ∈ K`(A, ~Bj),

‖A ∗ ~Xj,` − ~Bj‖F = min
~Xj∈K`(A, ~Bj)

‖A ∗ ~Xj − ~Bj‖F , ` = 1, 2, . . . , j = 1, 2, . . . , p, (3.25)

where ~B1, ~B2, . . . , ~Bp are tensor columns of the data tensor B in (1.10). The input parameters δj
for Algorithm 9 are defined by (3.23). The number of steps ` is chosen large enough to satisfy the
discrepancy principle.

Algorithm 9: The tGMRESp method for the solution of (1.10)

Input: A, p, ~B1, ~B2, . . . , ~Bp, δ1, δ2, . . . δp, L, η > 1, `init = 2
1 for j = 1, 2, . . . , p do

2 `← `init, [ ~Q1, z1]← Normalize( ~Bj)
3 Compute Q`,Q`+1 and H̄` by Algorithm 5
4 Construct ~e1 ← I(:, 1, :)
5 Solve the minimization problem

min
~Yj∈R`×1×n

‖H̄` ∗ ~Yj − ~e1 ∗ z1‖F

for ~Yj,` by using Algorithm 6

6 while ‖H̄` ∗ ~Yj,` − ~e1 ∗ z1‖F ≥ ηδj do
7 `← `+ 1
8 Go to step 3

9 end

10 Compute ~Xj,` ← Q` ∗ ~Yj,`
11 end

4 Methods Based on the Generalized Global t-Arnoldi Pro-
cess

This section discusses the computation of an approximate solution of the tensor Tikhonov regu-
larization problem (1.9) and the minimization problem (1.10) with the aid of the T-global Arnoldi
process recently described by El Guide et al. [10]. Application of a few, say 1 ≤ ` � m, steps of
the T-global Arnoldi process to the tensor A ∈ Rm×m×n with initial tensor B ∈ Rm×p×n, p > 1,
reduces this tensor to a small upper Hessenberg matrix H̄` ∈ R(`+1)×`. We refer to this process as
the generalized global t-Arnoldi (GG-tA) process. It is implemented by Algorithm 10. We assume
that the number of steps, `, is small enough to avoid breakdown. Then the GG-tA process yields
the decomposition

A ∗Q` = Q`+1 ~ H̄`, (4.1)

where
Qj := [Q1,Q2, . . . ,Qj ] ∈ Rm×pj×n, j ∈ {`, `+ 1},

and

A ∗Q` = [A ∗ Q1,A ∗ Q2, . . . ,A ∗ Q`] ∈ Rm×`p×n,
Q`+1 ~ H̄` = [Q`+1 ~ H̄`(:, 1),Q`+1 ~ H̄`(:, 2), . . . ,Q`+1 ~ H̄`(:, `)] ∈ Rm×`p×n. (4.2)
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The tensors Qj ∈ Rm×p×n, j = 1, 2, . . . , `, generated by Algorithm 10 form an orthonormal tensor
basis for the t-Krylov subspace K`(A,B), which is analogous to the space (1.7),

K`(A,B) =

{
Z ∈ Rm×p×n, Z =

∑̀
i=1

αi(A(i−1) ∗ B), αi ∈ R
}
, A0 = I. (4.3)

The next result follows immediately from the definition (4.3). The analogous result when A is a
matrix and B is a vector is discussed, e.g., in [37, 41].

Proposition 4.1. Let Z ∈ K`(A,B). Then Z = p(A) ∗B for some polynomial p of degree at most
`− 1.

Proof: The tensor Z ∈ K`(A,B) can be expressed as

Z = α0B + α1A ∗ B + · · ·+ α`A`−1 ∗ B = (α0 + α1A+ · · ·+ α`A`−1) ∗ B = p(A) ∗ B

for certain real scalars αj , where p(A) :=
`−1∑
j=0

αjAj is the polynomial of a tensor A; see [29, 31, 32]

for discussions on tensor functions. �
The upper Hessenberg matrix in (4.2) is given by

H̄` =



h11 . . . h1`
h21 h22

h32 h33
...

. . .
. . .

h`,`−1 h`,`
O h`+1,`


∈ R(`+1)×`. (4.4)

The relation
B = Q`+1 ~ e1β, e1 = [1, 0, . . . , 0]T (4.5)

is easily deduced from Algorithm 10.

Algorithm 10: The generalized global t-Arnoldi (GG-tA) process [10]

Input: A ∈ Rm×m×n, B ∈ Rm×p×n
1 Set β ← ‖B‖F , Q1 ← 1

βB
2 for j = 1, 2, . . . , ` do
3 W ← A ∗Qj
4 for i = 1, 2, . . . , j do
5 hij ← 〈Qi,W〉
6 W ←W − hijQi
7 end
8 hj+1,j ← ‖W‖F , if hj+1,j = 0 stop; else
9 Qj+1 ←W/hj+1,j

10 end

Differently from the t-Arnoldi process, the GG-tA process uses the data tensor B ∈ Rm×p×n, p >
1, and only requires transformation to and from the Fourier domain in step 3. Each transformation
of A and Qj to and from the Fourier domain in step 3 costs O(m2n log(n)) and O(mpn log(n))

flops, respectively. This step computes ` matrix-matrix product of the frontal slices Â(i) and Q̂(i)
j ,

i = 1, 2, . . . , n, for O(`m2p) flops each. Hence for n frontal slices, the cost of implementing step 3 in
the Fourier domain is O(`m2pn) flops. The orthogonalization steps 4-7 demands O(`2mnp) flops.
Hence, the GG-tA process has a complexity of O((`m2 + `2m)np) flops in the Fourier domain.
This cost is the same when the t-Arnoldi and G-tA processes are applied to separately solve the p
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minimization problems (3.22), since solving each one of the p minimization problems independently
costs O((`m2 + `2m)n) flops in the Fourier domain.

We use the decomposition (4.1) to determine an approximate solution of the Tikhonov mini-
mization problem (1.9) in Subsection 4.1, and of the minimization problem (1.10) in Subsection
4.2.

4.1 The GG-tAT method for the solution of (1.9)

This subsection describes a modification of the T-global Arnoldi-Tikhonov regularization method
recently presented by El Guide et al. [10] for the approximate solution of (1.9) with L = I to allow
a general third order tensor regularization operator L 6= I. This modification requires Algorithm
3. We refer to this modification of the method by El Guide et al. [10] as the generalized global
tAT (GG-tAT) method. This method is based on first reducing A in (1.9) to an upper Hessenberg
matrix by carrying out a few, say `, steps of the GG-tA process, which is described by Algorithm
10. Differently from the approach of El Guide et al. [10], who apply a restarted GG-tA process,
determine the regularization parameter by the GCV, and use a stopping criterion based on the
residual Frobenius norm and a specified tolerance that is independent of the error in the data
tensor, we use the discrepancy principle to determine the regularization parameter and the number
of iterations required by the GG-tA process. Then the implementation of the GG-tA process does
not require restarts since only a small number of iterations are needed.

We compute an approximate solution of (1.9) analogously as described in Subsection 3.1.1.
Thus, letting X = Q` ~ y, and using (4.1) and (4.5), the minimization problem (1.9) reduces to

min
y∈R`
{‖Q`+1 ~ H̄` ~ y −Q`+1 ~ e1β‖2F + µ−1‖L ∗Q` ~ y‖2F }, (4.6)

where β = ‖B‖F . Algorithm 3 yields the GG-tQR factorization

L ∗Q` = QL,` ~RL,` ∈ Rs×`p×n, (4.7)

where RL,` ∈ R`×` is an upper triangular matrix and QL,` ∈ Rs×`p×n has ` orthonormal tensor
columns. Substituting (4.7) into (4.6), and using the left-hand side of (2.5), gives

min
y∈R`
{‖H̄`y − e1β‖22 + µ−1‖RL,`y‖22}. (4.8)

Typically, the matrix RL,` is nonsingular and not very ill-conditioned. Then we can express (4.8)
as a Tikhonov minimization problem in standard form,

min
z∈R`
{‖H̃`z − e1β‖22 + µ−1‖z‖22}, (4.9)

where
z := RL,`y, H̃` := H̄`R

−1
L,`. (4.10)

Similarly as above, we compute H̃` by solving ` linear systems of equations. The minimization
problem (4.9) is analogous to (3.15). Its solution, zµ,`, can be computed fairly stably by solving

min
z∈R`

∥∥∥∥[ H̃`

µ−1/2I

]
z −

[
e1β
0

]∥∥∥∥
2

. (4.11)

The associated approximate solution of (1.9) is given by

~Xµ,` = Q` ~R−1L,`zµ,`.

We determine the regularization parameter µ by the discrepancy principle based on the Frobe-
nius norm. This assumes knowledge of a bound

‖E‖F ≤ δ

for the error E in B. Thus, we choose µ > 0 so that the solution zµ,` of (4.11) satisfies

‖H̃`zµ,` − e1β‖2 = ηδ.
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Define the function
ψ`(µ) := ‖H̃`zµ,` − e1β‖22,

where zµ,` solves (4.11). Manipulations similar to those applied in Subsection 3.1.1 show that ψ`(µ)
can be expressed as

ψ`(µ) = β2eT1 (µH̃`H̃
T
` + I)−2e1. (4.12)

It is readily verified that the function µ→ ψ`(µ) is decreasing and convex for µ ≥ 0 with ψ`(0) = β2.

Proposition 4.2. Let ψ`(µ) be given by (4.12). Then

lim
µ→∞

ψ`(µ) = γβ2, (4.13)

where γ > 0 is the square of the (1, 1) entry of the (`+ 1)st left singular vector of H̃`.

The infimum of ψ`(µ) on the right-hand side of (4.13) typically decreases quite rapidly as `,
which is the dimension of the solution subspace, increases; see [35] for a proof of (4.13).

A similar reasoning as in Subsection 3.1 suggests that it may be convenient to solve

ψ`(µ)− η2δ2 = 0 (4.14)

by Newton’s method with initial approximate solution µ = 0.
We turn to a matrix analogue of Proposition 3.2.

Proposition 4.3. Let µ` solve (4.14) and let zµ,` be the associated solution of (4.9) with µ = µ`.
Let yµ,` and zµ,` be related by (4.10). Then the approximate solution Xµ,` = Q` ~ yµ,` of (1.9)
satisfies

‖A ∗ Xµ,` − B‖2F = β2eT1 (µH̃`H̃
T
` + I)−2e1. (4.15)

Proof: Substituting Xµ,` = Q` ~ yµ,` into (4.15), using (4.1) and (4.5), as well as left-hand side of
(2.5), gives

‖A ∗ Xµ,` − B‖2F = ‖Q`+1 ~ (H̄` ~ yµ,` − e1β)‖2F = ‖H̄`yµ,` − e1β‖22 = ‖H̃`zµ,` − e1β‖22. �

We refer to the solution method described above as the GG-tAT method. It is implemented by
Algorithm 11. The method works with all lateral slices ~Bj , j = 1, 2, . . . , p, of B simultaneously.

Algorithm 11: The GG-tAT method for the solution of (1.9)

Input: A, B, δ, L, η > 1, `init = 2
1 `← `init, β ← ‖B‖F , Q1 ← 1

βB
2 Compute Q`, Q`+1, and H̄` by Algorithm 10
3 Determine RL,` by computing the GG-tQR factorization of L ∗Q` using Algorithm 3

4 Compute H̃` ← H̄`R
−1
L,`

5 Solve the minimization problem

min
z∈R`
‖H̃`z − e1β‖2

for z`
6 while ‖H̃`z` − e1β‖2 ≥ ηδ do
7 `← `+ 1
8 Go to step 2

9 end
10 Determine the regularization parameter µ` by the discrepancy principle, i.e., compute the

zero µ` > 0 of
ϕ`(µ) := ‖H̃`zµ,` − e1β‖22 − η2δ2

and the associated solution zµ,` of

min
z∈R`

∥∥∥∥∥
[

H̃`

µ
−1/2
` I

]
z −

[
e1β
0

]∥∥∥∥∥
2

11 Compute yµ,` ← R−1L,`zµ,`, Xµ,` ← Q` ~ yµ,`
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4.2 The GG-tGMRES method for the approximate solution of (1.10)

We describe the generalized global tGMRES (GG-tGMRES) method for the approximate solution

of (1.10). This method works with all lateral slices ~Bj , j = 1, 2, . . . , p, of B simultaneously. A closely
related method, referred to as the T-global GMRES method, recently has been described by El
Guide et al. [10]. The latter method differs from the GG-tGMRES method in the following ways:
it uses a restarted GG-tA process and a stopping criterion based on the residual Frobenius norm
with a prespecified tolerance that is independent of the error in B. The GG-tGMRES method uses
the discrepancy principle to decide when to terminate the iterations. The number of iterations
required by this method to satisfy the discrepancy principle typically is quite small. Restarting
therefore generally is not required.

Substituting X = Q`~ y into the right-hand side of (1.10), using (4.1) and (4.5), as well as the
left-hand side of (2.5), gives the reduced minimization problem

min
y∈R`
‖H̄`y − βe1‖F . (4.16)

The GG-tGMRES method solves (4.16) for a value of ` determined by the discrepancy principle
and requires that a bound δ for ‖E‖F be known, where E is the error in B. This method is analogous
to the tGMRES method described in Subsection 3.2. It is implemented by Algorithm 12.

Algorithm 12: The GG-tGMRES method for the solution of (1.10)

Input: A, B, δ, L, η > 1, `init = 2
Output: Approximate solution X` of (1.10)

1 `← `init, β ← ‖B‖F , Q1 ← 1
βB

2 Compute Q`, Q`+1, and H̄` by Algorithm 10
3 Solve the minimization problem

min
y∈R`
‖H̄`y − e1β‖2

for y`
4 while ‖H̄`y` − e1β‖2 ≥ ηδ do
5 `← `+ 1
6 Go to step 2

7 end
8 Compute X` ← Q` ~ y`

5 Methods Based on the Global t-Arnoldi Process

This section discusses the computation of approximate solutions of the tensor Tikhonov regular-
ization problems (1.3) and (1.9), and of the minimization problems (1.8) and (1.10), with the aid
of the global t-Arnoldi (G-tA) process. This process is readily implemented by taking p = 1 in
Algorithm 10. We assume that ` is small enough to avoid breakdown. Algorithm 13 determines the
G-tA decomposition

A ∗ Q` = Q`+1 ~ ¯̄H`, (5.1)

where
Qj := [ ~Q1, ~Q2, . . . , ~Qj ] ∈ Rm×j×n, j ∈ {`, `+ 1}.
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Algorithm 13: The global t-Arnoldi (G-tA) process

Input: A ∈ Rm×m×n, ~B ∈ Rm×1×n
1 Set β ← ‖ ~B‖F , ~Q1 ← 1

β
~B

2 for j = 1, 2, . . . , ` do

3 ~W ← A ∗ ~Qj
4 for i = 1, 2, . . . , j do

5 hij ← 〈 ~Qi, ~W〉
6 ~W ← ~W − hij ~Qi
7 end

8 hj+1,j ← ‖ ~W‖F , if hj+1,j = 0 stop; else

9 ~Qj+1 ← ~W/hj+1,j

10 end

The expressions A∗Q` and Q`+1~ ¯̄H` in (5.1) are defined similarly as (4.2), and ¯̄H ∈ R(`+1)×`

has a form analogous to (4.4). The tensors ~Qj ∈ R`×1×n, j = 1, 2, . . . , `, generated by Algorithm

13 form an orthonormal tensor basis for the t-Krylov subspace K`(A, ~B), where the definition of
t-span is analogous to (4.3). We use the G-tA process to determine an approximate solution of the
Tikhonov minimization problems (1.9) and (1.3) in Section 5.1.

5.1 The G-tAT method for the solution of (1.9) and (1.3)

We describe a solution method for (1.9) that works with each lateral slice ~Bj , j = 1, 2, . . . , p, of
the data tensor B independently. Thus, one solves (1.9) by applying the global t-product Arnoldi-
Tikhonov (G-tAT) method to the p Tikhonov minimization problems (3.22) separately. We refer
to this solution approach as the G-tATp method. It is implemented by Algorithm 14.

The G-tAT method for the approximate solution of (1.3) first reduces A in (1.3) to an upper
Hessenberg matrix by carrying out a few, say `, steps of the G-tA process described by Algorithm
13. Let ~X = Q` ~ y. Then following a similar approach as in Subsection 4.1, we reduce (1.3) to

min
y∈R`
{‖Q`+1 ~ ¯̄H` ~ y −Q`+1 ~ e1β‖2F + µ−1‖L ∗ Q` ~ y‖2F }. (5.2)

Compute the G-tQR factorization of L ∗ Q` by Algorithm 4 to obtain

L ∗ Q` = QL,` ~ R̄L,`, (5.3)

where the tensor QL,` ∈ Rs×`×n has ` orthonormal tensor columns and the matrix R̄L,` ∈ R`×` is
upper triangular.

Substitute (5.3) into (5.2), use the right-hand side of (2.5), and define

z := R̄L,`y, H̆` := ¯̄H`R̄
−1
L,`,

where we assume that the matrix R̄L,` is invertible and not very ill-conditioned. We obtain the
Tikhonov minimization problem in standard form

min
z∈R`
{‖H̆`z − e1β‖22 + µ−1‖z‖22}.

This problem can be solved similarly as (4.9). We refer to this approach of solving (1.3) as the
G-tAT method. It is implemented by Algorithm 14 with p = 1. The parameter δ1 is set to δ
determined by (1.5). When applying Algorithm 14 to solve (1.9), the input parameters δ1, δ2, . . . , δp
are determined by (3.23).
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Algorithm 14: The G-tATp method for the solution of (1.9)

Input: A, p, ~B1, ~B2, . . . , ~Bp, L, δ1, δ2, . . . , δp, η > 1, `init = 2
1 for j = 1, 2, . . . , p do

2 `← `init, β ← ‖ ~Bj‖F , ~Q1 ← 1
β
~Bj

3 Compute Q`, Q`+1, and ¯̄H` by Algorithm 13
4 Determine R̄L,` by computing the G-tQR factorization of L ∗ Q` using Algorithm 4

5 Compute H̆` ← ¯̄H`R̄
−1
L,`

6 Solve the minimization problem

min
z∈R`
‖H̆`z − e1β‖2

for z`
7 while ‖H̆`z` − e1β‖2 ≥ ηδj do
8 `← `+ 1
9 Go to step 3

10 end
11 Determine the regularization parameter µ` > 0 by the discrepancy principle, i.e., by

computing the zero µ` of

ϕ`(µ) := ‖H̆`zj,µ`
− e1β‖22 − η2δ2j

and the associated solution zj,µ`
of

min
z∈R`

∥∥∥∥∥
[

H̆`

µ
−1/2
` I

]
z −

[
e1β
0

]∥∥∥∥∥
2

12 Compute: yj,µ`
← R̄−1L,`zj,µ`

, ~Xj,µ`
← Q` ~ yj,µ`

13 end

5.2 The G-tGMRES method for the solution of (1.8) and (1.10)

This subsection describes the global tGMRES (G-tGMRES) method for the approximate solution
of (1.8) and (1.10). The G-tGMRES method uses the G-tA process described by Algorithm 13

and works with a data tensor slice ~B in (1.8) or one lateral slice of the data tensor B at a time in
(1.10). The G-tGMRES method is analogous to the GG-tGMRES method of the previous section.

Substitute ~X = Q`~y into (1.8) and proceed similarly as described in Subsection 4.2 to obtain
the reduced minimization problem

min
y∈R`
‖ ¯̄H`y − βe1‖2.

We refer to the solution method so defined as the G-tGMRES method. It is implemented by
Algorithm 15 with p = 1.

We conclude this subsection by describing an algorithm for the approximate solution of (1.10)
based on the G-tGMRES method. This algorithm provides an alternative to the GG-tGMRES
method of Subsection 4.2. It works with each lateral slice ~Bj , j = 1, 2, . . . , p, of the data tensor B
independently. Thus, one solves the p minimization problems (3.25) separately by the G-tGMRES
method. This approach is implemented by Algorithm 15 and will be referred to as the G-tGMRESp
method. The parameters δ1, δ2, . . . , δp for the algorithm are determined by (3.23).
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Algorithm 15: The G-tGMRESp method for the solution of (1.9)

Input: A, p, ~B1, ~B2, . . . , ~Bp, L, δ1, δ2, . . . , δp, η > 1, `init = 2
1 for j = 1, 2, . . . , p do

2 `← `init, β ← ‖ ~Bj‖F , ~Q1 ← 1
β
~Bj

3 Compute Q`, Q`+1, and ¯̄H` by Algorithm 13
4 Solve the minimization problem

min
yj∈R`

‖ ¯̄H`yj − e1β‖2

for yj,`
5 while ‖ ¯̄H`yj,` − e1β‖2 ≥ ηδj do
6 `← `+ 1
7 Go to step 3

8 end

9 Compute: ~Xj,` ← Q` ~ yj,`
10 end

6 Numerical Examples

This section illustrates the performance of the methods described in the previous sections when
applied to the solution of several linear discrete ill-posed tensor problems. These methods are
broadly categorized into two groups: those that involve flattening, i.e., reduce the tensor least
squares problems (1.3), (1.8), (1.9), and (1.10) to equivalent problems involving matrices and
vectors, and those that preserve the tensor structure and do not involve flattening. We illustrate
that it is generally beneficial to preserve the multidimensional tensor structure when solving linear
discrete ill-posed tensor problems.

Applications to the restoration of (color) images and gray-scale videos are considered. Computed
examples show that methods that preserve the natural spatial ordering yield the most accurate
approximate solutions. In particular, tAT-type methods, such as tAT, tATp and nested tATp,
give the best approximate solution in all computed examples except in Example 6.2; see Table 3.
All computations were carried out in MATLAB 2019b on a Lenovo computer with an Intel Core
i3 processor and 4 GB RAM running Windows 10.

We use the discrepancy principle to determine the regularization parameter(s) and the number
of steps of the iterative methods in all examples. The “noise” tensor E ∈ Rm×p×n, which simulates
the error in the data tensor B = Btrue +E , is determined by its lateral slices ~Ej , j = 1, 2, . . . , p. The
entries of these slices are normally distributed random numbers with zero mean and are scaled to
correspond to a specified noise level δ̃. Thus,

~Ej := δ̃
~E0,j
‖~E0,j‖F

‖ ~Btrue,j‖F , j = 1, 2, . . . , p, (6.1)

where the entries of the error tensors ~E0,j are N(0, 1). For problem (1.1), we have p = 1.

Let ~Xmethod be the computed approximate solution of (1.1) by a chosen method. The relative
error

Emethod =
‖ ~Xmethod − ~Xtrue‖F

‖ ~Xtrue‖F
is used to determine the effectiveness of the proposed methods. The relative error for problems
with a three-mode data tensor B is determined analogously.

We let A ∈ R256×256×256 in all computed examples unless otherwise stated. The condition
number of the frontal slices of A are computed using the MATLAB command cond. We set tol =
10−12 in Algorithm 1.
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Example 6.1. This example compares Tikhonov regularization with the regularization tensor
L2 ∈ R255×256×256, see (3.12), as implemented by the tATp, nested tATp, G-tATp and GG-
tAT methods to the GMRES-type methods described by the tGMRESp, G-tGMRESp, and GG-
tGMRES methods. Let the matrix

A1 = gravity(256, 1, 0, 1, d), d = 0.8,

be generated by the function gravity from Hansen’s Regularization Tools [17] and define the
prolate matrix A2 = gallery(′prolate′, 256, α) in MATLAB. We set α = 0.46. Then A2 is a
symmetric positive definite ill-conditioned Toeplitz matrix. The tensor A is defined by its frontal
slices

A(i) = A1(i, 1)A2, i = 1, 2, . . . , 256.

The exact data tensor Btrue ∈ R256×3×256 is given by Btrue = A ∗ Xtrue, where the exact so-
lution Xtrue ∈ R256×3×256 has all entries equal to unity. The noise-contaminated right-hand side
B ∈ R256×3×256 is generated by B = Btrue+E , where the noise tensor E ∈ R256×3×256 is determined
according to (6.1). The condition numbers of the slices A(i) satisfy cond(A(i)) ≥ 1 · 1016 for all
i. Thus, every slice is numerically singular. We take η = 1.15 and determine the regularization
parameter(s) for Tikhonov regularization by Newton’s method. The computed regularization pa-
rameters and relative errors for different noise levels, as well as the number of iterations required
to satisfy the discrepancy principle by each method, are displayed in Table 1. Here and below the
table entry “-” indicates that the solution method carries out different numbers of t-Arnoldi steps
or computes different values of the regularization parameter for the different lateral slices of B, or
that no regularization parameter is required.

Table 1 shows the GG-tAT and GG-tGMRES methods to be the fastest for both noise levels, but
the tATp and nested tATp methods, which do not involve flattening, yield approximate solutions
of higher accuracy for both noise levels. The tATp method determines the most accurate approx-
imations of Xtrue and requires the most CPU time for both noise levels. The tGMRESp method
yields the worst quality solution for both noise levels. In general, the quality of the computed
approximate solutions determined by Tikhonov regularization is higher than the approximate so-
lutions calculated by GMRES-type methods. This depends on the use of the regularization operator
L2 by the former methods. We remark that Btrue depends on the t-product.

Noise level Method ` µ` Relative error CPU time (secs)

10−3

tATp - - 2.09e-03 1.25e+01
nested tATp 3 - 2.23e-03 8.46e+00

tGMRESp - - 8.94e-01 7.67e+00
G-tATp - - 6.20e-03 1.06e+01

G-tGMRESp - - 7.57e-03 7.16e+00
GG-tAT 3 7.13e-02 6.20e-03 5.50e+00

GG-tGMRES 3 - 7.57e-03 2.77e+00

10−2

tATp - - 7.90e-03 5.97e+00
nested tATp 2 - 1.13e-02 4.82e+00

tGMRESp - - 4.71e+00 3.28e+00
G-tATp - - 1.18e-02 4.76e+00

G-tGMRESp - - 2.37e-02 3.08e+00
GG-tAT 2 3.09e-02 1.18e-02 2.31e+00

GG-tGMRES 2 - 2.37e-02 1.10e+00

Table 1: Results for Example 6.1.

Example 6.2. This example implements Example 6.1 analogously by taking L = I, d = 0.025 to
generate A1, and determines the regularization parameter(s) by Newton’s method with η = 1.1.
The condition numbers of A(i) are as described above. The relative errors for different noise levels
and the CPU times are displayed in Table 2.

Table 2 shows that the GG-tAT and GG-tGMRES methods, which involve flattening, are the
fastest for both noise levels. The nested tATp method, which does not involve flattening and is
based on nested t-Krylov subspaces, yields the most accurate approximate solutions. The G-tATp
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Noise level Method ` µ` Relative error CPU time (secs)

10−3

tATp - - 6.69e-03 1.43e+01
nested tATp 3 - 4.35e-03 1.24e+01

tGMRESp - - 2.11e-02 8.12e+00
G-tATp - - 5.65e-03 1.29e+01

G-tGMRESp - - 5.65e-03 7.47e+00
GG-tAT 3 3.28e-01 5.65e-03 6.54e+00

GG-tGMRES 3 - 5.65e-03 2.85e+00

10−2

tATp - - 4.10e-02 6.47e+00
nested tATp 2 - 2.59e-02 5.43e+00

tGMRESp - - 1.07e-01 3.31e+00
G-tATp - - 2.46e-02 5.11e+00

G-tGMRESp - - 2.47e-02 3.01e+00
GG-tAT 2 3.30e-02 2.46e-02 2.54e+00

GG-tGMRES 2 - 2.47e-02 1.16e+00

Table 2: Results for Example 6.2.

and GG-tAT methods with Tikhonov regularization determine approximate solutions of almost the
same quality as the GMRES-type methods implemented by the G-tGMRESp and GG-tGMRES
methods for both noise levels. The tGMRESp method yields approximate solutions of least accuracy
for both noise levels. For the solution methods that do not involve flattening (implemented by the
tATp, nested tATp, and tGMRESp methods), the quality of the computed approximate solutions
is higher when Tikhonov regularization is applied.

We finally compare the tAT and G-tAT methods to the tGMRES and G-tGMRES methods.
The exact solution is the tensor column ~Xtrue ∈ R256×1×256 with all entries equal to unity. The
noise-contaminated right-hand side ~B ∈ R256×1×256 is generated by ~B = ~Btrue + ~E , where the noise
tensor ~E ∈ R256×1×256 is determined as described above. Table 3 shows the number of iterations
required to satisfy the discrepancy principle by each method, the regularization parameters, as well
as the relative errors and CPU times for both noise levels.

Noise level Method ` µ` Relative error CPU time (secs)

10−3

tAT 3 9.87e-01 8.40e-03 1.41e+01
G-tAT 3 7.25e-01 5.96e-03 1.37e+01

tGMRES 3 - 2.80e-02 3.10e+00
G-tGMRES 3 - 5.99e-03 2.90e+00

10−2

tAT 3 5.54e-02 4.37e-02 3.67e+00
G-tAT 2 7.35e-02 2.46e-02 3.20e+00

tGMRES 2 - 1.45e-01 1.80e+00
G-tGMRES 2 - 2.56e-02 1.00e+00

Table 3: Results for Example 6.2.

We see from Table 3 that the quality of the computed approximate solutions is higher when
using Tikhonov regularization. The G-tGMRES and tGMRES methods are the fastest, but the
tGMRES method yields approximate solutions of least quality for both noise levels. The G-tAT and
G-tGMRES methods, which matricize the tensor equation (1.1), yield the most accurate solutions
for both noise levels. This is the only one of our examples in which matricizing is beneficial for the
quality of the computed solutions. In our experience this situation is quite rare.

The remainder of this section discusses image and video restoration problems. We use the
bisection method to determine the regularization parameter over a chosen interval. The blurring
operator A is constructed similarly as described in [20] by using the function blur from [17].
We assess the quality of the approximate restorations determined by the different methods by
comparing the relative error defined above and the Peak Signal-to-Noise Ratio (PSNR) given by

PSNR = 10log10

(
MAXXtrue√

MSE

)
,
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where MAXXtrue
is the maximum of all the pixel values of the true image represented by Xtrue ∈

Rm×p×n and the mean square error is given by

MSE =
1

mpn

m∑
i=1

p∑
j=1

n∑
k=1

(
Xtrue(i, j, k)−Xmethod(i, j, k)

)2
.

For the problem (1.1) discussed in Example 6.3, we use p = 1.

Example 6.3. (2D image restoration problem) This example illustrates the advantage of pre-
serving the tensor structure when solving tensor linear discrete ill-posed problems. Specifically, we
show that the tAT method, which avoids flattening (matricization and vectorization) of the tensor
equation (1.1), yields restorations of the highest quality for both noise levels independently of the
regularization operators used.

We discuss the performance of the tAT and G-tAT methods with the regularization tensors
L = I, and L = L1 ∈ R298×300×300 defined by (3.12), and compare these methods to the standard
Arnoldi-Tikhonov (AT) regularization method with regularization matrix L = I described in [27],
(standard) GMRES, tGMRES, and G-tGMRES methods when applied to the restoration of the
Telescope2 image of size 300 × 300 pixels that have been contaminated by blur and noise. The
AT and GMRES methods compute an approximate solution of the linear system of equations

(A1 ⊗A2)x = b, (6.2)

where ⊗ denotes the Kronecker product; the block matrix A1 ⊗ A2 ∈ R3002×3002 represents the
blurring operator. The right-hand side vector b ∈ R3002 stores the vectorized available blur- and
noise-contaminated image B ∈ R300×300. This vector is contaminated by e ∈ R3002 , which rep-
resents (unknown) noise; it is a vectorization of the noise matrix E ∈ R300×300. We would like
to determine an approximation of the “true” blur- and noise-free image Xtrue ∈ R300×300 or its
vectorized form xtrue ∈ R3002 . The circulant matrix A1 and Toeplitz matrix A2 are generated with
the MATLAB commands

z1 = [exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N− band)], A2 =
1

σ
√

2π
toeplitz(z1),

z2 = [z1(1) fliplr(z1(end− length(z1) + 2 : end))], A1 =
1

σ
√

2π
toeplitz(z1, z2),

(6.3)

with N = 300, σ = 3 and band = 9. By exploiting the circulant structure of A1 ⊗ A2 and using
the fold, unfold, and twist operators, the 2D deblurring problem (6.2) can be formulated as the
following problem in tensor form

A ∗ ~X = ~B, (6.4)

where ~X = twist(X), ~B = twist(B), and ~E = twist(E). The frontal slices A(i) ∈ R300×300,
i = 1, 2, . . . , 300, of the blurring operator A ∈ R300×300×300 are generated by folding the first block
column of A1 ⊗A2, i.e.,

A(i) = A1(i, 1)A2, i = 1, 2, . . . , 300. (6.5)

The computed condition numbers ofA(i) are cond(A(i)) = 1.6·105 for i = 1, 2, . . . , 9, and cond(A(i))
is “infinite” for i ≥ 10. We let η = 1.1 in (1.6) and determine the regularization parameter by the
bisection method over the interval [101, 107].

The true Telescope image is shown on the left-hand side of Figure 1. For the matrix problem

(6.2), this image is stored as a vector xtrue ∈ R3002 and blurred by A1 ⊗ A2, while for the tensor

problem (6.4), it is stored as ~Xtrue ∈ R300×1×300 using the twist operator and blurred by the
tensor A. The blurred and noisy image represented by b is shown in Figure 1 (middle) using the
MATLAB reshape command.

The restored images determined by the tAT, G-tAT, and tGMRES methods are accessed using
the squeeze operator and displayed in Figures 1 and 2 for the noise level δ̃ = 10−3. Similarly,
the restored image computed by the GMRES method is displayed in Figure 2 (middle) using the
MATLAB reshape command.

2https://github.com/jnagy1/IRtools/blob/master/Extra/test_data/HSTgray.jpg
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Figure 1: True image (left), blurred and noisy image (middle) with noise level δ̃ = 10−3, and restored
image by the tAT (right) method after 8 iterations.

Table 4 shows the computed regularization parameters, relative errors, and PSNR values for the
noise levels 10−2 and 10−3, as well as CPU times. As can be expected, the quality of the computed
restorations is higher when the noise level is smaller. The tGMRES method requires the least
CPU time for δ̃ = 10−3 and yields the worst restorations for both noise levels. Independently of
the choice of L, Tikhonov regularization implemented by the tAT method determines restorations
of the highest quality. The G-tAT and G-tGMRES methods, which involve flattening, demand
the most CPU time and require the most iterations for both noise levels. The GMRES and G-
tGMRES methods require the same number of iterations and yield the same quality restorations
for both noise levels. Similar observations can be made for the AT and G-tAT methods when the
regularization operator is the identity matrix and identity tensor, respectively.

Figure 2: Restored images by the G-tAT (left), GMRES (middle), and tGMRES (right) methods after 51,

51, and 8 iterations, respectively, for the noise level δ̃ = 10−3.

Example 6.4. (Color image restoration) This example is concerned with the restoration of color
images using the same regularization operators as in Example 6.3. We seek to determine an ap-
proximate solution of the image deblurring problem

(A1 ⊗A2)X = B, (6.6)

where the desired unavailable blur- and noise-free image Xtrue ∈ R3002×3 is the matricized three-
channel image Xtrue ∈ R300×300×3. The right-hand side B ∈ R3002×3 in (6.6) is generated by

B = (A1⊗A2)Xtrue +E, where the unknown noise in the matrix B is represented by E ∈ R3002×3,
which is the matricized “noise” tensor E ∈ R300×300×3. The blurring matrices A1 and A2 are
defined by (6.3) in Example 6.3 with N = 300, σ = 3 and band = 12. By the same reasoning as in
Example 6.3, we formulate (6.6) as the 3D image deblurring problem

A ∗ X = B, (6.7)

where the blurring tensor A ∈ R300×300×300 is constructed by (6.5) in Example 6.3. The computed
condition numbers of the frontal slices of A are cond(A(i)) = 7.6 · 108 for i = 1, 2, . . . , 12, and
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L Noise level Method ` µ` PSNR Relative error CPU time (secs)

L1

10−3
tAT 8 2.27e+04 29.09 1.19e-01 3.51e+01

G-tAT 51 3.18e+04 28.04 1.34e-01 9.78e+02

10−2
tAT 3 4.43e+01 26.81 1.53e-01 7.23e+00

G-tAT 12 3.98e+02 25.30 1.84e-01 6.35e+01

I
10−3

tAT 8 9.26e+04 29.05 1.19e-01 2.74e+01
G-tAT 51 1.11e+05 28.04 1.34e-01 9.11e+02

10−2
tAT 3 1.34e+03 26.99 1.51e-01 5.41e+00

G-tAT 12 1.86e+03 25.21 1.86e-01 5.23e+01
10−3 AT 51 1.11e+05 28.04 1.34e-01 6.01e+01
10−2 AT 12 1.90e+03 25.21 1.86e-01 2.76e+00

10−3
GMRES 51 - 27.97 1.35e-01 5.99e+01
tGMRES 8 - 20.28 2.03e-01 2.44e+01

G-tGMRES 51 - 27.97 1.35e-01 8.98e+02

10−2
GMRES 12 - 24.94 1.91e-01 2.64e+00
tGMRES 3 - 17.74 4.39e-01 3.40e+00

G-tGMRES 12 - 24.94 1.91e-01 5.09e+01

Table 4: Results for Example 6.3.

cond(A(i)) is “infinite” for i ≥ 13. We determine the regularization parameter(s) by the bisection
method over the interval [10−5, 107]. The discrepancy principle is used with the parameter η =
1.1. The (standard) global GMRES (G-GMRES) and (standard) global Arnoldi-Tikhonov (GAT)
methods for (6.6) are based on the global Arnoldi process applied by Huang et al. [19]. We compare
the performance of these methods to the tATp, nested tATp, G-tATp, GG-tAT, tGMRESp, G-
tGMRESp, and GG-tGMRES methods for the solution of (6.7).

The original (blur- and noise-free) flower3 image shown on the left-hand side of Figure 3 is
stored as a tensor Xtrue ∈ R300×3×300. It is blurred using the tensor A. Thus, Btrue = A ∗ Xtrue ∈
R300×3×300 represents the blurred but noise-free image associated with Xtrue. The “noise” tensor
E ∈ R300×3×300 is generated as described by (6.1) with noise level δ̃ = 10−3 and added to Btrue to
obtain the blurred and noisy image B shown in Figure 3 (middle). The latter image is accessed by
using the multi squeeze operator.

Figure 3: True image (left), blurred and noisy image (middle) with noise level δ̃ = 10−3, and restored
image determined by nested tATp (right) after 9 iterations.

The restored images determined by the nested tATp, GG-tAT, G-GMRES, and tGMRES
methods are displayed in Figures 3 and 4. Relative errors, PSNR values, as well as CPU times
are shown in Table 5. The tAT method gives restorations of the highest or nearly highest quality;
the nested tATp method also determines accurate restorations. These methods do not involve
flattening. Solution methods that involve flattening such as the G-tATp, GG-tAT, G-tGMRESp,
and GG-tGMRES methods require the most CPU time for both noise levels. The GAT, GG-tAT,

3http://www.hlevkin.com/TestImages
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Figure 4: Restored images determined by GG-tAT (left) after 32 iterations, and G-GMRES (middle) after

32 iterations and the tGMRESp (right), for the noise level δ̃ = 10−3.

G-GMRES, and GG-tGMRES methods require the same number of iterations, which are more than
the number of iterations used by the nested tATp method, for both noise levels. The tGMRESp
method yields restorations of the worst quality for both noise levels. The GG-tGMRES method,
which works with the whole data tensor at a time, yields the same quality restorations as the
G-GMRES method for both noise levels. The same conclusion can be drawn for the GG-tAT and
GAT methods when the regularization operator is the identity tensor and the identity matrix,
respectively. The quality of the restorations determined by the G-tATp and GG-tAT methods
improves significantly with the use of the regularization operator L1 for both noise levels.

L Noise level Method ` µ` PSNR Relative error CPU time (secs)

L1

10−3

tATp - - 30.56 5.85e-02 9.31e+01
nested tATp 9 - 30.56 5.86e-02 6.48e+01

G-tATp - - 29.47 6.64e-02 1.19e+03
GG-tAT 32 7.34e+03 29.43 6.67e-02 8.94e+02

10−2

tATp - - 27.20 8.62e-02 2.11e+01
nested tATp 4 - 25.90 1.00e-01 2.15e+01

G-tATp - - 25.20 1.09e-01 1.01e+02
GG-tAT 9 1.51e+02 25.22 1.08e-01 7.04e+01

I

10−3

tATp - - 30.67 5.78e-02 7.57e+01
nested tATp 9 - 30.69 5.77e-02 5.70e+01

G-tATp - - 29.44 6.66e-02 1.11e+03
GG-tAT 32 3.64e+04 29.40 6.69e-02 4.30e+02

10−2

tATp - - 27.66 8.18e-02 1.66e+01
nested tATp 4 - 26.26 9.60e-02 2.29e+01

G-tATp - - 24.96 1.12e-01 8.27e+01
GG-tAT 9 1.15e+03 24.87 1.13e-01 3.38e+01

10−3 GAT 32 3.63e+04 29.40 6.69e-02 9.69e+01
10−2 GAT 9 1.15e+03 24.87 1.13e-01 6.22e+00

10−3

G-GMRES 32 - 29.33 6.75e-02 9.89e+01
tGMRESp - - 19.23 2.16e-01 6.97e+01

G-tGMRESp - - 29.36 6.73e-02 1.11e+03
GG-tGMRES 32 - 29.32 6.75e-02 4.26e+02

10−2

G-GMRES 9 - 24.56 1.17e-01 5.21e+00
tGMRESp - - 12.75 4.55e-01 1.05e+01

G-tGMRESp - - 24.78 1.14e-01 8.24e+01
GG-tGMRES 9 - 24.56 1.17e-01 3.31e+01

Table 5: Results for Example 6.4.

Example 6.5. (Video restoration) This example considers the restoration of the first six consec-
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utive frames of the Xylophone video from MATLAB. Each video frame is in the MP4 format and
has 240× 240 pixels.

Figure 5: True image (left), blurred and noisy image with noise level δ̃ = 10−3 (middle), and restored
image determined by 8 iterations with the tATp method (right).

The first six blur- and noise-free frames are stored as a tensor Xtrue ∈ R240×6×240 using the
multi twist operator. They are blurred by the tensor A ∈ R240×240×240, which is generated
similarly as in Example 6.3 with its frontal slices determined by

A(i) = A2(i, 1)A2, i = 1, 2, . . . , n, N = 240, σ = 2.5 and band = 12.

The condition numbers of the frontal slices of A are cond(A(i)) = 1.4 · 107 for i = 1, 2, . . . , 12. The
condition numbers of the remaining frontal slices are “infinite”.

We use the regularization operator L = L2 ∈ R239×240×240 and determine the regularization
parameter(s) by the bisection method over the interval [10−5, 107] using the discrepancy principle
with η = 1.1. The blurred and noisy frames are generated by B = A∗Xtrue + E ∈ R240×6×240 with
the “noise” tensor E ∈ R240×6×240 defined by (6.1).

The true third frame is displayed in Figure 5 (left), and the blurred and noisy third frame is
shown in Figure 5 (middle) using the squeeze operator. Similarly, the restored images of the third
frame determined by the G-tATp, nested tATp, G-tGMRES, and tGMRES methods are shown in
Figures 5 and 6.

Figure 6: Restored images by the nested G-tATp (left), G-tGMRESp (middle), and tGMRESp (right) for

δ̃ = 10−3.

The relative errors, PSNR values, and CPU times are displayed in Table 6. The tATp and
nested tATp methods, which do not involve flattening, are seen to yield restorations of the highest

quality for all noise levels. The tGMRES method is the fastest for δ̃ = 10−2 and 10−3, but gives the
worst restorations for all noise levels. Solution methods that involve flattening, such as G-tATp,

GG-tAT and G-tGMRESp and GG-tGMRES methods, are the slowest for δ̃ = 10−3.

7 Conclusion

This paper extends the standard Arnoldi iteration for matrices to third order tensors and describes
several algorithms based on this extension for solving linear discrete ill-posed problems with a t-
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Noise level Method ` µ` PSNR Relative error CPU time (secs)

10−3

tATp - - 34.07 4.15e-02 5.25e+01
nested tATp 10 - 33.81 4.27e-02 4.64e+01

G-tATp - - 33.27 4.54e-02 4.63e+02
GG-tAT 22 7.46e+02 33.24 4.56e-02 2.03e+02

tGMRESp - - 27.21 9.13e-02 3.19e+01
G-tGMRESp - - 33.17 4.60e-02 4.07e+02
GG-tGMRES 22 - 33.21 4.58e-02 9.77e+01

10−2

tATp - - 30.75 6.07e-02 2.03e+01
nested tATp 3 - 25.64 1.09e-01 1.80e+01

G-tATp - - 27.22 9.12e-02 6.92e+01
GG-tAT 8 2.16e+02 27.22 9.12e-02 2.57e+01

tGMRESp - - 15.67 3.45e-01 8.23e+00
G-tGMRESp - - 26.82 9.55e-02 5.28e+01
GG-tGMRES 8 - 26.82 9.55e-02 1.19e+01

10−1

tATp - - 24.69 1.22e-01 1.38e+01
nested tATp 2 - 21.25 1.81e-01 1.69e+01

G-tATp - - 21.17 1.83e-01 5.24e+00
GG-tAT 2 1.04e+01 21.17 1.83e-01 1.60e+00

tGMRESp - - 0.45 1.99e+00 3.46e+00
G-tGMRESp - - 19.21 2.29e-01 3.16e+00
GG-tGMRES 2 - 19.21 2.29e-01 6.80e-01

Table 6: Results for Example 6.5.

product structure. The solution methods are based on computing a few steps of the extended
Arnoldi process, which is referred to as the t-Arnoldi process. The global t-Arnoldi and generalized
global t-Arnoldi processes also are considered. Differently from the t-Arnoldi process, the latter
processes involve flattening. Both Tikhonov regularization and regularization by truncated iteration
are considered. The latter gives rise to an extension of the standard GMRES method, referred to
as the tGMRES and global tGMRES methods. The discrepancy principle is used to determine
the number of iterations with the t-Arnoldi, global t-Arnoldi, and generalized global t-Arnoldi
processes, as well as the regularization parameter in Tikhonov regularization and the number
of iterations by the Arnoldi-type and GMRES-type methods. The effectiveness of the proposed
methods is illustrated by applications to image and video restorations. Solution methods such
as tAT, tATp, and nested tATp, that avoid matricization or vectorization of discrete ill-posed
problems for tensors, show great promise in terms of speed and quality of the computed restorations
determined by their relative errors and PSNR values when compared to solution methods that
matricize or vectorize.
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