
The tensor Golub-Kahan-Tikhonov method applied to the

solution of ill-posed problems with a t-product structure

Lothar Reichel* and Ugochukwu O. Ugwu�

Department of Mathematical Sciences, Kent State University, OH 44242

Abstract

This paper discusses an application of partial tensor Golub-Kahan bidiagonalization to
the solution of large-scale linear discrete ill-posed problems based on the t-product formalism
for third order tensors proposed by [M. E. Kilmer and C. D. Martin, Factorization strategies
for third order tensors, Linear Algebra Appl., 435 (2011), pp. 641-658]. The solution methods
presented first reduce a given (large-scale) problem to a problem of small size by application
of a few steps of tensor Golub-Kahan bidiagonalization and then regularize the reduced prob-
lem so obtained by Tikhonov’s method. The regularization operator is a third order tensor,
and the data may be represented by a matrix, i.e., a tensor slice, or by a general third order
tensor. A regularization parameter is determined by the discrepancy principle. This results in
fully automatic solution methods that neither require a user to choose the number of bidiag-
onalization steps nor the regularization parameter. The methods presented extend available
methods for the solution of linear discrete ill-posed problems defined by a matrix operator
to linear discrete ill-posed problems defined by a third order tensor operator. An interlacing
property of singular tubes for third order tensors is shown and applied. Several algorithms are
presented. Computed examples illustrate the advantage of the tensor t-product approach, in
comparison with solution methods that are based on matricization of the tensor equation.

Key words: discrepancy principle, discrete ill-posed problem, tensor Golub-Kahan bidiago-
nalization, Tikhonov regularization, t-product

1 Introduction

This paper is concerned with the solution of linear discrete ill-posed problem of the form

min
~X∈Rm×1×n

‖A ∗ ~X − ~B‖F , (1.1)

where A = [aijk]`,m,ni,j,k=1 ∈ R`×m×n is a third order tensor, ~X ∈ Rm×1×n and ~B ∈ R`×1×n are lateral
slices of third order tensors and may be thought of as laterally oriented matrices. The operation ∗
denotes the tensor t-product introduced in the seminal work by Kilmer and Martin [22] and applied

to image deblurring problems by Kilmer et al. [21, 22]. The t-product between A and ~X , which
will be defined below, is computed by transforming both tensors into the Fourier domain along the
third dimension, evaluating n matrix-vector products in the Fourier domain, and computing the
inverse Fourier transform of the result. Finally, ‖ · ‖F denotes the tensor Frobenius norm, i.e.,

‖A‖F =

√√√√∑̀
i=1

m∑
j=1

n∑
k=1

a2ijk.

An extension of (1.1) to higher-order tensors and a suitably defined t-product is described by
Martin et al. [27]. We will not consider this generalization in the present paper. However, we will

allow ~B and ~X in (1.1) to be general third order tensors in Subsections 4.2 and 5.1.

* e-mail: reichel@math.kent.edu
� e-mail: uugwu@kent.edu

In the problem (1.1) considered in this paper, the tensor A is of ill-determined tubal rank, i.e.,
it is difficult to define the tubal rank of A in a meaningful way. Specifically, the Frobenius norm
of the singular tubes of A, which are the analogues of the singular values of a matrix, decay quite
rapidly to zero with increasing index number, and there are many nonvanishing singular tubes of
tiny Frobenius norm of different orders of magnitude. Then the minimization problem (1.1) is a
linear discrete ill-posed problem.

In applications of interest to us, the tensor ~B represents measured data that is contaminated
by measurement error, which is represented by a tensor ~E ∈ R`×1×n. Straightforward solution of
(1.1) generally is not meaningful due to propagation and severe amplification of the error ~E into
the solution of (1.1). We reduce this difficulty by applying Tikhonov regularization, i.e., we replace
the minimization problem (1.1) by the penalized least-squares problem

min
~X∈Rm×1×n

{‖A ∗ ~X − ~B‖2F + µ−1‖L ∗ ~X‖2F }, (1.2)

where L ∈ Rs×m×n is a regularization operator and µ > 0 is a regularization parameter. Our
reason for using µ−1 in (1.2) instead of µ will be commented on below.

Let N (M) denote the null space of the tensor M under ∗. We assume that L is such that

N (A) ∩N (L) = { ~O}, (1.3)

where ~O ∈ Rm×1×n is an m× n zero matrix oriented laterally; see below. Then (1.2) has a unique

solution ~Xµ ∈ Rm×1×n for any µ > 0; cf. Theorem 3.1 below.
We refer to the solution scheme for (1.2) described in this paper as the t-product Golub-Kahan-

Tikhonov (tGKT) regularization method. This method is based on first reducing A to a small
bidiagonal tensor by carrying out a few, say 1 ≤ k � min{`,m}, steps of the t-product Golub-
Kahan bidiagonalization (tGKB) process discussed by Kilmer et al. [21]. This process, generically,
furnishes an orthonormal basis for a k-dimensional tensor Krylov (t-Krylov) subspace

Kk(AT ∗ A,AT ∗ ~B) = span{AT ∗ ~B, (AT ∗ A) ∗ AT ∗ ~B, . . . , (AT ∗ A)k−1 ∗ AT ∗ ~B}, (1.4)

where the superscript T denotes transposition. Each step of the tGKB process requires the eval-
uation of two tensor-matrix products, one with A and one with AT . An approximate solution of
(1.2) in the t-Krylov subspace (1.4) can be computed quite rapidly also for large tensors A and ~B.
Our solution methods for (1.1) differ from the one described by Kilmer et al. [21] in four ways: i)
we use the tGKB process, ii) we allow a general regularization operator L, iii) the regularization
parameter µ > 0 is determined with the aid of the discrepancy principle, and iv) we allow the

special data tensor ~B to be replaced by a general third order tensor B ∈ R`×p×n, p > 1.
In the remainder of this section, we provide some details on the topics iii) and iv), starting with

the former. Assume that the data tensor ~B is contaminated by an error ~E ∈ R`×1×n, which we will
refer to as “noise”, i.e.,

~B = ~Btrue + ~E , (1.5)

where ~Btrue ∈ R`×1×n denotes the unknown error-free data tensor associated with ~B. Assume that
the (unavailable) system of equations

A ∗ ~X = ~Btrue

is consistent and let ~Xtrue ∈ Rm×1×n denote the unique solution of minimal Frobenius norm. Let
a bound

‖~E‖F ≤ δ (1.6)

be known. The discrepancy principle prescribes that the regularization parameter µ > 0 be deter-
mined so that the solution ~Xµ of (1.2) satisfies

‖A ∗ ~Xµ − ~B‖F = ηδ, (1.7)

where η > 1 is a user-specified constant that is independent of δ. It can be shown that ~Xµ → ~Xtrue

as δ ↘ 0. The discrepancy principle and its properties are discussed in a Hilbert space setting,

2

e.g., by Engl et al. [13]. The idea behind the discrepancy principle can easily be extended to the
tensor setting using the t-product formalism; cf. (3.24).

We remark that many other techniques for determining the regularization parameter are avail-
able; see, e.g., [14, 15, 23, 24, 29]. Some of these methods may be attractive to apply in the present
setting when no bound (1.6) is known or can be estimated.

We also describe an alternative to the tGKT method for the solution of (1.2), which we will
refer to as the global tGKT (G-tGKT) method. This method works with the data tensor slice
~B ∈ Rm×1×n and is analogous to the T-global Golub-Kahan-Tikhonov regularization method
recently described by El Guide et al. [11], which works with a general third order data tensor
B ∈ Rm×p×n, p > 1. Differently from the tGKT method, both the G-tGKT method and the method
discussed by El Guide et al. [11] involve matricization or “flattening” of the tensor A. The G-tGKT
method first reduces the tensor A in (1.2) to a small lower bidiagonal matrix by carrying out a
few steps of the global t-product Golub-Kahan bidiagonalization (G-tGKB) process. This process

differs from the tGKB process in the choice of normalization of ~B and the resulting decompositions.
In particular, the tGKB process produces a lower bidiagonal tensor whose entries are tubal scalars,
while the G-tGKB process determines a lower bidiagonal matrix with scalar entries. Both the
tGKB and G-tGKB processes furnish an orthonormal basis for a t-Krylov subspace (1.4) and work
with lateral tensor slices.

As mentioned above, we also consider minimization problems analogous to (1.1), in which the
data is represented by a general third order tensor B ∈ R`×p×n with p > 1. Thus, we would like to
solve

min
X∈Rm×p×n

{‖A ∗ X − B‖2F + µ−1‖L ∗ X‖2F }. (1.8)

Four solution methods for (1.8) are described. Three of them are based on applying the tGKT

and G-tGKT methods to each lateral slice ~Bj of B, j = 1, 2, . . . , p, independently. The other
method generalizes the T-global Golub-Kahan-Tikhonov regularization method recently described
by El Guide et al. [11] to allow for L 6= I. The latter method works with the lateral slices of the
data tensor B simultaneously and will be referred to as the generalized global tGKT (GG-tGKT)
method.

The GG-tGKT and other solution methods are described and compared in Sections 3, 4, 5,
and 6. Computed examples show the G-tGKT method to yield higher accuracy, but the GG-tGKT
method to require less CPU time. The fact that the latter method requires less CPU time can be
expected, since this method uses larger chunks of data simultaneously than the former methods.
Both the G-tGKT and GG-tGKT methods belong to the GKT BTF family of methods described
by Beik et al. [1] and require additional product definitions to the t-product. They also involve
flattening.

1.1 Related prior work and some applications

An advantage of the formulations (1.2) and (1.8) with the t-product is that they tend to avoid
loss of information due to flattening of the tensor A; see Kilmer et al. [21]. Third order tensors
arise naturally in color image and video restoration problems, as well as in the solution of certain
discretized partial differential equations [2]. For instance, in video restoration, the tensor dimensions
may correspond to image height and width, and frame number. Many image restoration methods
vectorize each image by stacking the matrix elements that represent the image. The matrix entries
represent pixel values that encode gray scale values. Each frame represents an image and thus,
a video can be represented as a long vector with each entry representing a pixel value in some
frame. However, this representation destroys spatial correlations and structural complexities that
the original video frames may posses. In particular, the video restoration methods considered by
Bentbib et al. [3] vectorize consecutive video frames. The t-product approach avoids matricization
and vectorization. As a result, it preserves multidimensional structures. Application areas where
the t-product has proved useful include facial recognition [17], tomographic image reconstruction
[31], video completion [32], and image classification [28].

Several matrix-based methods, that do not apply the t-product, for solving problems of the form
(1.1) have recently been described in the literature. Beik et al. [1] introduced the Golub-Kahan-
Tikhonov Based Tensor Format (GKT BTF) method and applied it to determine the solution of

large-scale ill-posed Sylvester and Stein equations. This method allows A, ~X , and ~B to be arbitrary

3

compatible tensors. Related methods have been applied by El Guide et al. [10, 11] to the solution
of tensor equations based on the Einstein and t-products.

Bentbib et al. [3, 4] described other matrix-based approaches to solve linear discrete ill-posed
tensor equations that use the formalism of so-called global iterative methods. These methods, as
well as the methods mentioned above involve matricization of the tensor equation (1.1), i.e., the
equation is transformed to an equivalent equation that only involves matrices and vectors.

1.2 Organization

This paper is organized as follows. Section 2 introduces notation and preliminaries associated
with the t-product, while Section 3 discusses the Tikhonov minimization problems (1.2) and (1.8).
Sections 4 describes the tGKT method for the solution of the tensor equations (1.2) and (1.8).
Specifically, Subsection 4.1 discusses the application of the tGKT method to the solution of (1.2),
while Subsection 4.2 considers the application of this method to the solution of (1.8) by solving p

problems of the form (1.2) with the lateral data slices ~Bj , j = 1, 2, . . . , p, of B independently. We
refer to the resulting method as the tGKTp method. A variant of this method that is based on
using nested t-Krylov subspaces also is discussed.

Section 5 describes global-type tensor methods, which are referred to as the G-tGKT and GG-
tGKT methods, for the solution of (1.2) and (1.8). The GG-tGKT method, discussed in Subsection
5.1, determines the solution of (1.8) by working with the lateral slices of B simultaneously, while
the G-tGKT method is used to solve (1.2) in Subsection 5.2. The latter method also is applied p
times to determine a solution of (1.8) by working with the lateral slices of B independently.

Section 6 presents numerical examples that illustrate the effectiveness of the proposed meth-
ods. A comparison between the classical Golub-Kahan-Tikhonov (GKT) regularization method,
the tGKT method, and the G-tGKT method is presented. Applications to image restoration are
considered. Moreover, the global GKT (G-GKT) method described by Bentbib et al. [4] is compared
to the tGKTp, G-tGKTp, and GG-tGKT methods. Section 7 contains concluding remarks.

2 Notation and Preliminaries

This section reviews results by Kilmer et al. [21, 22] and uses notation defined there and by Kolda
and Bader [26]. A tensor is a multidimensional array of scalars. In this paper, all tensors are real
and of order three. The order of a tensor is the number of modes. Thus, we consider tensors of
the form A = [aijk]`,m,ni,j,k=1 ∈ R`×m×n. Matrices and vectors are tensors of order two and one,
respectively. We will use capital calligraphic script letters to denote third order tensors, capital
letters to denote matrices, lower case letters to denote vectors, and bold face lower case letters
for tubal scalars (tubes or tube fibers) defined below. A slice of a third order tensor A is a 2D
section obtained by fixing any one of the indices. Using MATLAB notation, A(i, :, :), A(:, j, :), and
A(:, :, k) denote the ith horizontal, jth lateral, and kth frontal slices of A, respectively. The jth

lateral slice also is denoted by ~Aj . It is a tensor and is referred to as a tensor column. Sometimes

it is convenient to identify ~Aj with a matrix. The kth frontal slice, A(:, :, k), is denoted by A(k)

and is a matrix. A fiber of a third order tensor A is a 1D section obtained by fixing any two of the
indices. Thus, A(:, j, k), A(i, :, k), and A(i, j, :) denote mode-1, mode-2, and mode-3 fibers (tubes),
respectively.

We will use the t-product introduced by Kilmer and Martin [22] for the multiplication of a

pair of third order tensors C and ~D. The t-product proceeds by unfolding C into a block circulant
matrix and ~D into a vector, multiplying these together, and folding the result back into a third
order tensor. The t-product is a natural extension of matrix multiplication for tensors of order
three [22] and higher [27]. The t-product allows QR- and SVD-like factorizations.

Given a third order tensor A ∈ R`×m×n with ` × m frontal slices A(i), i = 1, 2, . . . , n, the
operator unfold(A) returns an `n ×m matrix with the frontal slices, whereas the fold operator

4

folds back the unfolded tensor A, i.e.,

unfold(A) =

A(1)

A(2)

...
A(n)

 , fold(unfold(A)) = A.

The operator bcirc(A) generates an `n×mn block-circulant matrix with unfold(A) forming the
first block column,

bcirc(A) =

A(1) A(n) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n) A(n−1) . . . A(1)

 .
Definition 2.1. (t-product [22]) Let A ∈ R`×m×n and B ∈ Rm×p×n. Then the t-product A ∗ B is
the tensor C ∈ R`×p×n defined by

C = fold(bcirc(A) · unfold(B)). (2.9)

Its (i, j)th tube is given by

C(i, j, :) =

p∑
k=1

A(i, k, :) ∗ B(k, j, :).

When a third order tensor of size `×m×n is viewed as an `×mmatrix of tubes oriented along the
third dimension, the t-product is analogous to matrix multiplication, except that multiplication
between scalars is replaced by circular convolution between tubes. This allows us to define the
tensor (2.9) as a t-linear operator on the set of laterally oriented matrices.

We may choose to evaluate the t-product A ∗ B according to the definition (2.9) if the tensors
A and B are sparse. For general tensors, it is more efficient to use the fast Fourier transformation
(FFT). Just as circulant matrices are diagonalizable by the discrete Fourier transform (DFT) ma-
trix, block circulant matrices can be block diagonalized by this matrix combined with a Kronecker
product. Suppose A ∈ R`×m×n and let Fn be an n× n unitary DFT matrix defined by

Fn =
1√
n

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ωn−1 . . . ω(n−1)(n−1)

with ω = e

−2πi
n and i2 = −1. Then

Ā := blockdiag(Â(1), Â(2), . . . , Â(n)) = (Fn ⊗ I`) · bcirc(A) · (F ∗n ⊗ Im), (2.10)

where ⊗ stands for Kronecker product, F ∗n denotes the conjugate transpose of Fn, and · is the
standard matrix-matrix product. The matrix Ā ∈ R`n×mn is block diagonal with the diagonal
blocks Â(i) ∈ R`×m, i = 1, 2, . . . , n. The matrices Â(i) are the frontal slices of the tensor Â
obtained by applying the FFT along each tube of A. Each matrix Â(i) may be dense and have
complex entries unless certain symmetry conditions hold; see [22] for further details. Throughout
this paper, we often will denote objects that are obtained by taking the FFT along the third
dimension with a widehat over the argument, i.e., ·̂ . We remark that

‖A‖F =
1√
n
‖Ā‖F . (2.11)

Let n be a power of 2. Then the right-hand side of (2.10) can be evaluated in O(`mn log2(n))
arithmetic floating point operations (flops) by using the fast Fourier transform (FFT). Similar flop

5

counts also hold when n is not a power of two. Using the DFT matrix, the t-product (2.9) can be
evaluated as

A ∗ B = fold
(

(F ∗n ⊗ I`)
(
(Fn ⊗ I`) · bcirc(A) · (F ∗n ⊗ Im)

)
(Fn ⊗ Im)unfold(B)

)
. (2.12)

It is easily shown that by taking the FFT along the tubes of B ∈ Rm×p×n, we can compute
(Fn ⊗ Im)unfold(B) in O(pmn log2(n)) flops; see Kilmer and Martin [22] for details.

The computations (2.12) can be easily implemented in MATLAB. Using MATLAB notation,

let Ĉ := fft(C, [], 3) be the tensor obtained by applying the FFT along the third dimension.
Then the t-product (2.12) can be computed by taking the FFT along the tubes of A and B to get

Â = fft(A, [], 3) and B̂ = fft(B, [], 3), followed by a matrix-matrix product of each pair of the

frontal slices of Â and B̂,

Ĉ(:, :, i) = Â(:, :, i) · B̂(:, :, i), i = 1, 2, . . . , n,

and then taking the inverse FFT along the third dimension to obtain C = ifft(Ĉ, [], 3).
Express the tensor A in terms of its tensor columns, i.e.,

A = [~A1, ~A2, . . . , ~Am] ∈ R`×m×n, ~Aj ∈ R`×1×n, j = 1, 2, . . . ,m.

Following Newman et al. [28], we define the range of the tensor A as the t-linear span of the lateral
slices of A,

R(A) = { ~A1 ∗ x1 + · · ·+ ~Am ∗ xm | xj ∈ R1×1×n}.
For more details on the range and null space of A; see [21]. The action of a third order tensor on ori-

ented matrices, using the t-product, defines a linear transformation. In particular, if T (~X) = A ∗ ~X ,
then T : Rm×1×n → R`×1×n is a t-linear operator with the property that

T (~X ∗ c + ~Y ∗ d) = T (~X) ∗ c + T (~Y) ∗ d

for arbitrary tubal scalars c,d and arbitrary ~X , ~Y ∈ Rm×1×n; see Braman [5] for a proof. If ` = m,
then T is invertible when A is invertible.

Let A ∈ R`×m×n. Then the tensor transpose AT ∈ Rm×`×n is the tensor obtained by first
transposing each one of the frontal slices of A, and then reversing the order of the transposed
frontal slices 2 through n; see [22]. The tensor transpose has similar properties as the matrix
transpose. For instance, if A and B are two tensors such that A ∗ B and BT ∗AT are defined, then
(A ∗ B)T = BT ∗ AT .

The identity tensor I ∈ Rm×m×n is a tensor, whose first frontal slice, I(1), is the m×m identity
matrix and all other frontal slices, I(i), i = 2, 3, . . . , n, are zero matrices; see [22].

The concept of orthogonality is well defined under the t-product formalism; see Kilmer and
Martin [22]. A tensor Q ∈ Rm×m×n is said to be orthogonal if QT ∗Q = Q∗QT = I. Analogously
to the columns of an orthogonal matrix, the lateral slices of Q are orthonormal, i.e.,

QT (:, i, :) ∗ Q(:, j, :) =

{
e1 i = j,
0 i 6= j,

where e1 ∈ R1×1×n is a tubal scalar with the (1, 1, 1)th entry equal to 1 and the remaining entries
are zero. It is shown in [22] that if Q is an orthogonal tensor, then

‖Q ∗ A‖F = ‖A‖F . (2.13)

The notion of partial orthogonality is similar as in matrix theory. The tensor Q ∈ R`×m×n with
` > m is said to be partially orthogonal if QT ∗ Q is well defined and equal to the identity tensor
I ∈ Rm×m×n; see [22].

A tensor A ∈ Rm×m×n is said to have an inverse, denoted by A−1, provided that A ∗A−1 = I
and A−1 ∗ A = I, whereas a tensor is said to be f-diagonal if each frontal slice of the tensor is a
diagonal matrix; see [22].

The norm of a nonzero tensor column ~X ∈ Rm×1×n is defined as

‖ ~X‖ :=
‖ ~X T ∗ ~X‖F
‖ ~X‖F

,

6

and ‖ ~X‖ = 0 if ~X = ~O; see [21] for details.

The Frobenius norm of a tensor column ~X ∈ Rm×1×n is given by

‖ ~X‖F =
√(

~X T ∗ ~X
)
(:,:,1)

; (2.14)

see [21]. Thus, the square of the Frobenius norm of ~X is the (1, 1, 1)th entry of the tubal scalar
~X T ∗ ~X . In other words, it is the first frontal face of the tube ~X T ∗ ~X ∈ R1×1×n. Throughout this
paper, the quantity ‖ · ‖2 denotes the Euclidean vector norm. It is used in Algorithm 1 below. This

algorithm takes a nonzero tensor ~X ∈ Rm×1×n and returns a normalized tensor ~V ∈ Rm×1×n and
a tubal scalar a ∈ R1×1×n such that

~X = ~V ∗ a and ‖~V‖ = 1.

Note that the tubal scalar a might not be invertible; see [21]. We mention that a is invertible if
there is a tubal scalar b such that a ∗ b = b ∗ a = e1. The scalar a(j) is the jth frontal slice (face)

of the 1× 1× n tubal scalar a, while ~V(j) is a vector of length m and the jth face of ~V ∈ Rm×1×n.

Algorithm 1: Normalization [20]

Input: ~X ∈ Rm×1×n 6= ~O
Output: ~V, a with ~X = ~V ∗ a and ‖~V‖ = 1

1 ~V ← fft(~X , [], 3)
2 for j = 1, 2, . . . , n do

3 a(j) ← ‖~V(j)‖2 (~V(j) is a vector)

4 if a(j) > tol then

5 ~V(j) ← 1
a(j)

~V(j)

6 else

7 ~V(j) ← randn(m, 1); a(j) ← ‖~V(j)‖2; ~V(j) ← 1
a(j)

~V(j); a(j) ← 0

8 end

9 end

10 ~V ← ifft(~V, [], 3); a← ifft(a, [], 3)

The t-product-based tensor QR (tQR) factorization is described by Kilmer et al. [21] and
implemented by Algorithm 2. Let A ∈ R`×m×n. Then its tQR factorization is given by

A = Q ∗R,

where the tensor Q ∈ R`×m×n is partially orthogonal and the tensor R ∈ Rm×m×n is f-upper
triangular (i.e., each face is upper triangular). Algorithm 2 computes a QR factorization of each
diagonal block of a block diagonal matrix in the Fourier domain. Existence of the factorization is
assured under suitable conditions; see [21].

Algorithm 2: tQR decomposition [21]

Input: A ∈ R`×m×n, ` ≥ m
Output: Q ∈ R`×m×n, R ∈ Rm×m×n such that A = Q ∗R

1 Â ← fft(A, [], 3)
2 for i = 1, 2, . . . , n do

3 Factor Â(:, :, i) = QR, where Q is unitary

4 Q̂(:, :, i)← Q, R̂(:, :, i)← R

5 end

6 Q ← ifft(Q̂, [], 3), R ← ifft(R̂, [], 3)

Let A ∈ R`×m×n. Then the tensor singular value decomposition (tSVD), introduced by Kilmer
and Martin [22], is given by

A = U ∗ S ∗ VT , (2.15)

7

where U ∈ R`×`×n and V ∈ Rm×m×n are orthogonal tensors, and the tensor

S = diag[s1, s2, . . . , smin{`,m}] ∈ R`×m×n

is f-diagonal with singular tubes sj ∈ R1×1×n, j = 1, 2, . . . ,min{`,m}, ordered according to

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖smin{`,m}‖F .

The tubal rank of A is the number of nonzero singular tubes of A; see Kilmer et al. [21].
We introduce additional notation used by El Guide et al. [11], which will be useful when dis-

cussing the G-tGKT and GG-tGKT methods in Section 5. Table 1 summarizes the main notations
used in this paper. Let

Ck := [C1, C2, . . . , Ck] ∈ Rm×kp×n, Ck := [~C1, ~C2, . . . , ~Ck] ∈ Rm×k×n,

where Cj ∈ Rm×p×n and ~Cj ∈ Rm×1×n, j = 1, 2, . . . , k. Suppose that y = [y1, y2, . . . , yk]T ∈ Rk.
Then El Guide et al. [11] defined the product ~ as

Ck ~ y =

k∑
j=1

yjCj , Ck ~ y =

k∑
j=1

yj ~Cj . (2.16)

It can be shown that for orthogonal tensors Q ∈ Rm×kp×n and Q ∈ Rm×k×n, one has

‖Q~ y‖F = ‖y‖2, ‖Q~ y‖F = ‖y‖2; (2.17)

see [11] for details.

Consider the tensors C = [cijk],D = [dijk] ∈ Rm×p×n with lateral slices ~C = [ci1k], ~D = [di1k] ∈
Rm×1×n. Introduce the inner products

〈C,D〉 =

m∑
i=1

p∑
j=1

n∑
k=1

cijkdijk, 〈~C, ~D〉 =

m∑
i=1

n∑
k=1

ci1kdi1k.

Let

A := [A1,A2, . . . ,Am] ∈ R`×sm×n, B := [B1,B2, . . . ,Bp] ∈ R`×sp×n,

A := [~A1, ~A2, . . . , ~Am] ∈ R`×m×n, B := [~B1, ~B2, . . . , ~Bp] ∈ R`×p×n,

where Ai ∈ R`×s×n, ~Ai ∈ R`×1×n, i = 1, 2, . . . ,m, and Bj ∈ R`×s×n, ~Bj ∈ R`×1×n j = 1, 2, . . . , p.
Following El Guide et al. [11], we define the T-diamond products AT♦B and AT♦B. They yield
m× p matrices given by

[AT♦B]ij = 〈Ai, Bj〉, [AT♦B]ij = 〈 ~Ai, ~Bj〉, i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

We conclude this section with the definition of some tensor operators that are convenient to
apply in the sequel. The squeeze and twist operators, defined by Kilmer et al. [21], allow us

to easily move between a lateral slice ~X of a third order tensor and an associated matrix X.
Specifically, the squeeze operator applied to ~X is identical to the MATLAB squeeze function

X = squeeze(~X) =⇒ X(i, k) = ~X (i, 1, k) ∀i, k,

whereas ~X = twist(X). Moreover, twist(squeeze(~X)) = ~X .
We also define the operators multi squeeze and multi twist that enable us to squeeze and

twist a general third order tensor. Let C ∈ Rm×p×n, p > 1. Then the tensorD = multi squeeze(C) ∈
Rm×n×p is obtained by squeezing each of the lateral slices of C and stacking them as frontal slices.
The operation C = multi twist(D) twists the frontal slices D(i), i = 1, 2, . . . , p, of D and stacks
them as lateral slices of C. We have multi twist(multi squeeze(C)) = C.

8

Notation Description Used in section
A tensor 1-6
~A lateral slice 1-6
A matrix 2-6

A(:, j) jth column of A 5
A(j, :) jth row of A 4

Â FFT of A along the third mode 2-4
A(i) or A(i) ith frontal slice of A 2-4, 6

~Aj jth lateral slice of A 1-6
A(j, :, :) jth horizontal slice of A 4

A tensor 5.1
Aj jth column of A 5.1
a tube 4

(a)(:,:,1) first face of a 4
a vector with jth entry aj 4-5
I identity tensor 3
I identity matrix 4-5
~e1 first lateral slice of I 4
e1 first column of I 4-5
∗ t-product 1-6

A~ a A~ a =
∑
j ajAj 5.1

A~ a A~ a =
∑
j aj

~Aj 5.2

A~A A~A = [A~A(:, 1), . . . ,A~A(:, end)] 5.1
A~A A~A = [A~A(:, 1), . . . ,A~A(:, end)] 5.2
〈A,B〉 〈A,B〉 =

∑
ijk aijkbijk 5.1

〈 ~A, ~B〉 〈 ~A, ~B〉 =
∑
ik ai1kbi1k 5.2

AT♦B [AT♦B]ij = 〈Ai, Bj〉 5.1

AT♦B [AT♦B]ij = 〈 ~Ai, ~Bj〉 5.2

‖A‖F ‖A‖F =
√∑

ijk a
2
ijk 1-5

‖ ~A‖F ‖ ~A‖F =
√(

~AT ∗ ~A
)
(:,:,1)

4

Table 1: Summary of notation.

3 Tensor Tikhonov Regularization

This section considers the Tikhonov minimization problem (1.2) and its solution. The discussion
generalizes easily to the problem (1.8). We will i) show that the penalized least squares problem

(1.2) has a unique solution ~Xµ for any µ > 0, ii) describe how a suitable value of the regularization

parameter µ and the associated solution ~Xµ can be computed by using the discrepancy principle,
and iii) discuss the structure of the regularization operator L used in the computed examples of
Section 6. We start with the minimization problem (1.2).

Theorem 3.1. Let µ > 0 be the regularization parameter and assume that (1.3) holds. Then the
minimization problem (1.2) has the unique solution

~Xµ = (AT ∗ A+ µ−1LT ∗ L)−1 ∗ AT ∗ ~B. (3.18)

Proof: The functional
Jµ(~X) := ‖A ∗ ~X − ~B‖2F + µ−1‖L ∗ ~X‖2F

can be written as

Jµ(~X) =

∥∥∥∥ [A
µ−1/2L

]
∗ ~X −

[
~B
~O

] ∥∥∥∥2
F

,

where [
A

µ−1/2L

]
∈ R(m+s)×m×n,

[
~B
O

]
∈ R(m+s)×1×n, (3.19)

9

and ~O ∈ Rs×1×n denotes a laterally oriented s×n zero matrix. It follows from (1.3) that the tensor
on the left of (3.19) is of tubal rank m for any µ > 0. Therefore the tensor AT ∗ A+ µ−1LT ∗ L is
of tubal rank m. The normal equations associated with the minimization problem (1.2) are given
by

(AT ∗ A+ µ−1LT ∗ L) ∗ ~X = AT ∗ ~B. (3.20)

Their unique solution can be expressed as (3.18). �
Kilmer et al. [21] and Martin et al. [27] considered a similar formulation of (3.20) when L = I.

Then the solution (3.18) simplifies to

~Xµ = (AT ∗ A+ µ−1I)−1 ∗ AT ∗ ~B. (3.21)

Using this expression for ~Xµ, define the function

φ(µ) := ‖A ∗ ~Xµ − ~B‖2F . (3.22)

Then equation (1.7) (for L = I) can be written as

φ(µ) = η2δ2. (3.23)

A zero-finder, such as bisection, Newton’s method, or one of the methods discussed in [6, 30] can

be used to solve (3.23) for µdiscr = µ > 0. We assume here and below that 0 < ηδ < ‖ ~B‖F . Then

(3.23) has a unique bounded solution µdiscr > 0, and ~Xµdiscr
satisfies the discrepancy principle (1.7)

(when L = I).
With the notation of Section 2, we can write (3.23) in matrix-vector form,

‖A ∗ ~Xµ − ~B‖2F = ‖bcirc(A)unfold(~Xµ)− unfold(~B)‖22 = ‖bcirc(A)xµ − b‖22 = η2δ2, (3.24)

where xµ = unfold(~Xµ) and b = unfold(~B). Thus, the application of the discrepancy principle to
the solution of (3.23) is equivalent to its application to the matrix-vector form (3.24). The use of
the discrepancy principle for discrete ill-posed problems in matrix-vector form has been thoroughly
discussed in the literature; see, e.g., [3, 7, 15, 18]. We use the form (1.7) because it is not necessary
to form a bcirc(A) explicitly; see [21].

The following results describe some properties of the function φ. We remark that while the
solution (3.21) is meaningful for µ > 0 only, we may define φ(µ) for µ ≥ 0 by continuity. This is
done in the propositions below.

Proposition 3.1. Assume that AT ∗ ~B 6= ~O and let φ(µ) be given by (3.22) with ~Xµ defined by
(3.21). Then

φ(µ) =
(
~BT ∗ (µA ∗ AT + I)−2 ∗ ~B

)
(:,:,1)

, µ ≥ 0, (3.25)

and φ(0) = ‖ ~B‖2F .

Proof : Let µ > 0 and substitute (3.21) into (3.22). Using the identity

I − A ∗ (AT ∗ A+ µ−1I)−1 ∗ AT = (µA ∗ AT + I)−1 (3.26)

gives
φ(µ) = ‖(µA ∗ AT + I)−1 ∗ ~B‖2F . (3.27)

By continuity, eq. (3.27) also holds for µ = 0, i.e., φ(0) = ‖ ~B‖2F . The result now follows by using
(2.14). �

Define the function
f(µ) := (µA ∗ AT + I)−2.

Transformation of f(µ) to the Fourier domain, and differentiating the resulting expression face-wise
gives

d

dµ
f̂ (i)(µ) = −2

(
µÂ(i)

(
Â(i)

)T
+ I
)−3Â(i)(Â(i))T , i = 1, 2, . . . , n. (3.28)

10

Folding the resulting tensor function associated with (3.28) and transforming back to the spatial
domain gives

f ′(µ) = −2
(
(µA ∗ AT + I)−3 ∗ A ∗ AT

)
. (3.29)

Hence by (3.29), the derivative of (3.25) can be written as

φ′(µ) = −2
(
(~BT ∗ (µA ∗ AT + I)−3 ∗ A ∗ AT ∗ ~B

)
(:,:,1)

. (3.30)

Using the identity

(µA ∗ AT + I)−1 ∗ A ∗ AT = A ∗ AT ∗ (µA ∗ AT + I)−1, (3.31)

we can simplify (3.30) to

φ′(µ) = −2
(
~ZT1 ∗ ~Z2)(:,:,1),

where
~Z1 := (µA ∗ AT + I)−1 ∗ ~B, ~Z2 := (µA ∗ AT + I)−1 ∗ A ∗ AT ∗ ~Z1. (3.32)

We are now in a position to show that the function φ(µ) is decreasing and convex.

Proposition 3.2. The function φ(µ) defined by (3.22) for µ > 0 satisfies

φ′(µ) < 0, φ′′(µ) > 0.

Proof: The representation (3.30) and an identity analogous to (3.31) give

φ′(µ) = −2
(
(~BT ∗ A ∗ (µA ∗ AT + I)−3 ∗ AT ∗ ~B

)
(:,:,1)

. (3.33)

Substituting the tSVD (2.15) into (3.33), and letting ~W = UT ∗ AT ∗ ~B and D = S ∗ ST yield

φ′(µ) = −2
(
~WT ∗ (µD + I)−3 ∗ ~W

)
(:,:,1)

< 0.

Generically, the inequality is strict. Thus, φ(µ) is decreasing. Also,

φ′′(µ) = 6
(
~BT ∗ (µA ∗ AT + I)−4 ∗ A ∗ AT ∗ ~B

)
(:,:,1)

,

which gives
φ′′(µ) = 6

(
~WT ∗ (µD + I)−4 ∗ ~W

)
(:,:,1)

> 0,

where, generically, the inequality is strict. The proposition follows. �

We now describe a sufficiently stable way for our applications of interest to compute the solution
~Xµ of the least-squares problem (1.2) when µ > 0. Transformation of (3.18) to the Fourier domain
gives

x̂(i)µ =
(

(Â(i))T Â(i) + µ−1(L̂(i))T L̂(i)
)−1

(Â(i))T b̂(i), i = 1, 2, . . . , n.

where the vectors x̂
(1)
µ , x̂

(2)
µ , . . . , x̂

(n)
µ and b̂(1), b̂(2), . . . , b̂(n) are the faces of the lateral slices ~X and

~B in the Fourier domain, respectively. The vectors x̂
(i)
µ , i = 1, 2 . . . , n, exist and are uniquely

determined, because (1.3) is equivalent to

N (Â(i)) ∩N (L̂(i)) = {0}, i = 1, 2, . . . , n,

where N (M) denotes the null space of the matrix M , and 0 is the zero vector. The vectors x̂
(i)
µ

are computed as the solutions of the least squares problems

min
x̂
(i)
µ ∈Rm

∥∥∥∥∥
[

Â(i)

µ−1/2L̂(i)

]
x̂(i)µ −

[
b̂(i)

0

]∥∥∥∥∥
F

, i = 1, 2, . . . , n. (3.34)

This is advantageous compared to computing x̂
(i)
µ as the solution of(

(Â(i))T Â(i) + µ−1(L̂(i))T L̂(i)
)
x̂(i)µ = (Â(i))T b̂(i),

11

because the condition number of the system matrix on the left-hand side above is the square of
the condition number of the system matrix in (3.34). The n least squares problem (3.34) in the
spatial domain are equivalent to the minimization problem

min
~X∈Rm×1×n

∥∥∥∥[A
µ−1/2L

]
∗ ~X −

[
~B
~O

]∥∥∥∥
F

. (3.35)

Algorithm 3 implements the solution of (3.35) by solving (3.34) at step 4 of the algorithm.

Algorithm 3: Solution of a generic tensor least squares problem

Input: C ∈ R`×m×n, where its Fourier transform has nonsingular frontal slices;
~D ∈ R`×1×n, ~D 6= ~O

Output: The solution ~Y ∈ Rm×1×n of min~Y∈Rm×1×n ‖C ∗ ~Y − ~D‖F
1 C ← fft(C, [], 3)

2 ~D ← fft(~D, [], 3)
3 for i = 1 to n do

4 ~Y(:, :, i) = C(:, :, i)\ ~D(:, :, i), where \ denotes MATLAB’s backslash operator
5 end

6 ~Y ← ifft(~Y, [], 3)

We conclude this section with the definition of the regularization operators L that we will use
in Section 6. We will use two regularization operators L1 ∈ R(m−2)×m×n and L2 ∈ R(m−1)×m×n.
The tensor L1 has a tridiagonal matrix as its first frontal slice,

L(1)
1 =

1

4

−1 2 −1
. . .

. . .
. . .

−1 2 −1

 ∈ R(m−2)×m, (3.36)

and the remaining frontal slices L(i)
1 ∈ R(m−2)×m, i = 2, 3, . . . , n, are zero matrices. The first

frontal slice of the regularization operator L2 ∈ R(m−1)×m×n is the bidiagonal matrix

L(1)
2 =

1

2

1 −1

1 −1
. . .

. . .

1 −1

 ∈ R(m−1)×m, (3.37)

and the remaining frontal slices L(i)
2 ∈ R(m−1)×m, i = 2, 3, . . . , n, are zero matrices. Other regular-

ization operators of interest can be defined similarly.
When solving linear discrete ill-posed matrix equations, e.g. (3.34), the penalty term in Tikhonov

regularization is often chosen to be a matrix that is a discretized derivative operator; see, e.g.,
[8, 9, 15, 18]. This kind of matrix penalty term extends naturally to the tensor setting, because of
how the computation of the t-product is carried out, i.e., by using MATLAB’s fft operator along
the third dimension to transform to the Fourier domain. Thus, we define the tensor regularization
operator L so that each frontal slice of L = L1 or L = L2 in the Fourier domain corresponds to

the matrix regularization operators L(1)
1 and L(2)

2 , respectively. These matrices are finite difference
operators in one space dimension. To solve the minimization problem (1.2), we compute in the
Fourier domain the solution of n least squares problem of the form (3.34), where the first or second

difference operators L(1)
2 or L(1)

1 are used.

4 The t-product Golub-Kahan-Tikhonov (tGKT) Method

This section discusses the computation of an approximate solution of the tensor Tikhonov regu-
larization problem (1.2) with the aid of partial t-product Golub-Kahan bidiagonalization (tGKB),
which has been introduced by Kilmer et al. [21]. We describe how partial tGKB can be used with
the discrepancy principle and a general regularization tensor in Tikhonov regularization.

12

4.1 The tGKT method for the approximate solution of (1.2)

This subsection develops the tGKT method for the approximate solution of least-squares problems
of the form (1.2). The discussion of this subsection will be generalized to least-squares problems
of the form (1.8) in Subsection 4.2. Methods described in the present subsection will be used to
illustrate the potential superiority of tensorizing as opposed to vectorizing or matricizing ill-posed
problem for tensors.

The partial tGKB method, introduced by Kilmer et al. [21], can be applied to reduce a large-
scale problem (1.1) to a problem of small size. This method is described by Algorithm 4, which
reduces the tensor A to a small bidiagonal tensor. We will assume that the number of steps k of
the tGKB process is small enough to avoid break down, i.e., k is chosen small enough so that the
tubal scalars ci and zi+1 for i = 1, 2, . . . , k, determined by Algorithm 4, are invertible. This means
that the transformed tubal scalars ĉi of ci and ẑi+1 of zi+1 do not have zero Fourier coefficients.

Algorithm 4: Partial tensor Golub-Kahan bidiagonalization

Input: A ∈ R`×m×n, ~B ∈ R`×1×n such that AT ∗ ~B 6= ~O
1 ~W0 ← ~O
2 [~Q1, z1]← Normalize(~B) with z1 invertible
3 for i = 1, 2, . . . , k do

4

~Wi ← AT ∗ ~Qi − ~Wi−1 ∗ zi (no reorthogonalization)

~Wi ← AT ∗ ~Qi − ~Wi−1 ∗ zi, ~Wi ← ~Wi −
i−1∑
j=1

~Wj ∗ (~WT
j ∗ ~Wi) (with reorthogonalization)

5 [~Wi, ci]← Normalize(~Wi)

6

~Qi+1 ← A ∗ ~Wi − ~Qi ∗ ci (no reorthogonalization)

~Qi+1 ← A ∗ ~Wi − ~Qi ∗ ci, ~Qi+1 ← ~Qi+1 −
i∑

j=1

~Qj ∗ (~QTj ∗ ~Qi+1) (with reorthogonalization)

7 [~Qi+1, zi+1]← Normalize(~Qi+1)

8 end

Algorithm 4 produces the partial tGKB decompositions

A ∗Wk = Qk+1 ∗ P̄k, AT ∗ Qk =Wk ∗ PTk , (4.38)

where

P̄k =

c1
z2 c2

z3 c3
. . .

. . .

zk ck
zk+1

∈ R(k+1)×k×n

is a lower bidiagonal tensor and Pk represents the leading k × k × n subtensor of P̄k. The tensor
columns ~Qi ∈ R`×1×n, i = 1, 2, . . . , k+1, and ~Wi ∈ Rm×1×n, i = 1, 2, . . . , k, generated by Algorithm
4 are orthonormal tensor bases for the t-Krylov subspaces Kk+1(A∗AT , ~B) and Kk(AT ∗A,AT ∗ ~B),
respectively. They are the lateral slices of the tensors Qk+1 ∈ R`×(k+1)×n and Wk ∈ Rm×k×n,
respectively. We assume k to be chosen small enough so that the decompositions (4.38) with the
stated properties exist. These decompositions will be applied to determine an approximate solution
of the Tikhonov minimization problem (1.2). Reorthogonalization will be applied in Algorithm 7
below.

Let ~X = Wk ∗ ~Y and substitute the decomposition on the left-hand side of (4.38) into (1.2).
This yields

min
~Y∈Rk×1×n

{‖P̄k ∗ ~Y −QTk+1 ∗ ~B‖2F + µ−1‖L ∗Wk ∗ ~Y‖2F }. (4.39)

Using the fact that ~B = ~Q1 ∗ z1 (cf. Algorithm 4), we obtain

QTk+1 ∗ ~B = ~e1 ∗ z1 ∈ R(k+1)×1×n, (4.40)

13

where ~e1 ∈ Rm×1×n is such that the (1, 1, 1)th entry of ~e1 equals 1 and the remaining entries
vanish; the entry 1 appear only in the first frontal slice of ~e1. Substituting (4.40) into (4.39) gives

min
~Y∈Rk×1×n

{‖P̄k ∗ ~Y − ~e1 ∗ z1‖2F + µ−1‖L ∗Wk ∗ ~Y‖2F }. (4.41)

Our approach of handling these regularization operators, which is analogous to the approach
described in [18] for matrix problems, also can be applied to many other regularization operators.
We use Algorithm 2 to compute the tQR decomposition

L ∗Wk = QL,k ∗ RL,k, (4.42)

where QL,k ∈ Rs×k×n has k orthonormal tensor columns and RL,k ∈ Rk×k×n is f-upper triangular.
The factorization (4.42) can be evaluated recursively by updating the tQR decomposition of L ∗
Wk−1. In view of (2.13), the minimization problem (4.41) simplifies to

min
~Y∈Rk×1×n

{‖P̄k ∗ ~Y − ~e1 ∗ z1‖2F + µ−1‖RL,k ∗ ~Y‖2F }. (4.43)

For the regularization operators (3.36) and (3.37), as well as for many other regularization
operators L, the tensor RL,k is invertible and not very ill-conditioned. In this situation, we may
form

~Z = RL,k ∗ ~Y, P̃k = P̄k ∗ R−1L,k. (4.44)

Substituting the above expressions into (4.43) yields

min
~Z∈Rk×1×n

{
‖P̃k ∗ ~Z − ~e1 ∗ z1‖2F + µ−1‖ ~Z‖2F

}
.

This minimization problem can be solved fairly stably by computing the solution of

min
~Z∈Rk×1×n

∥∥∥∥[P̃k
µ−1/2I

]
∗ ~Z −

[
~e1 ∗ z1
~O

]∥∥∥∥
F

, (4.45)

using Algorithm 3 presented in Section 3. The solution can be expressed as

~Zµ,k = (P̃Tk ∗ P̃k + µ−1I)−1 ∗ P̃Tk ∗ ~e1 ∗ z1, (4.46)

and the associated approximate solution of (1.2) is given by

~Xµ,k =Wk ∗ R−1L,k ∗ (P̃Tk ∗ P̃k + µ−1I)−1 ∗ P̃Tk ∗ ~e1 ∗ z1.

We use the discrepancy principle (1.7) to determine the regularization parameter and the re-
quired number of steps of the tGKB algorithm as follows. Define the function

φk(µ) := ‖P̃k ∗ ~Zµ,k − ~e1 ∗ z1‖2F , (4.47)

which is analogous to (3.22). Substituting (4.46) into (4.47), and using the identity (3.26) with A
replaced by P̃k, as well as (2.14), we obtain

φk(µ) =
(
(~e1 ∗ z1)T ∗ (µP̃k ∗ P̃Tk + I)−2 ∗ ~e1 ∗ z1

)
(:,:,1)

. (4.48)

The following proposition shows that we can apply the discrepancy principle (1.7) to the reduced
problem to determine µ > 0, i.e., we require µ to be such that

‖P̃k ∗ ~Zµ,k − ~e1 ∗ z1‖F = ηδ.

Proposition 4.1. Let φk(µ) be defined by (4.47), and assume that µ = µk solves φk(µ) = η2δ2

and that ~Zµ,k solves

(P̃Tk ∗ P̃k + µ−1I) ∗ ~Z = P̃Tk ∗ ~e1 ∗ z1.

Let ~Yµ,k and ~Zµ,k be related by (4.44). Then the associated approximate solution ~Xµ,k =Wk ∗ ~Yµ,k
of (1.1) satisfies

‖A ∗ ~Xµ,k − ~B‖2F =
(
(~e1 ∗ z1)T ∗ (µP̃k ∗ P̃Tk + I)−2 ∗ ~e1 ∗ z1

)
(:,:,1)

.

14

Proof : Substituting ~Xµ,k = Wk ∗ ~Yµ,k into (1.7) and using the left-hand side decomposition of
(4.38), as well as (4.40), shows that

‖A ∗ ~Xµ,k −B‖2F = ‖Qk+1 ∗ P̄k ∗ ~Yµ,k − ~B‖2F = ‖P̄k ∗ ~Yµ,k −~e1 ∗ z1‖2F = ‖P̃k ∗ ~Zµ,k −~e1 ∗ z1‖2F . �

We show below that the function φk(µ) is decreasing and convex with φk(0) = ‖~e1∗z1‖2F . These
results are analogous to those for the function (3.22). We also will discuss the dependence of φk(µ)
on k for fixed µ ≥ 0.

Proposition 4.2. The function φk(µ) defined by (4.48) for µ > 0 satisfies, for fixed k,

φ′k(µ) < 0, φ′′k(µ) > 0.

Proof: The result can be shown similarly as Proposition 3.2. �

Since φk(µ) is decreasing and convex, it is easy to implement Newton’s method for the solution
of

φk(µ)− η2δ2 = 0. (4.49)

Newton’s method converges monotonically and quadratically to the solution µk of (4.49) for any
initial approximate solution 0 < µ0 < µk. In particular, we may use µ0 = 0 when φk and φ′k are
suitably defined at µ = 0. Newton’s method does not have to be safeguarded. This is implemented
by Algorithm 5; the details follow similarly as the discussion (3.30)-(3.32). We note that when the
regularization parameter µ > 0 in (1.2) is replaced by 1/µ, the analogues of the functions φ and
φk are not guaranteed to be convex. Then Newton’s method has to be safeguarded.

Algorithm 5: Solution of (4.49) by Newton’s method

Input: P̃k, ~e1, z1, δ, η, µ0 = 0, itermax = 30, eps = 1, i = 0
Output: µi+1 > 0

1 while eps > 10−6 and i < itermax do
2 Solve

min
~Z1∈R(k+1)×1×n

∥∥∥∥[µi
1/2P̃Tk
I

]
∗ ~Z1 −

[
~O

~e1 ∗ z1

]∥∥∥∥
F

for ~Z1 by using Algorithm 3
3 Compute φk(µi)←

(
~ZT1 ∗ ~Z1

)
(:,:,1)

4 Solve

min
~Z2∈R(k+1)×1×n

∥∥∥∥[µi
1/2P̃Tk
I

]
∗ ~Z2 −

[
~O

P̃k ∗ P̃Tk ∗ ~Z1

]∥∥∥∥
F

for ~Z2 by using Algorithm 3
5 Compute φ′k(µi)← −2

(
~ZT1 ∗ ~Z2

)
(:,:,1)

6

µi+1 ← µi −
φk(µi)− δ2η2

φ′k(µi)
, eps← |µi+1 − µi|, µi ← µi+1, i← i+ 1

7 end

We refer to solution method for (4.39) described above as the tGKT method. It is implemented
by Algorithm 6 with p = 1 described below.

The question whether equation (4.49) can be satisfied for a finite µ > 0 deserves some attention.
To shed light on this, we first consider the matrix analogue of (4.48), which is expressed as

ψk(µ) = β2
1e
T
1 (µP̃kP̃

T
k + I)−2e1, (4.50)

where e1 = [1, 0, . . . , 0]T , β1 > 0, and P̃k ∈ R(k+1)×k is a lower bidiagonal matrix with positive
nontrivial entries. This matrix will be encountered again in Subsection 5.1.

15

Proposition 4.3. Let ψk(µ) be given by (4.50). Then

lim
µ→∞

ψk(µ) = γβ2
1 ,

where γ > 0 is the square of the (1, 1) entry of the (k + 1)st left singular vector of P̃k.

Proof: Introduce the singular value decomposition

P̃k = USV T ,

where the matrices U ∈ R(k+1)×(k+1) and V ∈ Rk×k are orthogonal, and S = diag[σ1, σ2, . . . , σk] ∈
R(k+1)×k with σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0. Substitution into (4.50) gives

ψk(µ) = β2
1e
T
1 U(µSST + I)−2UT e1,

where SST = diag[σ2
1 , σ

2
2 , . . . , σ

2
k, 0]. Thus,

ψk(µ) = β2
1e
T
1 Udiag

[
1

1 + µσ2
1

,
1

1 + µσ2
2

, . . . ,
1

1 + µσ2
k

, 1

]
UT e1

and
lim
µ→∞

ψk(µ) = β2
1U(1, :)diag[0, 0, . . . , 0, 1]U(1, :)T .

This shows the proposition. �

We return to the tensor problem. The following result is a tensor analogue of Proposition 4.3.

Proposition 4.4. Let φk(µ) be given by (4.48). Then

lim
µ→∞

φk(µ) =
(
zT1 ∗ U(1, :, :) ∗ D ∗ U(1, :, :)T ∗ z1

)
(:,:,1)

, (4.51)

where D ∈ R(k+1)×(k+1)×n is a tensor, whose first frontal slice D(1) has entry 1 in the (k+1, k+1)st
position, and the remaining frontal slices D(i), i = 2, 3, . . . , n, are zero matrices. The tensor U ∈
R(k+1)×(k+1)×n is the left singular tensor of P̃k.

Proof: Let
Jk(µ) = (~e1 ∗ z1)T ∗ (µP̃k ∗ P̃Tk + I)−2 ∗ ~e1 ∗ z1 (4.52)

and introduce the tSVD
P̃k = U ∗ S ∗ VT ,

where U ∈ R(k+1)×(k+1)×n and V ∈ Rk×k×n are orthogonal tensors and

S = diag[s1, s2, . . . , sk] ∈ R(k+1)×k×n,

where sj ∈ R1×1×n, 1 ≤ j ≤ k, are singular tubes. Substituting this decomposition into (4.52)
gives

Jk(µ) = (~e1 ∗ z1)T ∗ U ∗ (µS ∗ ST + I)−2 ∗ UT ∗ ~e1 ∗ z1.

Transforming the above expression to the Fourier domain, we obtain

Ĵ
(i)
k (µ) = (ẑ

(i)
1)2eT1 Û

(i)
(
µŜ(i)(Ŝ(i))T + I

)−2
(Û (i))T e1, i = 1, 2, . . . , n,

where

Ŝ(i)(Ŝ(i))T = diag

[(
σ̂
(i)
1

)2
,
(
σ̂
(i)
2

)2
, . . . ,

(
σ̂
(i)
k

)2
, 0

]
.

Moreover, e1 ∈ Rk+1 is the first face of ~e1, U (i) ∈ R(k+1)×(k+1) and S(i) ∈ R(k+1)×k are the frontal
slices of U and S, respectively. Hence, by Proposition 4.3, we have

lim
µ→∞

Ĵ
(i)
k (µ) = ĝ(i)(ẑ

(i)
1)2, i = 1, 2, . . . , n, (4.53)

where ĝ(i) = Û (i)(1, :)diag[0, 0, . . . , 0, 1]Û (i)(1, :)T is the square of the (1, k + 1)st entry of Û (i).

16

Transforming the resulting limiting tensor associated with (4.53) back to the tensor domain
gives

lim
µ→∞

Jk(µ) = zT1 ∗ g ∗ z1,

where g = U(1, :, :) ∗ D ∗ U(1, :, :)T . Hence,

lim
µ→∞

φk(µ) =
(

lim
µ→∞

Jk(µ)
)
(:,:,1)

=
(
zT1 ∗ g ∗ z1

)
(:,:,1)

. �

It follows from Propositions 4.2 and 4.4 that the right-hand side of (4.51) is the infimum of
φk(µ) for µ > 0. The right-hand side typically decreases quite rapidly as k increases, because
making k larger increases the dimension of the subspace over which the least-squares problem
(4.39) is minimized. Therefore, generally only a fairly small number of steps of Algorithm 6 are
required in order to satisfy (4.49) for some 0 < µ <∞.

We conclude this subsection with a result on the interlacing of the Frobenius norm of the
singular tubes. An extension of Cauchy’s interlacing theorem to third order tensors with the t-
product has recently been described independently in [25]. The proof presented there is different
from the one below.

Theorem 4.1. Given tensors A ∈ R`×m×n and B ∈ R`×s×n with ` ≥ m and s = m− 1. Suppose
that B is obtained by deleting one or more columns of A. Then the Frobenius norm of the singular
tubes bk, k = 1, 2, . . . , s, of B interlace the Frobenius norm of the singular tubes aj , j = 1, 2, . . . ,m,
of A. That is, let the singular tubes of A be ordered so that

‖a1‖F ≥ ‖a2‖F ≥ . . . ≥ ‖am‖F ,
and let the singular tubes of B be ordered so that

‖b1‖F ≥ ‖b2‖F ≥ . . . ≥ ‖bs‖F .
Then

‖a1‖F ≥ ‖b1‖F ≥ ‖a2‖F ≥ . . . ≥ ‖am−1‖F ≥ ‖bs‖F ≥ ‖am‖F .
Proof: Introduce the tSVD

A = U1 ∗ D ∗ VT1 ,
where D = diag[a1,a2, . . . ,am] ∈ R`×m×n is f-diagonal, and U1 ∈ R`×`×n and V1 ∈ Rm×m×n are
orthogonal tensors. In the Fourier domain, the above decomposition is expressed as

Â(i) = Û
(i)
1 D̂(i)(V̂

(i)
1)T , i = 1, 2, . . . , n,

where D̂(i) = diag[α̂
(i)
1 , α̂

(i)
2 , . . . , α̂

(i)
m] with α̂

(i)
1 ≥ α̂

(i)
2 ≥ . . . ≥ α̂

(i)
m ≥ 0.

Similarly, the tSVD of B in the Fourier domain is given by

B̂(i) = Û
(i)
2 Ĉ(i)(V̂

(i)
2)T , i = 1, 2, . . . , n,

where Ĉ(i) = diag[β̂
(i)
1 , β̂

(i)
2 , . . . , β̂

(i)
s] with β̂

(i)
1 ≥ β̂

(i)
2 ≥ . . . ≥ β̂

(i)
s ≥ 0. Therefore, by the interlacing

property of singular values, the singular values of Ĉ(i) interlace the singular values of D̂(i), i.e.,

α̂
(i)
1 ≥ β̂

(i)
1 ≥ α̂

(i)
2 ≥ . . . ≥ α̂

(i)
m−1 ≥ β̂(i)

s ≥ α̂(i)
m ≥ 0.

Put each singular value into the corresponding tube, i.e., let

α̂
(i)
j and β̂

(i)
k i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , s,

be the faces of the tubal scalars âj and b̂k, respectively. Then

‖â1‖F ≥ ‖b̂1‖F ≥ ‖â2‖F ≥ . . . ≥ ‖âm−1‖F ≥ ‖b̂s‖F ≥ ‖âm‖F .
The proof now follows from (2.11), i.e.,

1√
n
‖âj‖F = ‖aj‖F ,

1√
n
‖b̂k‖F = ‖bk‖F , j = 1, 2, . . . ,m, k = 1, 2, . . . , s. �

The following corollary is an interesting special case of Theorem 4.1.

Corollary 4.1. The Frobenius norm of the singular tubes of Tk−1 := P̃k−1 ∗ P̃Tk−1 interlace the

Frobenius norm of the singular tubes of Tk := P̃k ∗ P̃Tk .

Proof: The result follows from Theorem 4.1. �

17

4.2 The tGKT method for the approximate solution of (1.8)

This subsection generalizes the solution method of Subsection 4.1 to the solution of least squares
problems of the form (1.8). The methods of this section can be applied to color image and video
restoration. These problems are solved by several matrix-based methods in recent papers by Beik
et al. [1], Bentbib et al. [3], and El Guide et al. [10, 11].

We will describe two algorithms for the approximate solution of (1.8). They both consider (1.8)
as p separate Tikhonov minimization problems

min
~Xj∈Rm×1×n

{‖A ∗ ~Xj − ~Bj‖2F +
1

µ
‖L ∗ ~Xj‖2F }, j = 1, 2, . . . , p, (4.54)

where ~B1, ~B2, . . . , ~Bp are tensor columns of the data tensor B in (1.8). Both algorithms are based
on the tGKB process and the tGKT method described in Subsection 4.1.

Let ~Bj,true denote the unknown error-free tensor associated with the available error-contaminated

tensor ~Bj and assume that bounds for the norm of the errors

Ej := ~Bj − ~Bj,true, j = 1, 2, . . . , p,

are available or can be estimated, i.e.,

‖~Ej‖F ≤ δj , j = 1, 2, . . . , p;

cf. (1.5) and (1.6).
The first algorithm we describe, Algorithm 6, solves each one of the p least-squares problems

(4.54) independently. We refer to this approach of solving (4.54) as the tGKTp method.

Algorithm 6: The tGKTp method for the approximate solution of (1.8) by solving the
problems (4.54) independently

Input: A, ~B1, ~B2, . . . , ~Bp, δ1, δ2, . . . , δp,L, η > 1, kinit = 2
1 for j = 1, 2, . . . , p do

2 k ← kinit, [~Q1, z1]← Normalize(~Bj)
3 Compute Wk,Qk+1 and P̄k by Algorithm 4
4 Construct RL,k by computing the tQR of L ∗Wk using Algorithm 2

5 Compute P̃k ← P̄k ∗ R−1L,k, and ~e1 ← I(:, 1, :)

6 Solve the minimization problem

min
~Z∈Rk×1×n

‖P̃k ∗ ~Z − ~e1 ∗ z1‖F

for ~Zk by using Algorithm 3
7 while ‖P̃k ∗ ~Zk − ~e1 ∗ z1‖F ≥ ηδj do
8 k ← k + 1
9 Go to step 3

10 end
11 Determine the regularization parameter by the discrepancy principle, i.e., use

Algorithm 5 to compute the zero µk > 0 of

ξk(µk) := ‖P̃k ∗ ~Zj,µk − ~e1 ∗ z1‖2F − η2δ2j

and the associated solution ~Zj,µk of

min
~Z∈Rk×1×n

∥∥∥∥∥
[

P̃k
µ
−1/2
k I

]
∗ ~Z −

[
~e1 ∗ z1
~O

]∥∥∥∥∥
F

by using Algorithm 3
12 Compute ~Yj,µk ← R

−1
L,k ∗ ~Zj,µk , ~Xj,µk ←Wk ∗ ~Yj,µk

13 end

18

Our second algorithm of this subsection generates a t-Krylov subspace Kk(AT ∗ A,AT ∗ ~B1)
of dimension k large enough to contain sufficiently accurate approximate solutions of all the p
least-squares problems (4.54). Thus, we first solve the least-squares problem (4.54) for p = 1 by
Algorithm 6. Then we seek to solve the least-squares problem (4.54) for p = 2 by using the same

t-Krylov subspace Kk(AT ∗ A,AT ∗ ~B1). If the discrepancy principle cannot be satisfied, then the
dimension k of the t-Krylov subspace is increased until the discrepancy principle can be satisfied.
Having solved the least-squares problem for p = 2, we proceed similarly to solve the remaining
problems (4.54) for j = 3, 4, . . . , p. The details are described in Algorithm 7. The tGKB process
is implemented with reorthogonalization when applied in Algorithm 7 to yield the expressions
QTk+1 ∗ ~Bj with sufficient accuracy. When the required number of bidiagonalization steps k is large,

it may be beneficial to restart Algorithm 7 with a new tensor ~Bj . This approach of using nested
t-Krylov subspaces is referred to as the nested tGKTp method.

Algorithm 7: The nested tGKTp method for the approximate solution of (1.8) by solving
the problems (4.54) using nested t-Krylov subspaces

Input: A, ~B1, ~B2, . . . , ~Bp, δ1, δ2, . . . , δp,L, η > 1, kinit = 2

1 k ← kinit, [~Q1, z1]← Normalize(~B1) by Algorithm 1
2 Compute Wk,Qk+1 and P̄k by Algorithm 4 with reorthogonalization of the tensor columns

of Wk and Qk+1

3 Construct RL,k by computing the tQR of L ∗Wk using Algorithm 2

4 Compute P̃k ← P̄k ∗ R−1L,k
5 Solve the minimization problem

min
~Z∈Rk×1×n

‖P̃k ∗ ~Z −QTk+1 ∗ ~B1‖F

for ~Zk by using Algorithm 3
6 while ‖P̃k ∗ ~Zk −QTk+1 ∗ ~B1‖F ≥ ηδ1 do
7 k ← k + 1
8 Go to step 2

9 end
10 Determine the regularization parameter by the discrepancy principle, i.e., use an analogue

of Algorithm 5 to compute the zero µk > 0 of

ξk(µk) := ‖P̃k ∗ ~Z1,µk −QTk+1 ∗ ~B1‖2F − η2δ21

and the associated solution ~Z1,µk of

min
~Z1∈Rk×1×n

∥∥∥∥∥
[

P̃k
µ
−1/2
k I

]
∗ ~Z1 −

[
QTk+1 ∗ ~B1

~O

]∥∥∥∥∥
F

by using Algorithm 3
11 Compute ~Y1,µk ← R

−1
L,k ∗ ~Z1,µk ,

~X1,µk ←Wk ∗ ~Y1,µk
12 for j = 2, 3, . . . , p do

13 [~Q1, z1]← Normalize(~Bj)
14 while ‖P̃k ∗ ~Zk −QTk+1 ∗ ~Bj‖F ≥ ηδj do
15 k ← k + 1

16 Repeat steps 2-5 with the present tensors P̃k, QTk+1, and ~Bj
17 end

18 Repeat step 10 with the present δj , and tensors P̃k, QTk+1, and ~Bj to compute ~Zj,µk
19 Compute ~Yj,µk ← R

−1
L,k ∗ ~Zj,µk , ~Xj,µk ←Wk ∗ ~Yj,µk

20 end

19

5 The GG-tGKT and G-tGKT Methods for the Approxi-
mate Solution of (1.8) and (1.2)

We describe the GG-tGKT and G-tGKT methods. Both methods involve flattening, and their
performance will be illustrated in computed examples in Section 6.

5.1 The GG-tGKT method for the approximate solution of (1.8)

This section generalizes and modifies the T-global Golub-Kahan-Tikhonov regularization method,
recently described by El Guide et al. [11] for the approximate solution of (1.8) with L = I, to
allow a general regularization operator L 6= I. This generalization requires Algorithm 9 below. We
refer to our generalization of the method by El Guide et al. [11] as the generalized global tGKT
(GG-tGKT) method. Differently from El Guide et al. [11], we use the discrepancy principle to
determine the regularization parameter.

The GG-tGKT method is based on first reducing A to a small bidiagonal matrix by the ap-
plication of a few, 1 ≤ k � min{`,m}, steps of the generalized global t-product Golub-Kahan
bidiagonalization (GG-tGKB) process. This process is implemented by Algorithm 8. It uses the
Golub-Kahan Bidiagonalization Based Tensor Format (GKB BTF) recently described by Beik et
al. [1]. A version of the GG-tGKB algorithm with different initializations has been presented in
[11]. We assume that the number of steps, k, is small enough to avoid breakdown. Then applying
k steps of the partial GG-tGKB process to A yields the decompositions

A ∗Wk = Qk+1 ~ P̄k, AT ∗Qk = Wk ~ P
T
k , (5.55)

where
Wk := [W1, . . . ,Wk] ∈ Rm×kp×n, Qk+1 := [Q1, . . . ,Qk+1] ∈ R`×(k+1)p×n,

and

A ∗Wk := [A ∗W1,A ∗W2, . . . ,A ∗Wk] ∈ R`×kp×n,
Qk+1 ~ P̄k := [Qk+1 ~ P̄k(:, 1),Qk+1 ~ P̄k(:, 2), . . . ,Qk+1 ~ P̄k(:, k)] ∈ R`×kp×n.

(5.56)

The tensors AT ∗Qk and Wk ~PTk are defined similarly as (5.56). Details of the computations are
described by Algorithm 8. The tensors Qj ∈ R`×p×n and Wj ∈ Rm×p×n, j = 1, 2, . . . , k, generated
by the algorithm form orthonormal tensor bases for the t-Krylov subspaces Kk(A ∗ AT ,B) and
Kk(AT ∗ A,AT ∗ B), respectively. The lower bidiagonal matrix P̄k in (5.56) is given by

P̄k =

α1

β2 α2

β3 α3

. . .
. . .

βk αk
βk+1

∈ R(k+1)×k, (5.57)

and Pk is the leading k × k submatrix of P̄k. The relation

B = Qk+1 ~ e1β1, e1 = [1, 0, . . . , 0]T (5.58)

is easily deduced from Algorithm 8.
We compute an approximate solution of (1.8) analogously as described in Subsection 4.1. Thus,

letting X = Wk ~ y and using the left-hand side of (5.55), and (5.58), the minimization problem
(1.8) reduces to

min
y∈Rk
{‖Qk+1 ~ P̄k ~ y −Qk+1 ~ e1β1‖2F + µ−1‖L ∗Wk ~ y‖2F }. (5.59)

20

Algorithm 8: Partial generalized global tGKB (GG-tGKB)

Input: A ∈ R`×m×n, B ∈ R`×p×n such that AT ∗ B 6= O
1 β1 ← ‖B‖F , Q1 ← 1

β1
B, W0 ← O

2 for j = 1, 2, . . . , k do
3 W ← AT ∗ Qj − βjWj−1
4 αj ← ‖W‖F . If αj = 0 stop else Wj ←W/αj
5 Q ← A ∗Wj − αjQj
6 βj+1 ← ‖Q‖F . If βj+1 = 0 stop else Qj+1 ← Q/βj+1

7 end

Algorithm 9: Generalized global tensor QR (GG-tQR) decomposition

Input: A := [A1,A2, . . . ,Ak] ∈ R`×km×n, Aj ∈ R`×m×n, j = 1, . . . , k, ` ≥ m
Output: Q := [Q1,Q2, . . . ,Qk] ∈ R`×km×n, R = (rij) ∈ Rk×k such that A = Q~R and

QT♦Q = Ik
1 Set r11 ← 〈A1,A1〉1/2, Q1 ← 1

r11
A1

2 for j = 1, 2, . . . , k do
3 W ← Aj
4 for i = 1, 2, . . . , j − 1 do
5 rij ← 〈Qi,W〉
6 W ←W − rijQi
7 end

8 rjj ← 〈W,W〉1/2
9 Qj ←W/rjj

10 end

Using the ~ product (2.16) introduced by El Guide et al. [11], we define a generalized global
tQR (GG-tQR) factorization, which is applied in Algorithm 10 to compute the decomposition

L ∗Wk = QL,k ~RL,k ∈ Rs×kp×n, (5.60)

where RL,k ∈ Rk×k is an upper triangular matrix and QL,k ∈ Rs×kp×n has k orthogonal tensor
columns. Analogues of Algorithm 9 that apply the n-mode and Einstein products have recently
been described by El Ichi et al. [12].

Substituting (5.60) into (5.59), and using the left-hand side of (2.17), gives

min
y∈Rk
{‖P̄ky − e1β1‖22 + µ−1‖RL,ky‖22}. (5.61)

Typically, the matrix RL,k is nonsingular and not very ill-conditioned. Then we can express (5.61)
as a Tikhonov minimization problem in standard form,

min
z∈Rk
{‖P̃kz − e1β1‖22 + µ−1‖z‖22}, (5.62)

where
z := RL,ky, P̃k := P̄kR

−1
L,k. (5.63)

The minimization problem (5.62) is analogous to (4.45). Its solution can be computed fairly stably
by solving

min
z∈Rk

∥∥∥∥[P̃k
µ−1/2I

]
z −

[
e1β1

0

]∥∥∥∥
2

. (5.64)

Denote the solution by zµ,k. Then the computed approximate solution of (1.8) is given by

~Xµ,k = Wk ~R
−1
L,kzµ,k.

We determine the regularization parameter µ by the discrepancy principle based on the Frobe-
nius norm. This assumes knowledge of a bound

‖E‖F ≤ δ

21

for the error tensor E in B. Thus, we choose µ > 0 so that the solution zµ,k of (5.64) satisfies

‖P̃kzµ,k − e1β1‖2 = ηδ. (5.65)

Define the function
ψk(µ) := ‖P̃kzµ,k − e1β1‖22,

where zµ,k solves (5.64). Manipulations similar to those applied in Subsection 4.1 show that ψk(µ)
can be expressed as (4.50). Proposition 4.3 shows that the discrepancy principle (5.65) can be
satisfied by choosing k large enough. It is readily verified by following the proof of Proposition
3.2 that the function µ 7→ ψk(µ) is decreasing and convex with ψk(0) = β2

1 . Therefore, through a
similar reasoning as in Subsection 4.1, it may be convenient to solve

ψk(µ)− η2δ2 = 0

by Newton’s method, i.e., by an analogue of Algorithm 5 with initial approximate solution µ0 = 0.
We turn to the matrix analogue of Proposition 4.1.

Proposition 5.1. Let µk solve ψk(µ) = η2δ2 and suppose that zµ,k is the solution of (5.62)
with µ = µk. Let yµ,k and zµ,k be related by (5.63). Then the associated approximate solution
Xµ,k = Wk ~ yµ,k of (1.8) satisfies

‖A ∗ Xµ,k − B‖2F = β2
1e
T
1 (µP̃kP̃

T
k + I)−2e1. (5.66)

Proof: Substituting Xµ,k = Wk~yµ,k into left-hand side of (5.66), using the left-hand side of (5.55)
and (5.58), as well as left-hand side of (2.17) gives

‖A ∗ Xµ,k − B‖2F = ‖Qk+1 ~ (P̄k ~ yµ,k − e1β1)‖2F = ‖P̄kyµ,k − e1β1‖22 = ‖P̃kzµ,k − e1β1‖22. �

We refer to the solution method described above as the GG-tGKT method. This method is
implemented by Algorithm 10. It works with the lateral slices ~Bj , j = 1, 2, . . . , p, of the data tensor
B simultaneously.

Algorithm 10: The GG-tGKT method for computing an approximate solution of (1.8)

Input: A, B, δ,L, η > 1, kinit = 2
1 k ← kinit, β1 ← ‖B‖F , Q1 ← 1

β1
B

2 Compute Wk, Qk+1, and P̄k by Algorithm 8
3 Construct RL,k by computing the GG-tQR of L ∗Wk using Algorithm 9

4 Compute P̃k ← P̄kR
−1
L,k

5 Let zk ∈ Rk solve the minimization problem

min
z∈Rk

‖P̃kz − e1β1‖2

while ‖P̃kzk − e1β1‖2 ≥ ηδ do
6 k ← k + 1
7 Go to step 2

8 end
9 Determine the regularization parameter by the discrepancy principle, i.e., use an analogue

of Algorithm 5 to compute the zero µk > 0 of

ϕk(µ) := ‖P̃kzµ,k − e1β1‖22 − η2δ2

and the associated solution zµ,k of

min
z∈Rk

∥∥∥∥∥
[

P̃k

µ
−1/2
k I

]
z −

[
e1β1

0

]∥∥∥∥∥
2

10 Compute yµ,k ← R−1L,kzµ,k, Xµ,k ←Wk ~ yµ,k

22

5.2 The G-tGKT method for the approximate solution of (1.2) and (1.8)

This subsection described the global t-product Golub-Kahan-Tikhonov (G-tGKT) method for the
approximate solution of (1.2) and (1.8). An alternative to the GG-tGKT method described by

Algorithm 10 is to work with each lateral slice ~Bj , j = 1, 2, . . . , p, of the tensor B independently.
Thus, one solves the p Tikhonov minimization problems (4.54) separately. Such a solution method
is implemented by Algorithm 13, and is referred to as the G-tGKTp method.

The G-tGKT method for the approximate solution of (1.2) first reduces A in (1.2) to a small
bidiagonal matrix by carrying out a few, say k, steps of the global t-product Golub-Kahan bidiag-
onalization (G-tGKB) process, which is described by Algorithm 11. It is readily implemented by
taking p = 1 in Algorithm 8. We choose k small enough to avoid breakdown. Algorithm 11 yields
the partial G-tGKB decompositions

A ∗Wk = Qk+1 ~ B̄k, AT ∗ Qk =Wk ~B
T
k ,

where
Wk := [~W1, . . . , ~Wk] ∈ Rm×k×n, Qk+1 := [~Q1, . . . , ~Qk+1] ∈ R`×(k+1)×n.

The expressions A ∗Wk, Qk+1 ~ B̄k, AT ∗ Qk, and Wk ~ BTk are defined similarly to (5.56). The
matrix B̄k ∈ R(k+1)×k has a form analogous to (5.57), and Bk is the leading k×k submatrix of B̄k.

The tensors ~Qj ∈ R`×1×n, for j = 1, 2, . . . , k+ 1, and ~Wj ∈ Rm×1×n, for j = 1, 2, . . . , k, generated

by Algorithm 11 form orthonormal tensor bases for the t-Krylov subspaces Kk+1(A ∗ AT , ~B) and

Kk(AT ∗ A,AT ∗ ~B), respectively.

Algorithm 11: Partial global tGKB (G-tGKB)

Input: A ∈ R`×m×n, ~B ∈ R`×1×n such that AT ∗ ~B 6= ~O
1 β1 ← ‖ ~B‖F , ~Q1 ← 1

β1

~B, ~W0 ← ~O.

2 for j = 1, 2, . . . , k do

3 ~W ← AT ∗ ~Qj − βj ~Wj−1

4 αj ← ‖ ~W‖F . If αj = 0, stop else

5 ~Wj ← ~W/αj

6 ~Q ← A ∗ ~Wj − αj ~Qj
7 βj+1 ← ‖ ~Q‖F . If βj+1 = 0, stop else

8 ~Qj+1 ← ~Q/βj+1

9 end

Algorithm 12: Global tensor QR (G-tQR) decomposition

Input: A := [~A1, ~A2, . . . , ~Ak] ∈ R`×k×n, ~Aj ∈ R`×1×n, j = 1, 2, . . . , k, ` ≥ k
Output: Q := [~Q1, ~Q2, . . . , ~Qk] ∈ R`×k×n, ~Qj ∈ R`×1×n, R̄ = (rij) ∈ Rk×k such that

A = Q~ R̄, and QT♦Q = Ik
1 r11 ← 〈 ~A1, ~A1〉1/2, ~Q1 ← 1

r11
~A1

2 for j = 1, 2, . . . , k do

3 ~W ← ~Aj
4 for i = 1, 2, . . . , j − 1 do

5 rij ← 〈 ~Qi, ~W〉
6 ~W ← ~W − rij ~Qi
7 end

8 rjj ← 〈 ~W, ~W〉1/2

9 ~Qj ← ~W/rjj
10 end

Let ~X =Wk ~ y. Then following a similar approach as in Section 4, we reduce (1.2) to

min
y∈Rk
{‖Qk+1 ~ B̄k ~ y −Qk+1 ~ e1β1‖2F + µ−1‖L ∗Wk ~ y‖2F }. (5.67)

23

Compute the global tQR (G-tQR) factorization of L ∗Wk by using Algorithm 12 to obtain

L ∗Wk = QL,k ~ R̄L,k, (5.68)

where QL,k ∈ Rs×k×n has k orthonormal tensor columns and the matrix R̄L,k ∈ Rk×k is upper
triangular. Note that the G-tQR algorithm is readily obtained by taking m = 1 in Algorithm 9, in
which case ` ≥ k.

Substitute (5.68) into (5.67), use the right-hand side of (2.17), and define

z := R̄L,ky, P̆k := B̄kR̄
−1
L,k.

where we assume the matrix R̄L,k to be invertible and not very ill-conditioned. We obtain the
Tikhonov minimization problem in standard form

min
z∈Rk
{‖P̆kz − e1β1‖22 + µ−1‖z‖22}. (5.69)

This problem can be solved similarly as (5.62), whose solution has been described previously. We
refer to this approach of solving (5.69), and thereby of computing an approximate solution of (1.2),
as the G-tGKT method. It is implemented by Algorithm 13 with p = 1. Algorithm 13 with p > 1
is used to solve (1.8).

Algorithm 13: The G-tGKTp method for the approximate solution of (1.8).

Input: A, ~B1, ~B2, . . . , ~Bp, L, δ1, δ2, . . . , δp, η > 1, kinit = 2
1 for j = 1, 2, . . . , p do

2 k ← kinit, β1 ← ‖ ~Bj‖F , ~Q1 ← 1
β1

~Bj
3 Compute Wk, Qk+1 and B̄k by Algorithm 11

4 Construct R̄L,k by computing the G-tQR factorization of L ∗ ~Wk using Algorithm 12

5 Compute P̆k ← B̄kR̄
−1
L,k

6 Solve the minimization problem

min
z∈Rk

‖P̆kz − e1β1‖2

for zk
7 while ‖P̆kzk − e1β1‖2 ≥ ηδj do
8 k ← k + 1
9 Go to step 3

10 end
11 Determine the regularization parameter by the discrepancy principle, i.e., proceed

similarly as in Algorithm 5 to compute the zero µk > 0 of

ϕk(µk) := ‖P̆kzj,µk − e1β1‖22 − η2δ2j

and the associated solution zj,µk of

min
z∈Rk

∥∥∥∥∥
[

P̆k

µ
−1/2
k I

]
z −

[
e1β1

0

]∥∥∥∥∥
2

12 Compute yj,µk ← R̄−1L,kzj,µk , ~Xj,µk ← ~Wk ~ yj,µk
13 end

6 Numerical Examples

This section illustrates the performance of the methods described when applied to the solution
of linear discrete ill-posed problems. Unless otherwise stated, A ∈ R256×256×256 in all computed

24

examples. All computations are carried out in MATLAB 2019b on a Lenovo computer running
Windows 10 with Intel Core i3 and 4 GB RAM. The discrepancy principle is used in all computed
examples to determine the regularization parameter and the number of bidiagonalization steps.
The condition numbers of the frontal slices of A are computed using the MATLAB function cond.
We set tol = 10−12 in Algorithm 1.

Let ~Xmethod be the computed solution of the minimization problem (1.1) by a chosen method.
To compare the quality of the computed solution, we evaluate the relative error

Emethod =
‖ ~Xmethod − ~Xtrue‖F

‖ ~Xtrue‖F
.

The relative error for problems whose data is given by a three-way tensor B is determined analo-
gously.

We generate a “noise” tensor E that simulates the error in the data tensor B = Btrue + E by
determining the lateral slices ~Ej , j = 1, 2, . . . , p, of E . Their entries are normally distributed with

zero mean and are scaled to correspond to a specific noise level δ̃. Thus,

~Ej := δ̃
~E0,j
‖~E0,j‖F

‖ ~Btrue,j‖F , j = 1, 2, . . . , p, (6.70)

where the entries of ~E0,j are distributed according to N(0, 1). For problems of the form (1.1), we
have p = 1. Throughout this section, a table entry “-” indicates that the solution method carries
out several different numbers of bidiagonalization steps or computes several different values of the
regularization parameter.

Example 6.1. This example implements the tGKT and G-tGKT methods with the regulariza-
tion tensor L2 ∈ R255×256×256 described in Subsection 4.1. Let the matrix A1 = baart(256)
be generated by the function baart from Hansen’s Regularization Tools [16] and define A2 =
gallery(′prolate′, 256, α) in MATLAB. We take α = 0.46. Then A2 is a symmetric positive
definite ill-conditioned Toeplitz matrix. To generate A, we let

A(i) = A1(i, 1)A2, i = 1, 2, . . . , 256.

The exact data tensor ~Btrue ∈ R256×1×256 is given by ~Btrue = A ∗ ~Xtrue, where the exact solution
~Xtrue ∈ R256×1×256 has all entries equal to unity. The noise-contaminated data tensor is generated

Noise level Method k µk Relative error CPU time (secs)

10−3
tGKT 4 3.80e-02 2.15e-03 1.56e+01

G-tGKT 4 3.92e-02 2.32e-03 1.41e+01

10−2
tGKT 2 7.19e-02 9.97e-03 4.47e+00

G-tGKT 2 7.11e-02 1.00e-02 3.65e+00

Table 2: Results for Example 6.1.

by ~B = ~Btrue + ~E with the noise tensor ~E ∈ R256×1×256 defined as described above. The condition
numbers of A(i) satisfy cond(A(i)) ≥ 1016 for i ≥ 1. Thus, every slice is numerically singular. We
take η = 1.1 in Algorithm 5 and determine the regularization parameter by Newton’s method.

Table 2 shows the computed regularization parameter values and relative errors for different
noise levels, as well as the number of iterations required to satisfy the discrepancy principle by
each method. Also timings are displayed. The tGKT method can be seen to be slightly slower but
more accurate than the G-tGKT method.

Example 6.2. This example compares the tGKTp, nested tGKTp, G-tGKTp, and GG-tGKT
method when applied with the regularization tensor L2 of Example 6.1. The tensor A is the same
as in Example 6.1. The exact solution Xtrue ∈ R256×3×256 is a tensor with all entries equal to one.

The noise-contaminated right-hand side B ∈ R256×3×256 is generated by B = A∗Xtrue+E , where
the noise tensor E ∈ R256×3×256 is determined according to (6.70). The regularization parameter or
parameters are determined similarly as in Example 6.1. The computed regularization parameters

25

Noise level Method k µk Relative error CPU time (secs)

10−3

tGKTp - - 2.15e-03 4.50e+01
nested tGKTp 4 - 2.30e-03 1.99e+01

G-tGKTp - - 2.33e-03 4.22e+01
GG-tGKT 4 3.91e-02 2.33e-03 1.97e+01

10−2

tGKTp - - 9.91e-03 1.17e+01
nested tGKTp 2 - 1.28e-02 6.59e+00

G-tGKTp - - 9.97e-03 1.13e+01
GG-tGKT 2 7.10e-02 9.97e-03 4.67e+00

Table 3: Results for Example 6.2.

and relative errors for different noise levels, as well as the number of iterations required to satisfy
the discrepancy principle by each method, and timings are shown in Table 3.

Table 3 shows the GG-tGKT and nested tGKTp methods to be the fastest for both noise levels,
but the tGKTp and nested tGKTp methods that do not involve flattening to yield approximate
solutions of higher accuracy for δ = 10−3. In general, the tGKTp method yields the most accurate
approximations of Xtrue and requires the most CPU time for both noise levels.

The remainder of this section discusses image and video restoration problems. We use the
bisection method to determine the regularization parameter over a chosen interval. The blurring
tensors A are constructed similarly as described by Kernfeld et al. [19] by using the function blur

from [16].

Example 6.3. (Medical imaging) This example considers the restoration of an MRI image from
MATLAB. We let L = L1 ∈ R254×256×256 and generate the frontal slices A(i) of A by using a
modified form of the function blur with N = 256, σ = 4 and band = 7, i.e.,

z = [exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N− band)], (6.71)

A =
1

σ
√

2π
toeplitz([z(1) fliplr(z(2 : end))], z), A(i) = A(i, 1)A, i = 1, 2, . . . , 256.

This modification yields a nonsymmetric block circulant matrix with circulant blocks (BCCB). We
fold the first block column of the matrix A ⊗ A to obtain A. The condition numbers of A(i) are
cond(A(1)) = cond(A(251)) = · · · = cond(A(256)) ≈ 13. The condition numbers of the remaining
slices are infinite. We determine the regularization parameter by the bisection method over the
interval [101, 109] using the discrepancy principle with η = 1.01.

Figure 1: True image (left), blurred noisy image (right) for δ̃ = 10−3.

The frames 1, 8, 15 and 22 of a 3D MRI Data Set in MATLAB make up the true image MRI image

shown on the left-hand side of Figure 1. The image is stored as a tensor column, ~Xtrue ∈ R256×1×256,
using the twist operator and blurred by A defined above. The blurred and noisy image ~B is shown
in Figure 1 (right) using the squeeze operator. It is generated by ~B = A ∗ ~Xtrue + ~E with ~E
representing “noise” determined as described above. The classical Golub-Kahan-Tikhonov (GKT)
regularization method for the approximate solution of the minimization problem

min
x∈R3002

{‖(A⊗A)x− b‖22 + µ−1‖Lx‖22}

26

Figure 2: Reconstructed images by tGKT after 18 iterations (left) and GKT after 68 iterations (right) for

δ̃ = 10−3.

is also considered, where L = L(1)
1 ∈ R(3002−2)×3002 is defined in (3.36). For this problem, the blur-

and noise-contaminated image is generated by

b = (A⊗A)unfold(~Xtrue) + unfold(~E).

The restored images computed by the tGKT and GKT methods for the noise level δ̃ = 10−3 are
shown in Figure 2 using the squeeze and MATLAB reshape operators, respectively. Table 4 shows
the number of steps required to satisfy the discrepancy principle by each method, the regularization
parameters, the relative errors, as well as the CPU time required. The GKT and G-tGKT methods
involve flattening, require the most bidiagonalization steps, and produce restorations of the same
or worse quality for both noise levels. Moreover, the G-tGKT method is the slowest. The tGKT
method, which does not involve flattening, yields restorations of the best quality for both noise
levels.

Noise level Method k µk Relative error CPU time (secs)

10−3
tGKT 18 1.65e+07 4.32e-02 2.53e+02

G-tGKT 68 2.98e+07 5.78e-02 3.18e+03
GKT 68 4.76e+06 5.78e-02 5.12e+01

10−2
tGKT 7 1.82e+05 1.40e-01 4.40e+01

G-tGKT 15 9.99e+04 1.47e-01 1.74e+02
GKT 15 1.59e+04 1.47e-01 2.00e+00

Table 4: Results for Example 6.3.

Example 6.4. (Color image) This example illustrates image restoration with the regularization
operator L = L1 ∈ R298×300×300. The true image, shown on the left-hand side of Figure 3, is a
flower image1 of size 300 × 300 × 3. This image is stored as a tensor Xtrue ∈ R300×3×300 using
the multi twist operator and blurred by the tensor A ∈ R300×300×300 that is generated by using
the function blur. Specifically, we choose N = 300, σ = 3, and band = 12, and fold the first block
column of the block circulant matrix with Toeplitz blocks (BCTB) matrix generated by (6.71) and

zz = [z(1) fliplr(z(end− length(z) + 2 : end))], A1 =
1√
2πσ

toeplitz(z, zz),

A2 =
1√
2πσ

toeplitz(z), A(i) = A1(i, 1)A2, i = 1, 2, . . . , 300,

where A1 is a circulant matrix, and A2, a Toeplitz matrix.
The computed condition numbers for the tensor slicesA(i) are cond(A(1)) = · · · = cond(A(12)) =

7.6 ·108. The slices A(i) have infinite condition number for i ≥ 13. We determine the regularization
parameter by the bisection method over the interval [10−3, 105] using the discrepancy principle

1http://www.hlevkin.com/TestImages

27

http://www.hlevkin.com/TestImages

Figure 3: True image (left), middle - right: blurred and noisy images displayed for the problems (1.8) and

(6.72), respectively, for δ̃ = 10−3.

Figure 4: Reconstructed images by nested tGKTp after 26 iterations (left), G-tGKTp (middle), and G-

GKT method after 34 iterations (right) for δ̃ = 10−3.

with η = 1.2. The blurred and noisy image B ∈ R300×3×300 is shown in Figure 3 (middle) us-
ing the multi squeeze operator, and determined by B = A ∗ Xtrue + E , where the error tensor
E ∈ R300×3×300 is generated according to (6.70).

We also consider the image deblurring problem

(A1 ⊗A2)X = B, (6.72)

where the blur- and noise-contaminated available image generated by B = (A1 ⊗ A2)Xtrue + E is
displayed on the right-hand side of Figure 3. The desired unavailable blur- and noise-free image
Xtrue ∈ R3002×3 is the matricized three-channeled image Xtrue ∈ R300×300×3. The unknown noise in
the matrix B is represented by E ∈ R3002×3, which is the matricized “noise” tensor E ∈ R300×300×3.
The problem (6.72) is solved by the global Golub-Kahan-Tikhonov (G-GKT) regularization method
described in [4]. Its implementation is analogous to the approach described in Section 5.1.

The restored images determined by the nested tGKTp, G-tGKTp, and G-GKT methods are

shown in Figure 4 for δ̃ = 10−3 using the multi squeeze operator. The relative errors as well as
CPU times are displayed in Table 5. We see that the tGKTp and nested tGKTp methods yield

restorations of the highest and the same quality for δ̃ = 10−3. Solution methods that involve
flattening, such as the G-GKT, G-tGKTp, and GG-tGKT methods, give restorations of the worst

quality for δ̃ = 10−3 and require the most CPU time. Specifically, the G-GKT method is the
fastest and yields restorations of the same quality as the G-tGKTp method, which is the slowest
method for both noise levels. The GG-tGKT method requires more bidiagonalization steps than
the nested tGKTp method. Both methods produce restorations of the worst quality for δ̃ = 10−3

and δ̃ = 10−2, respectively.

Example 6.5. (Video restoration) This example considers the restoration of the first six consecu-
tive frames of the Xylophone video from MATLAB with L = L2 ∈ R239×240×240. Each video frame
is in MP4 format and has 240× 240 pixels.

The first six blur- and noise-free frames are stored as a tensor Xtrue ∈ R240×6×240 using the
multi twist operator and are blurred by the tensor A ∈ R240×240×240, which is generated similarly

28

Noise level Method k µk Relative error CPU time (secs)

10−3

tGKTp - - 6.11e-02 1.79e+03
nested tGKTp 26 - 6.11e-02 8.72e+02

G-tGKTp - - 6.18e-02 3.61e+03
GG-tGKT 34 4.64e+01 6.22e-02 1.98e+03

G-GKT 34 6.47e+03 6.18e-02 1.41e+02

10−2

tGKTp - - 8.79e-02 9.58e+01
nested tGKTp 5 - 1.02e-01 5.00e+01

G-tGKTp - - 8.69e-02 1.72e+02
GG-tGKT 7 1.66e-01 8.74e-02 9.07e+01

G-GKT 7 2.86e+02 8.48e-02 5.00e+00

Table 5: Results for Example 6.4.

as in Example 6.4 with

A(i) =
1

2πσ2
A2(i, 1)A2, i = 1, 2, . . . , 240, N = 240, σ = 2.5, band = 12.

The condition numbers of the slices of A are cond(A(1)) = · · · = cond(A(12)) = 1.4 · 107 and the
slices A(i) have infinite condition number for i ≥ 13. We determine the regularization parameter(s)
by the bisection method over the interval [101, 107] using the discrepancy principle with η = 1.2.
The blurred and noisy frames are generated by B = A∗Xtrue+E ∈ R240×6×240 with E ∈ R240×6×240

defined by (6.70).
The true fourth frame is displayed in Figure 5 (left), and the blurred and noisy fourth frame is

shown in Figure 5 (middle) using the squeeze operator. The restored images of the fourth frame
determined by the G-tGKTp, nested tGKTp, G-tGKTp, and GG-tGKT methods are shown in
Figure 5 (right) and Figure 6 using the squeeze operator. The relative errors and CPU times are
displayed in Table 6. The methods G-tGKTp and G-tGKTp, which work with a lateral slice of
the data tensor at a time, are seen to yield the best quality restorations. Methods that involve
flattening such as, the GG-tGKT and G-tGKTp are the slowest. The nested tGKTp method yields
the worst quality restorations but is the fastest.

Figure 5: True image (left), blurred noisy image (middle), reconstructed image by the tGKTp method

(right) for δ̃ = 10−3.

7 Conclusion

This paper presents the theoretical background and computational framework for the regularization
of large-scale linear discrete ill-posed problem with a t-product structure, and discusses applications
to (color) image and video restorations to illustrate the performance of the proposed methods. The
quality of the restorations in the computed examples show the potential superiority of tensorizing
over matricizing or vectorizing ill-posed problems for tensors. Solution methods that do not involve
flattening are a good compromise for accuracy and speed. The interlacing property for the Frobenius
norm of the singular tubes is discussed and applied. The regularization parameter(s) and the

29

Figure 6: Reconstructed images by the nested tGKTp method after 22 iterations (left), G-tGKTp (mid-

dle), and the GG-tGKT method (right) after 26 iterations for δ̃ = 10−3.

Noise level Method k µk Relative error CPU time (secs)

10−3

tGKTp - - 4.26e-02 7.31e+02
nested tGKTp 22 - 4.42e-02 2.76e+02

G-tGKTp - - 4.26e-02 1.70e+03
GG-tGKT 26 1.50e+04 4.35e-02 8.46e+02

10−2

tGKTp - - 6.49e-02 5.07e+01
nested tGKTp 4 - 1.10e-01 2.48e+01

G-tGKTp - - 6.69e-02 9.55e+01
GG-tGKT 6 3.32e+02 6.70e-02 2.75e+01

Table 6: Results for Example 6.5.

required number of steps of Golub-Kahan-type bidiagonalization methods are determined by the
discrepancy principle.

Acknowledgment

The authors are grateful to the referees for comments that led to improvements of the presentation.
Research by LR was supported in part by NSF grant DMS-1720259.

References

[1] F. P. A. Beik, K. Jbilou, M. Najafi-Kalyani, and L. Reichel, Golub-Kahan bidiagonalization for
ill-conditioned tensor equations with applications, Numer. Algorithms, 84 (2020), pp. 1535–
1563.

[2] F. P. A. Beik, M. Najafi-Kalyani, and L. Reichel, Iterative Tikhonov regularization of tensor
equations based on the Arnoldi process and some of its generalizations, Appl. Numer. Math.,
151 (2020), pp. 425–447.

[3] A. H. Bentbib, M. El Guide, K. Jbilou, E. Onunwor, and L. Reichel, Solution methods for
linear discrete ill-posed problems for color image restoration, BIT Numer. Math., 58 (2018),
pp. 555–578.

[4] A. H. Bentbib, M. El Guide, K. Jbilou, and L. Reichel, Global Golub-Kahan bidiagonalization
applied to large discrete ill-posed problems, J. Comput. Appl. Math., 322 (2017), pp. 46–56.

[5] K. Braman, Third-order tensors as linear operators on a space of matrices, Linear Algebra
Appl., 433 (2010), pp. 1241–1253.

[6] A. Buccini, M. Pasha, and L. Reichel, Generalized singular value decomposition with iterated
Tikhonov regularization, J. Comput. Appl. Math., 373 (2020), Art. 112276.

30

[7] D. Calvetti and L. Reichel, Tikhonov regularization of large linear problems, BIT Numer.
Math., 43 (2003), pp. 263–283.

[8] M. Donatelli and L. Reichel, Square smoothing regularization matrices with accurate boundary
conditions, J. Comput. Appl. Math., 272 (2014), pp. 334–349.

[9] L. Dykes, G. Huang, S. Noschese, and L. Reichel, Regularization matrices for discrete ill-posed
problems in several space-dimensions, Numer. Linear Algebra Appl., 25 (2018), Art. e2163.

[10] M. El Guide, A. El Ichi, K. Jbilou, and F. P. A Beik, Tensor GMRES and Golub-Kahan
bidiagonalization methods via the Einstein product with applications to image and video
processing, https://arxiv.org/pdf/2005.07458.pdf

[11] M. El Guide, A. El Ichi, K. Jbilou, and R. Sadaka, On GMRES and Golub-Kahan methods via
the T-product for color image processing, Electron. J. Linear Algebra, 37 (2021), pp. 524–543.

[12] A. El Ichi, K. Jbilou, and R. Sadaka, Tensor global extrapolation methods using the n-mode
and the Einstein products, Mathematics, 8(8) (2020), Art. 1298.

[13] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dor-
drecht, 1996.

[14] C. Fenu, L. Reichel, and G. Rodriguez, GCV for Tikhonov regularization via global Golub-
Kahan decomposition, Numer. Linear Algebra Appl., 23 (2016), pp. 467–484.

[15] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.

[16] P. C. Hansen, Regularization Tools, version 4.0 for MATLAB 7.3, Numer. Algorithms, 46
(2007), pp. 189–194.

[17] N. Hao, M. E. Kilmer, K. Braman, and R. C. Hoover, Facial recognition using tensor-tensor
decompositions, SIAM J. Imaging Sci., 6 (2013), pp. 437–463.

[18] G. Huang, L. Reichel, and F. Yin, On the choice of subspace for large-scale Tikhonov regu-
larization problems in general form, Numer. Algorithms, 81 (2019), pp. 33–55.

[19] E. Kernfeld, M. Kilmer, and S. Aeron, Tensor-tensor products with invertible linear trans-
forms, Linear Algebra Appl., 485 (2015), pp. 545–570.

[20] M. Kilmer, K. Braman, and N. Hao, Third order tensors as operators on matrices: A theoretical
and computational framework, Technical Report, Tufts University, Department of Computer
Science, 2011.

[21] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, Third-order tensors as operators on
matrices: A theoretical and computational framework with applications in imaging, SIAM J.
Matrix Anal. Appl., 34 (2013), pp. 148–172.

[22] M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra
Appl., 435 (2011), pp. 641–658.

[23] S. Kindermann, Convergence analysis of minimization-based noise level-free parameter choice
rules for linear ill-posed problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.

[24] S. Kindermann and K. Raik, A simplified L-curve method as error estimator, Electron. Trans.
Numer. Anal., 53 (2020), pp. 217–238.

[25] W. Liu, and X. Jin, A study on T-eigenvalues of third-order tensors, Linear Algebra and its
Applications, 612 (2021), pp. 357–374.

[26] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009),
pp. 455–500.

[27] C. D. Martin, R. Shafer, and B. LaRue, An order-p tensor factorization with applications in
imaging, SIAM J. Sci. Comput., 35 (2013), pp. A474–A490.

31

[28] E. Newman, M. Kilmer, and L. Horesh, Image classification using local tensor singular
value decompositions, 2017 IEEE 7th International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, 2017, pp. 1-5, doi: 10.1109/CAM-
SAP.2017.8313137.

[29] L. Reichel and G. Rodriguez, Old and new parameter choice rules for discrete ill-posed prob-
lems, Numer. Algorithms, 63 (2013), pp. 65–87.

[30] L. Reichel and A. Shyshkov, A new zero-finder for Tikhonov regularization, BIT Numer.
Math., 48 (2008), pp. 627–643.

[31] S. Soltani, M. E. Kilmer, and P. C. Hansen, A tensor-based dictionary learning approach to
tomographic image reconstruction, BIT Numer. Math., 56 (2016), pp. 1425–1454.

[32] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. E. Kilmer, Novel factorization strategies for higher
order tensors: Implications for compression and recovery of multi-linear data, arXiv preprint,
2013, https://arxiv.org/pdf/1307.0805.pdf

32

	Introduction
	Related prior work and some applications
	Organization

	Notation and Preliminaries
	Tensor Tikhonov Regularization
	The t-product Golub-Kahan-Tikhonov (tGKT) Method
	The tGKT method for the approximate solution of (1.2)
	The tGKT method for the approximate solution of (1.8)

	The GG-tGKT and G-tGKT Methods for the Approximate Solution of (1.8) and (1.2)
	The GG-tGKT method for the approximate solution of (1.8)
	The G-tGKT method for the approximate solution of (1.2) and (1.8)

	Numerical Examples
	Conclusion

