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Abstract

The need to know a few singular triplets associated with the largest singular val-
ues of a third-order tensor arises in data compression and extraction. This paper
describes a new method for their computation using the t-product. Methods for deter-
mining a couple of singular triplets associated with the smallest singular values also
are presented. The proposed methods generalize available restarted Lanczos bidiag-
onalization methods for computing a few of the largest or smallest singular triplets
of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices
to determine accurate approximations of the largest and smallest singular triplets,
respectively. Computed examples show applications to data compression and face
recognition.
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1 INTRODUCTION

The last 20 years has seen an immense growth of the amount of data that is collected for analysis, but it is a challenging problem
to extract useful information from available data. This difficulty arises, e.g., in machine learning, data mining, and deep learning;
see, e.g., Arnold et al.1. The extraction of useful information from data that is represented by a matrix often is facilitated by the
singular value decomposition of the matrix. Typically, only a few of the largest singular triplets, i.e., the largest singular values
and associated right and left singular vectors, are required to extract useful information from the matrix. A restarted Lanczos
bidiagonalization method for computing accurate approximations of these singular triplets is described in2, and R code written
by Bryan W. Lewis is available at3.

In many recent applications the given data are represented by a multidimensional array. These arrays, known as tensors, are
natural generalizations of matrices. Several approaches to define tensor-tensor products and tensor-matrix products are described
in the literature, including the 𝑛-mode product4,5, the t-product6,7, and the c-product8,9. Generalizations of the singular value
decomposition (SVD) to tensors are described in5 using the 𝑛-mode product (the so-called HOSVD), and in8,6 using the tensor
c-product and t-product. The need to compute the SVD or a partial SVD of a tensor arises in a variety of applications, including
image restoration, tensor completion10, robust tensor principal component analysis11, tensor compression12, and recognition
of color faces13,14,15. These applications require knowledge of the largest singular values and associated lateral tensor singular
slices.

It is the purpose of the this paper to introduce a new restarted tensor Lanczos bidiagonalization method for third-order tensors
using the t-product for approximating a few of the largest singular values and associated lateral tensor singular slices. This method
generalizes the approach described in2 from matrices to tensors. We remark that the Lanczos bidiagonalization method (also



2 A. El Hachimi ET AL

known as the Golub-Kahan bidiagonalization method) for third-order tensors using the t-product has been described in16,17,6,18;
however, this bidiagonalization method differs from the one of the present paper.

In2 the authors describe a restarted Lanczos bidiagonalization method for the computation of a few of the smallest singular
values and associated singular vectors of a large matrix by determining harmonic Ritz values is presented. This paper presents
an analogous scheme for third-order tensors.

The organization of this paper is as follows. Section 2 recalls some properties of the t-product and Section 3 reviews tensor
Lanczos bidiagonalization of third-order tensors using the t-product. Restarted tensor Lanczos bidiagonalization methods are
presented for the approximation of a few of the largest singular values and associated lateral tensor singular slices by computing
lateral tensor Ritz slices, as well as for approximating a few of the smallest singular values and associated lateral tensor singular
slices by evaluating harmonic lateral tensor Ritz slices. Section 4 discusses multidimensional principal component analysis using
a partial tensor HOSVD with application to face recognition, and Section 5 presents a few computed examples. Concluding
remarks can be found in Section 6.

2 THE TENSOR T-PRODUCT

This section reviews results by Kilmer et al.6,19 and uses notation employed there and by Kolda and Bader5. A third-order tensor
is an array A = [𝑎𝑖𝑗𝑘] ∈ ℝ𝓁×𝑝×𝑛. Matrices and vectors are tensors of order two and one, respectively. A slice or frame of a third-
order tensor A is a section obtained by fixing any one of the three indices. Using MATLAB notation, A (𝑖, ∶, ∶), A (∶, 𝑗, ∶),
and A (∶, ∶, 𝑘) denote the 𝑖th horizontal, the 𝑗th lateral, and the 𝑘th frontal slices of A , respectively. The lateral slice A (∶, 𝑗, ∶)
also is denoted by ⃗A𝑗 , and the frontal slice A (∶, ∶, 𝑘) is an 𝓁 × 𝑝 matrix that is sometimes denoted by A (𝑘). A fiber of a third
order tensor A is defined by fixing any two of the three indices. The fiber A (𝑖, 𝑗, ∶) is called a tube of A . We will use capital
calligraphic letters A to denote third-order tensors, capital letters 𝐴 to identify matrices, bold face lower case letters 𝒂 to denote
tubes, and lower case letters 𝑎 stand for scalars. Further, 𝕂𝓁×𝑝

𝑛 = ℝ𝓁×𝑝×𝑛 denotes the space of third-order tensors of size 𝓁×𝑝×𝑛,
𝕂𝓁

𝑛 = ℝ𝓁×1×𝑛 stands for the space of lateral slices of size 𝓁 × 𝑛, and 𝕂𝑛 = ℝ1×1×𝑛 denotes the space of tubes with 𝑛 entries. For
a third-order tensor A ∈ 𝕂𝓁×𝑝

𝑛 with frontal slices A (𝑖), 𝑖 = 1,… , 𝑛, we define:
• The block circulant matrix associated with A :

𝚋𝚌𝚒𝚛𝚌(A ) =

⎡

⎢

⎢

⎢

⎢

⎣

A (1) A (𝑛) … A (2)

A (2) A (1) … A (3)

⋮ ⋱ ⋱ ⋮
A (𝑛) A (𝑛−1) … A (1)

⎤

⎥

⎥

⎥

⎥

⎦

∈ 𝕂𝓁𝑛×𝑝𝑛. (1)

• The operator 𝚞𝚗𝚏𝚘𝚕𝚍 applied to A gives the matrix made up of its frontal slices,

𝚞𝚗𝚏𝚘𝚕𝚍(A ) =

⎡

⎢

⎢

⎢

⎢

⎣

A (1)

A (2)

⋮
A (𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

∈ 𝕂𝓁𝑛×𝑝.

We also will need the inverse operator 𝚏𝚘𝚕𝚍 such that 𝚏𝚘𝚕𝚍 (𝚞𝚗𝚏𝚘𝚕𝚍 (A )) = A .
• The block diagonal matrix associated with A is defined as

𝚋𝚍𝚒𝚊𝚐 (A ) =

⎡

⎢

⎢

⎢

⎢

⎣

A (1)

A (2)

⋱
A (𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

∈ 𝕂𝓁𝑛×𝑝𝑛.

Definition 1. (19) Let A ∈ 𝕂𝓁×𝑞
𝑛 and B ∈ 𝕂𝑞×𝑝

𝑛 be third-order tensors. The t-product of A and B is defined by
A ⋆ B ∶= 𝚏𝚘𝚕𝚍 (𝚋𝚌𝚒𝚛𝚌(A ) 𝚞𝚗𝚏𝚘𝚕𝚍(B)) ∈ 𝕂𝓁×𝑝

𝑛 .

The block circulant matrix (1) can be block-diagonalized by using the discrete Fourier transform (DFT) as follows:
𝚋𝚌𝚒𝚛𝚌(A ) =

(

𝐹𝐻
𝑛 ⊗ 𝐼𝓁

)

𝚋𝚍𝚒𝚊𝚐(Â )
(

𝐹𝑛 ⊗ 𝐼𝑝
)

,



A. El Hachimi ET AL 3

where 𝐹𝑛 ∈ ℂ𝑛×𝑛 is the discrete Fourier matrix, 𝐹𝐻
𝑛 denotes its conjugate transpose, Â stands for the Fourier transform of A

along each tube, 𝐼𝓁 ∈ ℝ𝓁×𝓁 denotes the identity matrix, and ⊗ is the Kronecker product. The matrix Â can be computed with
the fast Fourier transform (FFT) algorithm; see19 for details. Using MATLAB notations, we have

Â = 𝚏𝚏𝚝(A , [ ], 3).

The inverse operation can be evaluated in MATLAB with the command
A = 𝚒𝚏𝚏𝚝(Â , [ ], 3).

Hence, the t-product C = A ⋆ B can be evaluated by using
Ĉ (𝑖) = Â (𝑖)B̂(𝑖), 𝑖 = 1, 2,… , 𝑛, (2)

where Â (𝑖), B̂(𝑖), and Ĉ (𝑖) are the 𝑖th frontal slices of the tensors Â , B̂, and Ĉ , respectively.
As already pointed out by Kilmer et al.6, one can use symmetry properties of the DFT when applied to real data to reduce the

computational effort when evaluating the t-product with the FFT. This is described by the following result, which can be found,
e.g., in20.
Lemma 1. Given a real vector 𝑣 ∈ ℝ𝑛, the associated DFT vector 𝑣 = 𝐹𝑛𝑣 satisfies

𝑣1 ∈ ℝ, 𝚌𝚘𝚗𝚓
(

𝑣𝑖
)

= 𝑣𝑛−𝑖+2, 𝑖 = 2, 3,… ,
[𝑛 + 1

2

]

,

where 𝚌𝚘𝚗𝚓 denotes the complex conjugation operator and
[𝑛 + 1

2

]

is the integer part of 𝑛 + 1
2

.
It follows that for a third-order tensor A ∈ 𝕂𝓁×𝑝

𝑛 , we have
Â (1) ∈ ℝ𝓁×𝑝, 𝚌𝚘𝚗𝚓

(

Â (𝑖)
)

= Â (𝑛−𝑖+2), 𝑖 = 2, 3,… ,
[𝑛 + 1

2

]

.

This shows that the t-product of two third-order tensors can be determined by evaluating just about half the number of products
involved in (2). Algorithm 1 describes the computations.

Algorithm 1 t-product of third-order tensors.
Input: A ∈ 𝕂𝓁×𝑞

𝑛 , B ∈ 𝕂𝑞×𝑝
𝑛 .

Output: C ∶= A ⋆ B ∈ 𝕂𝓁×𝑝
𝑛 .

1: Compute Â = 𝚏𝚏𝚝(A , [ ], 3), B̂ = 𝚏𝚏𝚝(B, [ ], 3).
2: for 𝑖 = 1,… ,

[𝑛 + 1
2

]

do
3: Ĉ (𝑖) = Â (𝑖)B̂(𝑖).
4: end for
5: for 𝑖 =

[𝑛 + 1
2

]

+ 1,… , 𝑛 do

6: Ĉ (𝑖) = 𝚌𝚘𝚗𝚓

(

Ĉ (𝑛−𝑖+2)
)

.
7: end for
8: C = 𝚒𝚏𝚏𝚝

(

Ĉ , [ ], 3
)

.

The following definition is concerned with the t-product of a third-order tensor and a tube.
Definition 2. Let A ∈ 𝕂𝓁×𝑝

𝑛 and 𝒃 ∈ 𝕂𝑛. Then C ∶= A ⋆ 𝒃 ∈ 𝕂𝓁×𝑝
𝑛 is obtained by applying the inverse DFT along each tube

of Ĉ , where each frontal slice is determined by the standard matrix product between each frame of Â and 𝒃̂, i.e.,
Ĉ (𝑖) = Â (𝑖)𝒃̂

(𝑖)
= 𝒃̂

(𝑖)
Â (𝑖), 𝑖 = 1, 2,… , 𝑛.

A third-order tensor A ∈ 𝕂𝓁×𝑝
𝑛 can be written as

A =
[

⃗A1, ⃗A2,… , ⃗A𝑝

]

,
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thus, for the tensors A ∈ 𝕂𝓁×𝑞
𝑛 and B ∈ 𝕂𝑞×𝑝

𝑛 , the t-product A ⋆ B can be expressed as
A ⋆ B =

[

A ⋆ B⃗1,A ⋆ B⃗2,… ,A ⋆ B⃗𝑝

]

,

where
A ⋆ ⃖⃖⃖⃗B𝑖 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗(A ⋆ B)𝑖, 𝑖 = 1, 2,… , 𝑝.

The Frobenius norm of a third-order tensor A ∈ 𝕂𝓁×𝑝
𝑛 is given by

‖A ‖𝐹 ∶=

√

√

√

√

√

𝓁,𝑝,𝑛
∑

𝑖1,𝑖2,𝑖3=1
𝑎2𝑖1,𝑖2,𝑖3 ,

and the inner product of two third-order tensors of the same size A ,B ∈ 𝕂𝓁×𝑝
𝑛 is defined as

⟨A ,B⟩ ∶=
𝓁,𝑝,𝑛
∑

𝑖1,𝑖2,𝑖3=1
𝑎𝑖1,𝑖2,𝑖3𝑏𝑖1,𝑖2,𝑖3 .

We have the relations
‖A ‖𝐹 = 1

√

𝑛
‖

‖

‖

Â
‖

‖

‖𝐹
, ⟨A ,B⟩ = 1

𝑛
⟨Â , B̂⟩.

We recall for later use the definitions of some special tensors and operations:
• The identity tensor I𝓁 ∈ 𝕂𝓁×𝓁

𝑛 is the tensor whose first frontal slice is the identity matrix and all other slices have zero
entries only.

• The transpose of a real third-order tensor, A ∈ 𝕂𝓁×𝑝
𝑛 , denoted by A 𝐻 ∈ 𝕂𝑝×𝓁

𝑛 , is the tensor obtained by first transposing
each one of the frontal slices of A , and then reversing the order of the transposed frontal slices 2 through 𝑛; see19. Let the
third-order tensors A and B be such that the products A ⋆B and B𝐻 ⋆A 𝐻 are defined. Then, similarly to the matrix
transpose, the tensor transpose satisfies (A ⋆ B)𝐻 = B𝐻 ⋆ A 𝐻 .

• A tensor Q ∈ 𝕂𝓁×𝓁
𝑛 is said to be orthogonal if and only if

Q𝐻 ⋆ Q = Q ⋆ Q𝐻 = I𝓁 .

• A square third-order tensor A ∈ 𝕂𝓁×𝓁
𝑛 is invertible if there is a third-order tensor B ∈ 𝕂𝓁×𝓁

𝑛 such that
A ⋆ B = I𝓁 , B ⋆ A = I𝓁 .

In this case B is said to be the inverse of A , and is denoted by A −1.
Definition 3. (6) Let ⃗A𝑖 ∈ 𝕂𝓁

𝑛 for 𝑖 = 1, 2,… , 𝑝 be lateral slices of the tensor A ∈ 𝕂𝓁×𝑝
𝑛 . A t-linear combination of these slices

is defined as
⃗A1 ⋆ 𝒃1 + ⃗A2 ⋆ 𝒃2 +…+ ⃗A𝑝 ⋆ 𝒃𝑝,

where the 𝒃𝑖 for 𝑖 = 1, 2,… , 𝑝 are tubes in 𝕂𝑛. Moreover,

𝚜𝚙𝚊𝚗

{

⃗A1, ⃗A2,… , ⃗A𝑝

}

=

{ 𝑝
∑

𝑖=1

⃗A𝑖 ⋆ 𝒃𝑖 ∶ 𝒃𝑖 ∈ 𝕂𝑛, 𝑖 = 1, 2,… , 𝑝

}

.

The tensor singular value decomposition (t-SVD) associated with the t-product, introduced by Kilmer and Martin19,
generalizes the classical SVD of a matrix. It is described in the next theorem.
Theorem 1. (19) Let A ∈ 𝕂𝓁×𝑝

𝑛 be a third-order tensor. Then it can be represented as the t-product of three third-order tensors,
A = U ⋆ S ⋆ V 𝐻 , (3)

where U ∈ 𝕂𝓁×𝓁
𝑛 and V ∈ 𝕂𝑝×𝑝

𝑛 are orthogonal tensors, and S ∈ 𝕂𝓁×𝑝
𝑛 is an f-diagonal tensor, i.e., each frontal slice of the

DFT of S is a diagonal matrix.
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Algorithm 2 The t-SVD of a third-order tensor.
Input: A ∈ 𝕂𝓁×𝑝

𝑛 .
Output: U ∈ 𝕂𝓁×𝓁

𝑛 , S ∈ 𝕂𝓁×𝑝
𝑛 , V ∈ 𝕂𝑝×𝑝

𝑛 .
1: Â = 𝚏𝚏𝚝(A , [ ], 3).
2: for 𝑖 = 1,… ,

[𝑛 + 1
2

]

do
3: [Û (𝑖), Ŝ (𝑖), V̂ (𝑖)] = 𝚜𝚟𝚍(Â (𝑖)).
4: end for
5: for 𝑖 = 1,… ,

[𝑛 + 1
2

]

+ 1 do

6: Û (𝑖) = 𝚌𝚘𝚗𝚓

(

Û (𝑛−𝑖+2)
)

, Ŝ (𝑖) = 𝚌𝚘𝚗𝚓

(

Ŝ (𝑛−𝑖+2)
)

, and V̂ (𝑖) = 𝚌𝚘𝚗𝚓

(

V̂ (𝑛−𝑖+2)
)

.
7: end for
8: Compute U = 𝚒𝚏𝚏𝚝(Û , [ ], 3), S = 𝚒𝚏𝚏𝚝(Ŝ , [ ], 3), and V = 𝚒𝚏𝚏𝚝(V̂ , [ ], 3).

Algorithm 2 summarizes the computation of the t-SVD of a third-order tensor with the aid of the FFT.
The factorization (3) can be expressed as

A = U ⋆ S ⋆ V 𝐻 =
min{𝓁,𝑝}
∑

𝑖=1
U⃗𝑖 ⋆ 𝒔𝑖 ⋆ V⃗ 𝐻

𝑖 ,

where the 𝒔𝑖 = S (𝑖, 𝑖, ∶) are singular tubes, and U⃗𝑖 = U (∶, 𝑖, ∶) and V⃗𝑖 = U (∶, 𝑖, ∶) are right and left lateral tensor singular
slices, respectively, for 𝑖 = 1, 2,… ,min{𝓁, 𝑝}. The triplets {𝒔𝑖, U⃗𝑖, V⃗𝑖}𝑖=1∶min(𝓁,𝑝) will be referred to as singular triplets of the
tensor A . The singular tubes are ordered so that their norms 𝜎𝑖 = ‖𝒔𝑖‖𝐹 are decreasing with 𝑖, i.e.,

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎min{𝓁,𝑝} ≥ 0.

Note that we also have the relations
A ⋆ V⃗𝑖 = U⃗𝑖 ⋆ 𝒔𝑖, A 𝐻 ⋆ U⃗𝑖 = V⃗𝑖 ⋆ 𝒔𝑖, 𝑖 = 1, 2,… ,min{𝓁, 𝑝}.

We note for future reference that
S (𝑖, 𝑖, 1) =

𝑛
∑

𝑗=1

1
𝑛
Ŝ (𝑖, 𝑖, 𝑗). (4)

In the following, we will need the notion of rank of a third-order tensor.
Definition 4. Let A ∈ 𝕂𝓁×𝑝

𝑛 be a third-order tensor. Then its tubal rank is defined as
𝚛𝚊𝚗𝚔𝑡 (A ) = 𝚌𝚊𝚛𝚍

{

𝜎𝑖 > 0, 𝑖 = 1, 2,… ,min{𝓁, 𝑝}
}

,

where 𝜎𝑖 is the norm of the singular tube 𝒔𝑖 of A and 𝚌𝚊𝚛𝚍 stands for the cardinality.
The next result generalizes the Eckart-Young theorem for matrices to third-order tensors. It is important in the context of data

compression.
Theorem 2. (12,19) Let the t-SVD of a third-order tensor A ∈ 𝕂𝓁×𝑝

𝑛 be given by A = U ⋆ S ⋆ V 𝐻 . For 1 ≤ 𝑘 ≤ min{𝓁, 𝑝},
define the truncated t-SVD by

A𝑘 =
𝑘
∑

𝑖=1
U⃗𝑖 ⋆ 𝒔𝑖 ⋆ V⃗ 𝐻

𝑖 .

Then
A𝑘 = argmin

Ã ∈𝕄

‖

‖

‖

A − Ã
‖

‖

‖𝐹
,

where 𝕄 is the set given by 𝕄 = {X ⋆ Y ; with X ∈ 𝕂𝓁×𝑘
𝑛 , Y ∈ 𝕂𝑘×𝑝

𝑛 }.
The matrix QR factorization also can be generalized to tensors.

Theorem 3. (19) Let A ∈ 𝕂𝓁×𝑝
𝑛 . Then A can be factored as

A = Q ⋆ R, (5)
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where Q ∈ 𝕂𝓁×𝓁
𝑛 is an orthogonal tensor and R ∈ 𝕂𝓁×𝑝

𝑛 is an f-upper triangular tensor, i.e., each frontal slice of the DFT of R

is an upper triangular matrix. The factorization (5) is referred to as the t-QR factorization of A .
Algorithm 3 summarizes the computation of the t-QR factorization (5). The function 𝚚𝚛 in line 3 of the algorithm computes

a QR factorization of the matrix Â (𝑖) ∈ ℂ𝓁×𝑝; thus Â (𝑖) = Q̂(𝑖)R̂(𝑖), where the matrix Q̂(𝑖) ∈ ℂ𝓁×𝓁 is orthogonal and the matrix
R̂(𝑖) ∈ ℂ𝓁×𝑝 has an upper triangular leading principal submatrix of order 𝓁.

Algorithm 3 t-QR factorization of a third-order tensor.
Input: A ∈ 𝕂𝓁×𝑝

𝑛 .
Output: Q ∈ 𝕂𝓁×𝓁

𝑛 , R ∈ 𝕂𝓁×𝑝
𝑛 .

1: Â = 𝚏𝚏𝚝(A , [ ], 3).
2: for 𝑖 = 1 … ,

[𝑛 + 1
2

]

do
3: [Q̂(𝑖), R̂(𝑖)] = 𝚚𝚛(Â (𝑖)).
4: end for
5: for 𝑖 =

[𝑛 + 1
2

]

+ 1… , 𝑛 do

6: Q̂(𝑖) = 𝚌𝚘𝚗𝚓

(

Q̂(𝑛−𝑖+2)
)

and R̂(𝑖) = 𝚌𝚘𝚗𝚓

(

R̂(𝑛−𝑖+2)
)

.
7: end for
8: Compute Q = 𝚒𝚏𝚏𝚝(Q̂, [ ], 3) and R = 𝚒𝚏𝚏𝚝(R̂, [ ], 3).

Following Kilmer et al.6, we define orthogonality of lateral tensor slices. Let X⃗ and Y⃗ be two lateral tensor slices in 𝕂𝓁
𝑛 and

define the inner product of these slices as
⟨

X⃗ , Y⃗
⟩

∶= X⃗ 𝐻 ⋆ Y⃗ ∈ 𝕂𝑛.

The lateral slices in the set
{

X⃗1, X⃗2,… , X⃗𝑝

}

, (6)
with 𝑝 ≥ 2, are said to be orthogonal if

⟨

X⃗𝑖, X⃗𝑗

⟩

=
{

𝛼𝑖e if 𝑖 = 𝑗,
0 if 𝑖 ≠ 𝑗,

(7)
where e is the tube in 𝕂𝑛, whose first element is 1 and the remaining elements vanish, and the 𝛼𝑖, 𝑖 = 1, 2,… , 𝑝, are nonvanishing
scalars. Furthermore, if 𝛼𝑖 = 1 for all 𝑖 = 1, 2,… , 𝑝, then the set (6) is said to be orthonormal.

Following6, we observe that any lateral slice X⃗ ∈ 𝕂𝓁
𝑛 can be normalized as
X⃗ = Y⃗ ⋆ a (8)

with Y⃗ ∈ 𝕂𝓁
𝑛 , ‖‖
‖

Y⃗
‖

‖

‖

= 1, and a ∈ 𝕂𝑛. Here the tensor norm is defined as

‖

‖

‖

Y⃗
‖

‖

‖

=

‖

‖

‖

‖

⟨

Y⃗ , Y⃗
⟩

‖

‖

‖

‖𝐹
‖

‖

‖

Y⃗
‖

‖

‖𝐹

.

Note that Y⃗ has unit norm if and only if
⟨

Y⃗ , Y⃗
⟩

= 𝒆; see6 for more details. Algorithm 4 summarizes the normalization process.
The MATLAB function 𝚛𝚊𝚗𝚍𝚗 in the algorithm generates a vector in ℝ𝓁 with normally distributed pseudorandom entries with
mean zero and variance one.

3 TENSOR LANCZOS BIDIAGONALIZATION FOR COMPUTING THE LARGEST AND
SMALLEST SINGULAR TRIPLETS

This section describes the Lanczos bidiagonalization process for tensors using the t-product, and discusses how approximations
of the largest and smallest singular triplets of a large third-order tensor A ∈ 𝕂𝓁×𝑝

𝑛 can be computed.
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Algorithm 4 Normalize(X⃗ ).
Input: X⃗ ∈ 𝕂𝓁

𝑛 .
Output: Y⃗ ∈ 𝕂𝓁

𝑛 of unit norm and a ∈ 𝕂𝑛 that satisfy (8).

1: ⃗̂
Y = 𝚏𝚏𝚝(X⃗ , [ ], 3).

2: for 𝑖 = 1,… ,
[𝑛 + 1

2

]

do

3: â(𝑖) =
‖

‖

‖

‖

‖

⃗̂
Y

(𝑖)‖
‖

‖

‖

‖𝐹

.
4: if â(𝑖) > 0 then

5: ⃗̂
Y

(𝑖)
=

⃗̂
Y

(𝑖)

â(𝑖)

6: else

7: ⃗̂
Y

(𝑖)
= 𝚛𝚊𝚗𝚍𝚗(𝓁, 1); b(𝑖) =

‖

‖

‖

‖

‖

⃗̂
Y

(𝑖)‖
‖

‖

‖

‖𝐹

, and ⃗̂
Y

(𝑖)
=

⃗̂
Y

(𝑖)

b(𝑖)
.

8: end if
9: end for

10: for 𝑖 =
[𝑛 + 1

2

]

+ 1,… , 𝑛 do

11: ⃗̂
Y

(𝑖)
= 𝚌𝚘𝚗𝚓

(

⃗̂
Y

(𝑛−𝑖+2))

, â(𝑖) = 𝚌𝚘𝚗𝚓

(

â(𝑛−𝑖+2)
)

.
12: end for
13: ⃗̂

Y = 𝚒𝚏𝚏𝚝( ⃗̂Y , [ ], 3), a = 𝚒𝚏𝚏𝚝(â, [ ], 3).

3.1 The tensor Lanczos bidiagonalization algorithm
The Lanczos bidiagonalization process was introduced for matrices by Golub and Kahan21 and therefore sometimes is referred
to as the Golub-Kahan bidiagonalization process. For a matrix 𝐴 ∈ ℝ𝓁×𝑝, this process is closely related to symmetric Lanczos
process applied to the real symmetric matrices 𝐴𝐴𝑇 and 𝐴𝑇𝐴, or alternatively to the symmetric matrix

[

0 𝐴
𝐴𝑇 0

]

.

Lanczos bidiagonalization algorithms have been applied to solve numerous problems such as large-scale least squares
problem22, the approximation of the largest or smallest singular triplets of a large matrix2,23,24, and in Tikhonov regularization
of large linear discrete ill-posed problems; see, e.g.,25,26. We note that the bidiagonalization method described in22 and applied
in25,26 reduces a large matrix 𝐴 to a small lower bidiagonal matrix, while in2 the matrix 𝐴 is reduced to a small upper bidiagonal
matrix. We will review the latter approach.

Application of 𝑚 ≪ min{𝓁, 𝑝} steps of the Lanczos bidiagonalization process to the matrix 𝐴 ∈ ℝ𝓁×𝑝 with the initial unit
vector 𝑝1 ∈ ℝ𝓁 generically produces two matrices

𝑃𝑚 =
[

𝑝1, 𝑝2,… , 𝑝𝑚
]

∈ ℝ𝑝×𝑚, 𝑄𝑚 =
[

𝑞1, 𝑞2,… , 𝑞𝑚
]

∈ ℝ𝓁×𝑚.

The columns of 𝑃𝑚 and 𝑄𝑚 form orthonormal bases for the Krylov subspaces
K𝑚

(

𝐴𝑇𝐴, 𝑝1
)

= 𝚜𝚙𝚊𝚗{𝑝1, 𝐴𝑇𝐴𝑝1,
(

𝐴𝑇𝐴
)2 𝑝1,… ,

(

𝐴𝑇𝐴
)𝑚−1 𝑝1},

K𝑚
(

𝐴𝐴𝑇 , 𝑞1
)

= 𝚜𝚙𝚊𝚗{𝑞1, 𝐴𝐴𝑇 𝑞1,
(

𝐴𝐴𝑇 )2 𝑞1,… ,
(

𝐴𝐴𝑇 )𝑚−1 𝑞1},

respectively, where 𝑞1 = 𝐴𝑝1∕‖𝐴𝑝1‖2. A matrix interpretation of the recursion relations of the Lanczos process gives the matrix
relations

𝐴𝑃𝑚 = 𝑄𝑚𝐵𝑚, (9)
𝐴𝑇𝑄𝑚 = 𝑃𝑚𝐵

𝑇
𝑚 + 𝑟𝑚𝑒

𝑇
𝑚, (10)
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where 𝑒𝑚 = [0,… , 0, 1]𝑇 ∈ ℝ𝑚, and 𝑟𝑚 ∈ ℝ𝑝 which satisfies 𝑃 𝑇
𝑚 𝑟𝑚 = 0. The matrix 𝐵𝑚 ∈ ℝ𝑚×𝑚 is upper bidiagonal and

satisfies 𝐵𝑚 = 𝑄𝑇
𝑚𝐴𝑃𝑚. Equation (10) can be rewritten as

𝐴𝑇𝑄𝑚 = 𝑃𝑚+1𝐵
𝑇
𝑚,𝑚+1,

where 𝐵𝑚,𝑚+1 =
[

𝐵𝑚, 𝛽𝑚𝑒𝑚
]

∈ ℝ𝑚×(𝑚+1), 𝑃𝑚+1 =
[

𝑃𝑚, 𝑝𝑚+1
]

∈ ℝ𝑝×(𝑚+1), and 𝑟𝑚 = 𝛽𝑚𝑝𝑚+1 with 𝛽𝑚 = ‖

‖

𝑟𝑚‖‖𝐹 .
When considering bidiagonalization of a third-order tensor A using the t-product, the scalars and the columns of the matrices

𝑃𝑚 and 𝑄𝑚 in the matrix decompositions (9) and (10) become tubes and lateral slices, respectively, in the decompositions
determined by the tensor Lanczos bidiagonalization process. The application of 𝑚 steps of tensor Lanczos bidiagonalization to
the third-order tensor A ∈ 𝕂𝓁×𝑝

𝑛 generically computes two tensors
P𝑚 =

[

P⃗1, P⃗2,… , P⃗𝑚

]

∈ 𝕂𝑝×𝑚
𝑛 and Q𝑚 =

[

Q⃗1, Q⃗2,… , Q⃗𝑚

]

∈ 𝕂𝓁×𝑚
𝑛 ,

whose lateral slices form bases for the tensor Krylov subspaces K𝑚

(

A 𝐻 ⋆ A , P⃗1

)

and
K𝑚

(

A ⋆ A 𝐻 , Q⃗1

)

, respectively. They are defined by
K𝑚

(

A 𝐻 ⋆ A , P⃗1

)

= 𝚜𝚙𝚊𝚗{P⃗1,
(

A 𝐻 ⋆ A
)

⋆ P⃗1,… ,
(

A 𝐻 ⋆ A
)𝑚−1 ⋆ P⃗1},

K𝑚

(

A ⋆ A 𝐻 , Q⃗1

)

= 𝚜𝚙𝚊𝚗{Q⃗1,
(

A ⋆ A 𝐻)

⋆ Q⃗1,… ,
(

A ⋆ A 𝐻)𝑚−1 ⋆ Q⃗1},

where P⃗1 ∈ 𝕂𝑝
𝑛 is a lateral slice of unit norm, and the lateral slice Q⃗1 ∈ 𝕂𝓁

𝑛 is of unit norm and proportional to A ⋆ P⃗1.
Algorithm 5 describes the tensor Lanczos bidiagonalization algorithm.

Algorithm 5 Tensor Lanczos bidiagonalization using the t-product.
Input: A ∈ 𝕂𝓁×𝑝

𝑛 , number of steps 𝑚 ≤ min{𝓁, 𝑝}, P⃗1 ∈ 𝕂𝑝
𝑛 with unit norm.

Output: P𝑚 = [P⃗1, P⃗2,… , P⃗𝑚] ∈ 𝕂𝑝×𝑚
𝑛 and Q𝑚 = [Q⃗1, Q⃗2,… , Q⃗𝑚] ∈ 𝕂𝓁×𝑚

𝑛 with orthonormal lateral slices, B𝑚 ∈ 𝕂𝑚×𝑚
𝑛

a bidiagonal tensor, and R⃗𝑚 ∈ 𝕂𝓁
𝑚.

1: P1 =
[

P⃗1

]

.
2: Q⃗1 = A ⋆ P⃗1.
3: [Q⃗1,𝜶1] = 𝙽𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(Q⃗1).
4: Q1 =

[

Q⃗1

]

, B𝑚(1, 1, ∶) = 𝜶1.
5: for 𝑖 = 1 to 𝑚 do
6: R⃗𝑖 = A 𝐻 ⋆ Q⃗𝑖 − 𝜶𝑖 ⋆ P⃗𝑖.
7: Reorthogonalization R⃗𝑖 = R⃗𝑖 − P𝑖 ⋆ (P𝐻

𝑖 ⋆ R⃗𝑖).
8: if 𝑖 < 𝑚 then
9: [P⃗𝑖+1, 𝜷 𝑖] = 𝙽𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(R⃗𝑖).

10: P𝑖+1 =
[

P𝑖, P⃗𝑖+1

]

, B𝑚(𝑖, 𝑖 + 1, ∶) = 𝜷 𝑖.
11: Q⃗𝑖+1 = A ⋆ P⃗𝑖+1 − 𝜷 𝑖 ⋆ Q⃗𝑖.
12: Reorthogonalization Q⃗𝑖+1 = Q⃗𝑖+1 − Q𝑖 ⋆ (Q𝐻

𝑖 ⋆ Q⃗𝑖+1).
13: [Q⃗𝑖+1,𝜶𝑖+1] = 𝙽𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎(Q⃗𝑖+1).
14: Q𝑖+1 =

[

Q𝑖, Q⃗𝑖+1

]

, B𝑚(𝑖 + 1, 𝑖 + 1, ∶) = 𝜶𝑖+1.
15: end if
16: end for

We remark that Algorithm 5 differs from the tensor bidiagonalization algorithms described in6,18 in that the former produces
an upper bidiagonal tensor B𝑚, while the latter determine a lower bidiagonal tensor. The use of an upper bidiagonal tensor in
the present paper is inspired by the choices in2,21. Algorithm 5 is said to break down when one of the tensor slices R⃗𝑖 or Q⃗𝑖+1
vanishes. We comment below on this situation, but note that breakdown is exceedingly rare.
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Theorem 4. Generically, Algorithm 5 determines the decompositions
A ⋆ P𝑚 = Q𝑚 ⋆ B𝑚, (11)

A 𝐻 ⋆ Q𝑚 = P𝑚 ⋆ B𝐻
𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻

𝑚 , (12)
with P𝑚 ∈ 𝕂𝑝×𝑚

𝑛 , Q𝑚 ∈ 𝕂𝓁×𝑚
𝑛 , where P𝐻

𝑚 ⋆ P𝑚 = I𝑚 and Q𝐻
𝑚 ⋆ Q𝑚 = I𝑚. The tensor E⃗𝑚 ∈ 𝕂𝑚

𝑛 is the canonical lateral
slice whose elements are zero except for the first element of the 𝑚th tube, which equals 1, and R⃗𝑚 ∈ 𝕂𝑝

𝑛 is determined by steps
6 and 7 of Algorithm 5 such that P𝐻

𝑚 ⋆ R⃗𝑚 = 0. The tensor B𝑚 ∈ 𝕂𝑚×𝑚
𝑛 is upper bidiagonal, each of whose frontal slices is an

upper bidiagonal matrix. Thus,

B𝑚 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜶1 𝜷1 0 … 0
0 𝜶2 𝜷2 0 ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 … … 𝜶𝑚−1 𝜷𝑚−1
0 … … 0 𝜶𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝜶𝑖 and 𝜷 𝑖 are tubes in 𝕂𝑛.
Proof. The relations (11) and (12) follow immediately from the recursion relations of Algorithm 5. The orthonormality of the
lateral slices of P𝑚 and Q𝑚 can be shown by induction. The proof is closely related to the proof of the existence of the relations
(9) and (10), and the properties of the matrices involved. The latter relations are used in2.

The Lanczos bidiagonalization process may suffer from loss of orthogonality of the lateral slices of the tensors P𝑚 and Q𝑚.
Therefore, reorthogonalization is carried out in Lines 7 and 12 in Algorithm 5. We remark that reorthogonalization makes the
algorithm more costly both in terms of storage and arithmetic floating point operations. The extra cost may be acceptable as
long as the number of steps 𝑚 is fairly small; see2,27,28 for discussions of the matrix case.

Let R⃗𝑚 be the tensor whose lateral slices are defined in Line 5. Then
[P⃗𝑚+1, 𝜷𝑚] = 𝙽𝚘𝚛𝚖𝚊𝚕𝚒𝚣𝚎

(

R⃗𝑚

)

. (13)
In the rare event that some 𝜷𝑗 , 1 ≤ 𝑗 < 𝑚, vanishes (

𝜷𝑗 = 𝟎
), Algorithm 5 breaks down. Then the singular tubes of B𝑗 are

singular tubes of A , and the left and right lateral tensor singular slices are obtained as described below. When no breakdown
takes place, we can express equation (12) as

A 𝐻 ⋆ Q𝑚 = P𝑚+1 ⋆ B𝐻
𝑚,𝑚+1,

where P𝑚+1 is obtained from P𝑚 by appending the lateral slice P⃗𝑚+1, defined in (13), to get P𝑚+1 =
[

P𝑚, P⃗𝑚+1

]

∈ 𝕂𝑝×(𝑚+1)
𝑛 ,

and B𝑚,𝑚+1 ∈ 𝕂𝑚×(𝑚+1)
𝑛 is obtained by appending the lateral slice 𝜷𝒎 ⋆ E⃗𝑚 to B𝑚, i.e., B𝑚,𝑚+1 =

[

B𝑚, 𝜷𝑚 ⋆ E⃗𝑚

]

.
We turn to the connection between the partial Lanczos bidiagonalization of a third-order tensor A and the partial Lanczos

tridiagonalization process of the tensor A 𝐻 ⋆A . This connection will be used later. Multiplying (11) from the left by A 𝐻 , we
get

A 𝐻 ⋆ A ⋆ P𝑚 = A 𝐻 ⋆ Q𝑚 ⋆ B𝑚

= P𝑚 ⋆ B𝐻
𝑚 ⋆ B𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻

𝑚 ⋆ B𝑚

= P𝑚 ⋆ B𝐻
𝑚 ⋆ B𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻

𝑚 ⋆ 𝜶𝑚. (14)
Let T𝑚 be the symmetric tridiagonal tensor defined by

T𝑚 = B𝐻
𝑚 ⋆ B𝑚 ∈ 𝕂𝑚×𝑚

𝑛 .

Then (14) is a partial tensor Lanczos tridiagonalization of A 𝐻 ⋆ A with initial lateral slice P⃗1 = P𝑚 ⋆ E⃗1. The lateral slices
of P𝑚 form an orthonormal basis for the tensor Krylov subspace

K𝑚

(

A 𝐻 ⋆ A , P⃗1

)

= 𝚜𝚙𝚊𝚗

{

P⃗1,A
𝐻 ⋆ A ⋆ P⃗1,

(

A 𝐻 ⋆ A
)2 ⋆ P⃗1,… ,

(

A 𝐻 ⋆ A
)𝑚−1 ⋆ P⃗1

}

.

Similarly, multiplying (12) from the left by A , we obtain
A ⋆ A 𝐻 ⋆ Q𝑚 = Q𝑚 ⋆ B𝑚 ⋆ B𝐻

𝑚 + A ⋆ R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 .
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It follows that the lateral slices of Q𝑚 form an orthonormal basis for the Krylov subspace
K𝑚

(

A ⋆ A 𝐻 , Q⃗1

)

= 𝚜𝚙𝚊𝚗

{

Q⃗1,A ⋆ A 𝐻 ⋆ Q⃗1,
(

A ⋆ A 𝐻)2 ⋆ Q⃗1,… ,
(

A ⋆ A 𝐻)𝑚−1 ⋆ Q⃗1

}

.

3.2 Approximating singular tubes and singular lateral slices
We describe an approach to approximate the largest or smallest singular triplets (singular tubes and associated left and right
lateral singular slices) of a large tensor A ∈ 𝕂𝓁×𝑝

𝑛 , (𝓁 ≥ 𝑝), using restarted partial tensor Lanczos bidiagonalization. Since the
tensor A is large, computing its 𝑘 largest or smallest singular triplets by determining the t-SVD of A is very expensive. The
idea is to approximate the extreme singular triplets of the tensor A by determining the extreme singular triplets of the bidiagonal
tensor B𝑚, where 𝑚 is small. Let {𝒔𝑖,𝑚, U⃗𝑖,𝑚, V⃗𝑖,𝑚}, 1 ≤ 𝑖 ≤ 𝑚, denote the singular triplets of B𝑚. They satisfy

B𝑚 ⋆ V⃗𝑖,𝑚 = 𝒔𝑖,𝑚 ⋆ U⃗𝑖,𝑚 and B𝐻
𝑚 ⋆ U⃗𝑖,𝑚 = 𝒔𝑖,𝑚 ⋆ V⃗𝑖,𝑚.

In the following, to simplify the notation, we will use {𝒔𝑖, U⃗𝑖, V⃗𝑖} instead of {𝒔𝑖,𝑚, U⃗𝑖,𝑚, V⃗𝑖,𝑚} as a singular triplet of the tensor
B𝑚.

The 𝑘 ≤ 𝑚 largest singular triplets of A are approximated by the triplets {𝒔A
𝑖,𝑚, U⃗

A
𝑖,𝑚 , V⃗

A
𝑖,𝑚 } defined by

𝒔A
𝑖,𝑚 = 𝒔𝑖, U⃗ A

𝑖,𝑚 = Q𝑚 ⋆ U⃗𝑖, V⃗ A
𝑖,𝑚 = P𝑚 ⋆ V⃗𝑖, 𝑖 = 1, 2,… , 𝑘. (15)

For 𝑖 = 1, 2,… , 𝑘, we have
A ⋆ V⃗ A

𝑖,𝑚 = A ⋆ P𝑚 ⋆ V⃗𝑖

= Q𝑚 ⋆ B𝑚 ⋆ V⃗𝑖

= Q𝑚 ⋆ 𝒔𝑖 ⋆ U⃗𝑖

= Q𝑚 ⋆ U⃗𝑖 ⋆ 𝒔𝑖
= U⃗ A

𝑖,𝑚 ⋆ 𝒔A
𝑖,𝑚.

Similarly,
A 𝐻 ⋆ U⃗ A

𝑖,𝑚 = A 𝐻 ⋆ Q𝑚 ⋆ U⃗𝑖 =
(

P𝑚 ⋆ B𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻
𝑚

)

⋆ U⃗𝑖

= V⃗ A
𝑖,𝑚 ⋆ 𝒔A

𝑖,𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖. (16)

To accept {𝒔A
𝑖,𝑚, U⃗

A
𝑖,𝑚 , V⃗

A
𝑖,𝑚 } as an approximate singular triplet of A , the remainder term R⃗𝑚 ⋆ E⃗ 𝐻

𝑚 ⋆ U⃗𝑖 should be small
enough. We can bound the remainder term according to

‖

‖

‖

R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

‖

‖

‖𝐹
= 1

√

𝑛

‖

‖

‖

‖

‖

𝚋𝚍𝚒𝚊𝚐

(

̂⃗
R𝑚

)

𝚋𝚍𝚒𝚊𝚐

(

̂(
E⃗ 𝐻
𝑚

)

)

𝚋𝚍𝚒𝚊𝚐

(

̂⃗
U𝑖

)

‖

‖

‖

‖

‖𝐹

≤ 1
√

𝑛

‖

‖

‖

‖

‖

𝚋𝚍𝚒𝚊𝚐

(

̂⃗
R𝑚

)

‖

‖

‖

‖

‖𝐹

‖

‖

‖

‖

‖

𝚋𝚍𝚒𝚊𝚐

(

̂(
E⃗ 𝐻
𝑚

)

)

𝚋𝚍𝚒𝚊𝚐

(

̂⃗
U𝑖

)

‖

‖

‖

‖

‖𝐹

=
‖

‖

‖

‖

𝚋𝚍𝚒𝚊𝚐

(

R⃗𝑚

)

‖

‖

‖

‖𝐹

‖

‖

‖

‖

‖

𝚋𝚍𝚒𝚊𝚐

(

̂(
E⃗ 𝐻
𝑚

)

)

𝚋𝚍𝚒𝚊𝚐

(

̂⃗
U𝑖

)

‖

‖

‖

‖

‖𝐹

= ‖

‖

𝜷𝑚
‖

‖𝐹

𝑛
∑

𝑠=1

|

|

|

|

|

̂(
E⃗ 𝐻
𝑚

)

(𝑠)
̂⃗
U𝑖

(𝑠)|
|

|

|

|

.

Analogously as in2, we require for 1 ≤ 𝑠 ≤ 𝑛 that
|

|

|

|

|

̂(
E⃗ 𝐻
𝑚

)

(𝑠)
̂⃗
U𝑖

(𝑠)|
|

|

|

|

≤ 𝛿′ ‖‖
‖

Â (𝑠)‖
‖

‖

= 𝛿′
(

𝒔Â (𝑠)

1,𝑚

)

= 𝛿
(

𝒔Â
1,𝑚

)(𝑠)
,

for a user-chosen parameter 𝛿′ > 0, where
(

𝒔Â
𝑗,𝑚

)(𝑠) denotes the 𝑠th element of the 𝑗th approximate singular tube of Â . We
obtain from eq. (4) that

‖

‖

‖

R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

‖

‖

‖𝐹
≤ 𝛿′ ‖

‖

𝜷𝑚
‖

‖𝐹

𝑛
∑

𝑠=1

(

𝒔Â
1

)(𝑠)
= 𝑛𝛿′ ‖

‖

𝜷𝑚
‖

‖𝐹
(

𝒔A
1
)(1) = 𝑛𝛿′′

(

𝒔A
1
)(1) ,
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where 𝛿′′ = 𝛿′ ‖
‖

𝜷𝑚
‖

‖𝐹 . The computed approximate singular triplets {𝒔A
𝑖,𝑚, U⃗

A
𝑖,𝑚 , V⃗

A
𝑖,𝑚 }, 𝑖 = 1, 2,… , 𝑘, of A are accepted as

singular triplets of A if
‖

‖

‖

R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

‖

‖

‖𝐹
≤ 𝛿

(

𝒔A
1,𝑚

)(1)
, 𝑖 = 1, 2,… 𝑘, (17)

for some user-specified parameter 𝛿 > 0.
To keep the storage requirement fairly small for large-scale problems, we would like the number of steps 𝑚 of the tensor

Lanczos bidiagonalization process to be small. However, when 𝑚 is small, it may not be possible to approximate the desired
singular triplets sufficiently accurately using the available Krylov subspaces K𝑚

(

A 𝐻 ⋆ A , Q⃗1

)

and K𝑚

(

A ⋆ A 𝐻 , P⃗1

)

. A
remedy for this situation is to restart the tensor Lanczos bidiagonalization process. The idea is to repeatedly update the initial
lateral slices used for the tensor Lanczos bidiagonalization process, and in this way determine a sequence of increasingly more
appropriate Krylov subspaces, until the 𝑘 desired singular triplets have been found with required accuracy. We remark that
restarting techniques have been used for computing a few desired singular triplets or eigenvalue-eigenvector pairs of a large
matrix, where properties of Ritz vectors, harmonic Ritz vectors, and refined Ritz vectors have been exploited; see, e.g.,2,23,29,30,31
for details.

3.3 Augmentation by Ritz lateral slices
Assume that we would like to approximate the 𝑘 largest singular triplets of A ∈ 𝕂𝓁×𝑝

𝑛 . To this end, we carry out 𝑚 > 𝑘 steps of
tensor Lanczos bidiagonalization as described in the previous subsection. The approximate right singular lateral slice V⃗ A

𝑖,𝑚 is a
Ritz lateral slice of A 𝐻 ⋆ A associated with the Ritz tube

(

𝒔A
𝑖,𝑚

)2
= 𝒔A

𝑖,𝑚 ⋆ 𝒔A
𝑖,𝑚 for 𝑖 ∈ {1, 2,… , 𝑚}, and we have

A 𝐻 ⋆ A ⋆ V⃗ A
𝑖,𝑚 = A 𝐻 ⋆ U⃗ A

𝑖,𝑚 ⋆ 𝒔A
𝑖,𝑚 =

(

V⃗ A
𝑖,𝑚 ⋆ 𝒔A

𝑖,𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

)

⋆ 𝒔A
𝑖,𝑚

= V⃗ A
𝑖,𝑚 ⋆

(

𝒔A
𝑖,𝑚

)2
+ R⃗𝑚 ⋆ E⃗ 𝐻

𝑚 ⋆ U⃗𝑖 ⋆ 𝒔A
𝑖,𝑚.

In what follows we will show some results that will help us to approximate the largest or smallest singular triplets of a third-
order tensor. The idea behind these results is to find equations that are analogous to (11) and (12), and such that the reduced
tensor will contain the 𝑘 approximate singular tubes among its first 𝑘 elements on the diagonal, and the right projection tensor
will contain the 𝑘 right Ritz lateral slices among its first 𝑘 lateral slices, and the left projection tensor will contain the 𝑘 left Ritz
lateral slices among its first 𝑘 lateral slices. The following theorem will be helpful.
Theorem 5. Assume that 𝑚 steps of Algorithm 5 have been applied to the third-order tensor A ∈ 𝕂𝓁×𝑝

𝑛 , and suppose that 𝜷𝑚
in (13) is nonvanishing. Then for 𝑘 < 𝑚, we have

A ⋆ P̃𝑘+1 = Q̃𝑘+1 ⋆ B̃𝑘+1, (18)
A 𝐻 ⋆ Q̃𝑘+1 = P̃𝑘+1 ⋆ B̃𝐻

𝑘+1 + 𝜷𝑘+1 ⋆
⃗̃
P𝑘+2 ⋆ E⃗ 𝐻

𝑘+1, (19)
where P̃𝑘+1 ∈ 𝕂𝑝×(𝑘+1)

𝑛 and Q̃𝑘+1 ∈ 𝕂𝓁×(𝑘+1)
𝑛 have orthonormal lateral slices, and the first 𝑘 lateral slices of P̃𝑚 are the first

𝑘 Ritz lateral slices of A , B̃𝑘+1 ∈ 𝕂(𝑘+1)×(𝑘+1)
𝑛 is an upper triangular tensor, ⃗̃

P𝑘+2 ∈ 𝕂𝑝
𝑛 is a lateral slice that is orthogonal to

P̃𝑘+1, 𝜷𝑘+1 ∈ 𝕂𝑛, and E⃗𝑘+1 ∈ 𝕂𝑘+1
𝑛 is the canonical element under the t-product.

Proof. Let the Ritz lateral slices V⃗ A
𝑖,𝑚 for 1 ≤ 𝑖 ≤ 𝑘 be associated with the 𝑘 Ritz tubes of A . Introduce the tensor

P̃𝑘+1 =
[

V⃗ A
1,𝑚 , V⃗

A
2,𝑚 ,… , V⃗ A

𝑘,𝑚, P⃗𝑚+1

]

∈ 𝕂𝑝×(𝑘+1)
𝑛 , (20)

where P⃗𝑚+1 is given by (13). Then, using the fact that A ⋆ V⃗ A
𝑖,𝑚 = U⃗ A

𝑖,𝑚 ⋆ 𝒔A
𝑖,𝑚 for 𝑖 = 1, 2,… , 𝑘, we obtain

A ⋆ P̃𝑘+1 =
[

A ⋆ V⃗ A
1,𝑚 ,A ⋆ V⃗ A

2,𝑚 ,… ,A ⋆ V⃗ A
𝑘,𝑚,A ⋆ P⃗𝑚+1

]

=
[

U⃗ A
1,𝑚 ⋆ 𝒔A

1,𝑚, U⃗
A
2,𝑚 ⋆ 𝒔A

2,𝑚,… , U⃗ A
𝑘,𝑚 ⋆ 𝒔A

𝑘,𝑚,A ⋆ P⃗𝑚+1

]

. (21)
Orthogonalizing the expression A ⋆ P⃗𝑚+1 against {U⃗ A

𝑖,𝑚 }𝑖=1∶𝑘 gives

A ⋆ P⃗𝑚+1 =
𝑘
∑

𝑖=1
𝝆𝑖 ⋆ U⃗ A

𝑖,𝑚 + ⃗̃
R𝑘, (22)
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where ⃗̃
R𝑘 is orthogonal to {U⃗ A

𝑖,𝑚 }𝑖=1∶𝑘, and the 𝝆𝑖 for 𝑖 ∈ {1, 2,… , 𝑘} are given by
𝝆𝑖 =

(

U⃗ A
𝑖,𝑚

)𝐻
⋆
(

A ⋆ P⃗𝑚+1

)

=
(

A 𝐻 ⋆ U⃗ A
𝑖,𝑚

)𝐻
⋆ P⃗𝑚+1

=
(

V⃗ A
𝑖,𝑚 ⋆ 𝒔A

𝑖,𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

)𝐻
⋆ P⃗𝑚+1

= 𝜷𝐻
𝑚 ⋆

(

U⃗ 𝐻
𝑖 ⋆ E⃗𝑚 ⋆ P⃗𝐻

𝑚+1

)

⋆ P⃗𝑚+1

= 𝜷𝑚 ⋆ U⃗ 𝐻
𝑖 ⋆ E⃗𝑚

= 𝜷𝑚 ⋆
⟨

U⃗𝑖, E⃗𝑚

⟩

,

because 𝜷𝑚 = 𝜷𝐻
𝑚 .

Let ⃗̃
R𝑘 =

⃗̃
R′

𝑘 ⋆ 𝜶̃𝑘+1 be a normalization of ⃗̃
R𝑘, and introduce the tensors

Q̃𝑘+1 =
[

U⃗ A
1,𝑚, U⃗

A
2,𝑚,… , U⃗ A

𝑘,𝑚,
⃗̃

R′
𝑘

]

∈ 𝕂𝓁×(𝑘+1)
𝑛 (23)

and

B̃𝑘+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒔A
1,𝑚 0 … 0 𝝆1

0 𝒔A
2,𝑚 … 0 𝝆2

⋮ ⋱ ⋱ ⋱ ⋮
0 … 0 𝒔A

𝑘,𝑚 𝝆𝑘
0 … … 0 𝜶̃𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ 𝕂(𝑘+1)×(𝑘+1)
𝑛 . (24)

Then, from (21) and (22), we obtain

A ⋆ P̃𝑘+1 =

[

U⃗ A
1,𝑚 ⋆ 𝒔A

1,𝑚, U⃗
A
2,𝑚 ⋆ 𝒔A

2,𝑚,… , U⃗ A
𝑘,𝑚 ⋆ 𝒔A

𝑘,𝑚,
𝑘
∑

𝑖=1
𝝆𝑖 ⋆ U⃗ A

𝑖,𝑚 + ⃗̃
R𝑘

]

= Q̃𝑘+1 ⋆ B̃𝑘+1. (25)
On the other hand, as

A 𝐻 ⋆ Q̃𝑘+1 =
[

A 𝐻 ⋆ U⃗ A
1,𝑚,A

𝐻 ⋆ U⃗ A
2,𝑚,… ,A 𝐻 ⋆ U⃗ A

𝑘,𝑚,A
𝐻 ⋆ ⃖⃖⃖⃖̃⃗

R′
𝑘

]

,

using (16), we get
A 𝐻 ⋆ U⃗ A

𝑖,𝑚 = V⃗ A
𝑖,𝑚 ⋆ 𝒔A

𝑖,𝑚 + R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

= V⃗ A
𝑖,𝑚 ⋆ 𝒔A

𝑖,𝑚 + P⃗𝑚+1 ⋆ 𝜷𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖

= V⃗ A
𝑖,𝑚 ⋆ 𝒔A

𝑖,𝑚 + P⃗𝑚+1 ⋆ 𝝆𝐻
𝑖 .

Since
⟨

A 𝐻 ⋆ ⃗̃
R

′

𝑘, V⃗
A
𝑖,𝑚

⟩

=
(

⃗̃
R

′

𝑘

)𝐻

⋆ A ⋆ V⃗ A
𝑖,𝑚 = 𝒔A

𝑖,𝑚 ⋆
(

⃗̃
R

′

𝑘

)𝐻

⋆ U⃗ A
𝑖,𝑚 = 0,

the tensor A 𝐻 ⋆ ⃗̃
R′

𝑘 is orthogonal to V⃗ A
𝑖,𝑚 . Moreover, in view of that V⃗ A

𝑖,𝑚 is orthogonal to P⃗𝑚+1, we obtain
A 𝐻 ⋆ ⃖⃖⃖⃖̃⃗

R′
𝑘 = 𝜸 ⋆ P⃗𝑚+1 + F⃗𝑘+1, (26)

where F⃗𝑘+1 is orthogonal to P⃗𝑚+1 as well as to V⃗ A
𝑖,𝑚 . Due to the orthogonality of ⃗̃

R𝑘 (or ⃖⃖⃖⃖̃⃗R′
𝑘) to

{

U⃗ A
𝑖,𝑚

}

𝑖=1∶𝑘
, the parameter

𝜸 in (26) is given by
𝜸 =

⟨

P⃗𝑚+1,A
𝐻 ⋆ ⃖⃖⃖⃖̃⃗

R′
𝑘

⟩

=
⟨

A ⋆ P⃗𝑚+1,
⃖⃖⃖⃖̃⃗
R′

𝑘

⟩

=

⟨ 𝑘
∑

𝑖=1
𝝆𝑖 ⋆ U⃗ A

𝑖,𝑚 + ⃗̃
R𝑘,

⃖⃖⃖⃖̃⃗
R′

𝑘

⟩

=
⟨

⃗̃
R𝑘,

⃖⃖⃖⃖̃⃗
R′

𝑘

⟩

= 𝜶̃𝑘+1.
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Consequently,
A 𝐻 ⋆ Q̃𝑘+1 =

[

V⃗ A
1,𝑚 ⋆ 𝒔A

1,𝑚 + P⃗𝑚+1 ⋆ 𝝆𝐻
1 ,… , V⃗ A

𝑘,𝑚 ⋆ 𝒔A
𝑘,𝑚 + P⃗𝑚+1 ⋆ 𝝆𝐻

𝑘 , 𝜶̃𝑘+1 ⋆ P⃗𝑚+1 + F⃗𝑘+1

]

= P̃𝑘+1 ⋆ B̃𝐻
𝑘+1 + F⃗𝑘+1 ⋆ E⃗ 𝐻

𝑘+1

= P̃𝑘+1 ⋆ B̃𝐻
𝑘+1 + 𝜷𝑘+1 ⋆

⃗̃
P𝑘+2 ⋆ E⃗ 𝐻

𝑘+1, (27)
where 𝜷𝑘+1 and ⃗̃

P𝑘+2 are determined by the normalization of F⃗𝑘+1, i.e., F⃗𝑘+1 = 𝜷𝑘+1 ⋆
⃗̃
P𝑘+2, because

B̃𝐻
𝑘+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒔A
1,𝑚 𝟎 … 𝟎 𝟎
𝟎 𝒔A

2,𝑚 𝟎 … 𝟎
⋮ ⋱ ⋱ ⋱ ⋮
𝟎 … 𝟎 𝒔A

𝑘,𝑚 𝟎
𝝆𝐻
1 𝝆𝐻

2 … 𝝆𝐻
𝑘 𝜶̃𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ 𝕂(𝑘+1)×(𝑘+1)
𝑛 .

The orthogonality of P̃𝑘+1 and Q̃𝑘+1 now follows from the orthogonality of the sequences
{

V⃗ A
𝑖,𝑚

}

𝑖=1∶𝑘
and

{

U⃗ A
𝑖,𝑚

}

𝑖=1∶𝑘
,

respectively, given by (15).
In the preceding theorem we assumed 𝜷𝑚 to be nonvanishing. If, instead, 𝜷𝑚 vanishes, then the singular tubes of B𝑚 are

singular tubes of A , and the left and right singular lateral slices of A can be determined from those of B𝑚. Similarly, if 𝜷𝑘+1 in
(27) vanishes, then the singular tubes of B̃𝑘+1 are singular tubes of A , and the singular lateral slices of A can be determined
from P̃𝑘+1 and Q̃𝑘+1.

If 𝜷𝑘+1 is nonvanishing, then we append new lateral slices to P̃𝑘+1 and Q̃𝑘+1 repeatedly until iteration 𝑚 − 𝑘. This is the
subject of the following theorem.
Theorem 6. Assume that 𝑚 steps of Algorithm 5 have been applied to A and that eqs. (25) and (27) hold. If the 𝜷𝑘+1 are
nonvanishing for 1 ≤ 𝑘 < 𝑚, then we have the following relations

A ⋆ P̃𝑚 = Q̃𝑚 ⋆ B̃𝑚,

A 𝐻 ⋆ Q̃𝑚 = P̃𝑚 ⋆ B̃𝐻
𝑚 + 𝜷𝑚 ⋆ ⃗̃

P𝑚+1 ⋆ E⃗ 𝐻
𝑚 ,

where P̃𝑚 ∈ 𝕂𝑝×𝑚
𝑛 and Q̃𝑚 ∈ 𝕂𝓁×𝑚

𝑛 have orthonormal lateral slices, B̃𝑚 ∈ 𝕂𝑚×𝑚
𝑛 is f-upper triangular, 𝜷𝑚 ∈ 𝕂𝑛, ⃗̃

P𝑚+1 ∈ 𝕂𝑝
𝑛

is orthogonal to P̃𝑚, and E⃗𝑚 ∈ 𝕂𝑚
𝑛 is the canonical element under the t-product. The first 𝑘 lateral slices of P̃𝑚 and Q̃𝑚 are the

same as those of the tensors P̃𝑘+1 and Q̃𝑘+1, respectively, given in Theorem 5.
Proof. Let the tensors P̃𝑘+1 and Q̃𝑘+1 defined in (25) and (27), respectively, be represented by

P̃𝑘+1 =
[

⃗̃
P1,

⃗̃
P2,… , ⃗̃P𝑘+1

]

∈ 𝕂𝑝×(𝑘+1)
𝑛

and
Q̃𝑘+1 =

[

⃗̃
Q1,

⃗̃
Q2,… , ⃗̃Q𝑘+1

]

∈ 𝕂𝓁×(𝑘+1)
𝑛 ,

and the tensor P̃𝑘+2 be given by
P̃𝑘+2 =

[

P̃𝑘+1,
⃗̃
P𝑘+2

]

∈ 𝕂𝑝×(𝑘+2)
𝑛 .

By normalizing the quantity
(

I𝓁 − Q̃𝑘+1 ⋆ Q̃𝐻
𝑘+1

)

⋆ A ⋆ ⃗̃
P𝑘+2, we obtain the lateral slice ⃗̃

Q𝑘+2 such that 𝜶̃𝑘+2 ⋆
⃗̃
Q𝑘+2 =

(

I𝓁 − Q̃𝑘+1 ⋆ Q̃𝐻
𝑘+1

)

⋆ A ⋆ ⃗̃
P𝑘+2. Application of (19) gives

𝜶̃𝑘+2 ⋆
⃗̃
Q𝑘+2 =

(

I𝓁 − Q̃𝑘+1 ⋆ Q̃𝐻
𝑘+1

)

⋆ A ⋆ ⃗̃
P𝑘+2

= A ⋆ ⃗̃
P𝑘+2 − Q̃𝑘+1 ⋆ Q̃𝐻

𝑘+1 ⋆ A ⋆ ⃗̃
P𝑘+2

= A ⋆ ⃗̃
P𝑘+2 − Q̃𝑘+1 ⋆

(

B̃𝑘+1 ⋆ P̃𝐻
𝑘+1 + 𝜷𝑘+1 ⋆ E⃗𝑘+1 ⋆

⃗̃
P

𝐻

𝑘+2

)

⋆ ⃗̃
P𝑘+2

= A ⋆ ⃗̃
P𝑘+2 − 𝜷𝑘+1 ⋆

⃗̃
Q𝑘+1. (28)
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Consider the tensors
Q̃𝑘+2 =

[

Q̃𝑘+1,
⃗̃
Q𝑘+2

]

∈ 𝕂𝓁×(𝑘+2)
𝑛

and

B̃𝑘+2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒔A
1,𝑚 0 … 0 𝝆1 0
0 𝒔A

2,𝑚 0 … 𝝆2 0
⋮ ⋱ ⋱ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 … 0 𝒔A

𝑘,𝑚 𝝆𝑘 0
0 … … 0 𝜶̃𝑘+1 𝜷𝑘+1
0 … … … 0 𝜶̃𝑘+2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ 𝕂(𝑘+2)×(𝑘+2)
𝑛 .

Using (18) and (28), we get
A ⋆ P̃𝑘+2 = Q̃𝑘+2 ⋆ B̃𝑘+2.

To determine the lateral slice ⃗̃
P𝑘+3, we normalize

(

I − P̃𝑘+2 ⋆ P̃𝐻
𝑘+2

)

⋆ A 𝐻 ⋆ ⃗̃
Q𝑘+2 so that

𝜷𝑘+2 ⋆
⃗̃
P𝑘+3 =

(

I − P̃𝑘+2 ⋆ P̃𝐻
𝑘+2

)

⋆ A 𝐻 ⋆ ⃗̃
Q𝑘+2

and
𝜷𝑘+2 ⋆

⃗̃
P𝑘+3 = A 𝐻 ⋆ ⃗̃

Q𝑘+2 − 𝜶̃𝑘+2 ⋆
⃗̃
P𝑘+2. (29)

It now follows from (18) and (29) that
A 𝐻 ⋆ Q̃𝑘+2 = P̃𝑘+2 ⋆ B̃𝐻

𝑘+2 + 𝜷𝑘+2 ⋆
⃗̃
P𝑘+3 ⋆ E⃗ 𝐻

𝑘+2.

We can continue this procedure until iteration 𝑚 − 𝑘 and then obtain
A ⋆ P̃𝑚 = Q̃𝑚 ⋆ B̃𝑚, A 𝐻 ⋆ Q̃𝑚 = P̃𝑚 ⋆ B̃𝐻

𝑚 + 𝜷𝑚 ⋆ ⃗̃
P𝑚+1 ⋆ E⃗ 𝐻

𝑚 ,

where P̃𝑚 and Q̃𝑚 have orthonormal lateral slices and

B̃𝑚 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒔A
1,𝑚 0 … 𝝆1 0 … 0

⋱ ⋮
𝒔A
𝑘,𝑚 𝝆𝑘

𝜶̃𝑘+1 𝜷𝑘+1
⋱ ⋱

𝜶̃𝑚−1 𝜷𝑚−1
𝜶̃𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ 𝕂𝑚×𝑚
𝑛 .

This gives the desired result.
If we would like to compute the smallest singular triplets of A , then we can use the same theorems; Theorems 5 and 7,

but instead of working with the 𝑘 first right singular lateral slices V⃗ A
𝑖,𝑚 , 1 ≤ 𝑖 ≤ 𝑘, to construct the P̃𝑘+1, Q̃𝑘+1, B̃𝑘+1, 𝜷𝑘+1,

and ⃗̃
P𝑘+2 in Equations (18) and (19), we use the 𝑘 last right singular lateral slices. The computations are analogous to those

described above.

3.4 Augmentation by harmonic Ritz lateral slices
When the smallest singular values of a matrix 𝐴 are clustered, their computation by the restarted Lanczos bidiagonalization
method as described above may require many iterations. In this situation it may be beneficial to instead compute approximations
of the smallest singular values of 𝐴 by seeking to determine approximations of the largest singular values of the matrix (

𝐴𝑇𝐴
)−1

without explicitly computing the matrix (

𝐴𝑇𝐴
)−1. This was done for the matrix case by computing harmonic Ritz vectors;

see2,32. Harmonic Ritz vectors furnish approximations of eigenvectors of 𝐴𝑇𝐴 associated with the corresponding harmonic Ritz
values.
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In the case of tensors, harmonic Ritz lateral slices furnish approximations of eigenvectors of A 𝐻 ⋆ A associated with
harmonic Ritz tubes of A 𝐻 ⋆A . The harmonic Ritz tubes 𝜽̌𝑗 of A 𝐻 ⋆A associated with the partial tensor tridiagonalization
defined in (14) are the eigentubes of the generalized eigenvalue problem

(

(

B𝐻
𝑚 ⋆ B𝑚

)2 + 𝜶2
𝑚 ⋆ 𝜷2

𝑚 ⋆ E⃗𝑚 ⋆ E⃗ 𝐻
𝑚

)

⋆ ⃗̌𝜔𝑗 = 𝜽̌𝑗 ⋆ B𝐻
𝑚 ⋆ B𝑚 ⋆ ⃗̌𝜔𝑗 , 1 ≤ 𝑗 ≤ 𝑚. (30)

The eigenpair {𝜽̌𝑗 , ⃗̌𝜔𝑗} can be computed without forming the tensor B𝐻
𝑚 ⋆ B𝑚. Let

𝜔⃗𝑗 = B𝑚 ⋆ ⃗̌𝜔𝑗 . (31)
Using the relations

𝜶𝑚 ⋆ E⃗ 𝐻
𝑚 = E⃗ 𝐻

𝑚 ⋆ B𝑚 and 𝜶𝑚 ⋆ E⃗𝑚 = B𝐻
𝑚 ⋆ E⃗𝑚,

we can write
𝜶2
𝑚 ⋆ 𝜷2

𝑚 ⋆ E⃗𝑚 ⋆ E⃗ 𝐻
𝑚 = 𝜷2

𝑚 ⋆ B𝐻
𝑚 ⋆ E⃗𝑚 ⋆ E⃗ 𝐻

𝑚 ⋆ B𝑚.
Therefore, using (31), the relation (30) can be written as

B𝐻
𝑚 ⋆

(

B𝑚 ⋆ B𝐻
𝑚 ⋆ B𝑚 + 𝜷2

𝑚 ⋆ E⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ B𝑚

)

⋆ B−1
𝑚 ⋆ 𝜔⃗𝑗 = 𝜽̌𝑗 ⋆ B𝐻

𝑚 ⋆ B𝑚 ⋆ B−1
𝑚 ⋆ 𝜔⃗𝑗 .

It follows that
(

B𝑚 ⋆ B𝐻
𝑚 + 𝜷2

𝑚 ⋆ E⃗𝑚 ⋆ E⃗ 𝐻
𝑚

)

⋆ 𝜔⃗𝑗 = 𝜽̌𝑗 ⋆ 𝜔⃗𝑗 (32)
and

(

B𝑚 ⋆ B𝐻
𝑚 + 𝜷2

𝑚 ⋆ E⃗𝑚 ⋆ E⃗ 𝐻
𝑚

)

= B𝑚,𝑚+1 ⋆ B𝐻
𝑚,𝑚+1.

In this subsection, we denote the singular triplets of B𝑚,𝑚+1 by {𝒔′𝑖, U⃗
′
𝑖 , V⃗

′
𝑖 } for 1 ≤ 𝑖 ≤ 𝑚, with the first 𝑘 of them being

the smallest singular triplets. Recall that we are interested in determining approximations of the smallest singular triplets of A .
The 𝑘 smallest singular triplets of B𝑚,𝑚+1 form the tensors

U ′
𝑘 =

[

U⃗ ′
1 , U⃗

′
2 ,… , U⃗ ′

𝑘

]

∈ 𝕂𝑚×𝑘
𝑛 , V ′

𝑘 =
[

V⃗ ′
1 , V⃗

′
2 ,… , V⃗ ′

𝑘

]

∈ 𝕂(𝑚+1)×𝑘
𝑛 ,

S ′
𝑘 =

[

𝒔′1 ⋆ E⃗1, 𝒔′2 ⋆ E⃗2,… , 𝒔′𝑘 ⋆ E⃗𝑘

]

∈ 𝕂𝑘×𝑘
𝑛 ,

where
B𝑚,𝑚+1 ⋆ V ′

𝑘 = U ′
𝑘 ⋆ S ′

𝑘 and B𝐻
𝑚,𝑚+1 ⋆ U ′

𝑘 = V ′
𝑘 ⋆ S ′

𝑘 .
We obtain from the above equations that

B𝑚,𝑚+1 ⋆ B𝐻
𝑚,𝑚+1 ⋆ U ′

𝑘 = U ′
𝑘 ⋆

(

S ′
𝑘

)2 ,

where
(

S ′
𝑘

)2 =
[

(

𝒔′1
)2 ⋆ E⃗1,… ,

(

𝒔′𝑘
)2 ⋆ E⃗𝑘

]

.

Consequently, the eigenpair
{

(

𝒔′𝑖
)2 ,U ′

𝑖

}

satisfies (32), and
{

(

𝒔′𝑖
)2 ,B−1

𝑚 ⋆ U ′
𝑖

}

is an eigenpair of (30). It follows that the
harmonic Ritz lateral slice associated with 𝜽̌𝑗 is given by

⃗̌
V 𝑗 = P𝑚 ⋆ ⃗̌𝜔𝑗 = P𝑚 ⋆ B−1

𝑚 ⋆ U⃗ ′
𝑗 . (33)

We turn to the computation of the residual of harmonic Ritz lateral slices. Using eqs. (14) and (32), we obtain the relations
A 𝐻 ⋆ A ⋆ ⃗̌

V 𝑗 − 𝜽̌𝑗 ⋆
⃗̌
V 𝑗 = A 𝐻 ⋆ A ⋆ P𝑚 ⋆ ⃗̌𝜔𝑗 − 𝜽̌𝑗 ⋆ P𝑚 ⋆ ⃗̌𝜔𝑗

=
(

P𝑚 ⋆ B𝐻
𝑚 ⋆ B𝑚 + 𝜷𝑚 ⋆ E⃗ 𝐻

𝑚 ∗ B𝑚

)

⋆ ⃗̌𝜔𝑗 − 𝜽̌𝑗 ⋆ P𝑚 ⋆ ⃗̌𝜔𝑗

= P𝑚 ⋆ B−1
𝑚 ⋆

(

B𝑚 ⋆ B𝐻
𝑚 − 𝜽𝑗 ∗ I𝑚

)

⋆ 𝜔⃗𝑗 + 𝜷𝑚 ⋆ P⃗𝑚+1 ⋆ E⃗ 𝐻
𝑚 ⋆ 𝜔⃗𝑗

= −𝜷2
𝑚 ⋆ P𝑚 ⋆ B−1

𝑚 ∗ E⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ 𝜔⃗𝑗 + 𝜷𝑚 ∗ P⃗𝑚+1 ⋆ E⃗ 𝐻

𝑚 ⋆ 𝜔⃗𝑗

= E⃗ 𝐻
𝑚 ⋆ 𝜔⃗𝑗 ⋆ 𝜷𝑚

(

P⃗𝑚+1 − 𝜷𝑚 ⋆ P𝑚 ⋆ B−1
𝑚 ⋆ E⃗𝑚

)

.

It follows that the residual can be expressed as
⃗̌
R𝑚 = P⃗𝑚+1 − 𝜷𝑚 ⋆ P𝑚 ⋆ B−1

𝑚 ⋆ E⃗𝑚. (34)
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We now proceed analogously as in the previous subsection, i.e., we use the smallest harmonic Ritz eigentubes of B𝐻
𝑚+1,𝑚 ⋆

B𝑚+1,𝑚 and associated eigenslices to approximate the 𝑘 smallest singular triplets of A . This yields relations that are analogous
to (11) and (12). The following theorem provides the details.
Theorem 7. Apply 𝑚 steps of Algorithm 5 to the third-order tensor A and assume that the tensor B𝑚 in (11) and (12) is
invertible. Then, for 𝑘 = 1,… , 𝑚 − 1, we have the relations

A ⋆ P̌𝑘+1 = Q̌𝑘+1 ⋆ B̌𝑘+1, (35)
A 𝐻 ⋆ Q̌𝑘+1 = P̌𝑘+1 ⋆ B̌𝐻

𝑘+1 + 𝜷𝑘+1 ⋆
⃗̌
P𝑘+2 ⋆ E⃗ 𝐻

𝑘+1, (36)
where P̌𝑘+1 ∈ 𝕂𝑝×(𝑘+1)

𝑛 and Q̌𝑘+1 ∈ 𝕂𝓁×(𝑘+1)
𝑛 have orthonormal lateral slices and B̌𝑘+1 ∈ 𝕂(𝑘+1)×(𝑘+1)

𝑛 is an upper triangular
tensor, where the 𝑘 first lateral slices of P̌𝑘+1 are a t-linear combination of the 𝑘 first harmonic Ritz lateral slices of A with
⃗̌
P𝑘+2 ∈ 𝕂𝑝

𝑛 is orthogonal to P̌𝑘+1. Moreover, E⃗𝑘+1 ∈ 𝕂𝑚
𝑛 is the canonical lateral slice under the t-product.

Proof. Let { ⃗̌V 𝑖}𝑖=1∶𝑘 be the first 𝑘 harmonic Ritz lateral slices of A . Using (33) and (34), we get
[

𝒔′1 ⋆
⃗̌
V 1, 𝒔′2 ⋆

⃗̌
V 2,… , 𝒔′𝑘 ⋆

⃗̌
V 𝑘,

⃗̌
R𝑚

]

=
[

P𝑚, P⃗𝑚+1

]

⋆

[

B−1
𝑚 ⋆ U ′

𝑘 ⋆ S ′
𝑘 −𝜷𝑚 ⋆ B−1

𝑚 ⋆ E⃗𝑚
0 𝒆

]

= P𝑚+1 ⋆

[

B−1
𝑚 ⋆ U ′

𝑘 ⋆ S ′
𝑘 −𝜷𝑚 ⋆ B−1

𝑚 ⋆ E⃗𝑚
0 𝒆

]

,

where 𝒆 has been defined in Equation (7).
Introduce the tensor

J𝑘+1 =

[

B−1
𝑚 ⋆ U ′

𝑘 ⋆ S ′
𝑘 −𝜷𝑚 ⋆ B−1

𝑚 ⋆ E⃗𝑚
0 𝒆

]

. (37)
Using the reduced t-QR factorization of J𝑘+1, we get

J𝑘+1 = Q′
𝑘+1 ⋆ R′

𝑘+1,

where Q′
𝑘+1 ∈ 𝕂(𝑚+1)×(𝑘+1)

𝑛 has orthonormal lateral slices and R′
𝑘+1 ∈ 𝕂(𝑘+1)×(𝑘+1)

𝑛 is an f-upper triangular tensor; see19. This
factorization can be computed by a simple modification of Algorithm 3.

Let
P̌𝑘+1 =

[

⃗̌
P1,

⃗̌
P2,… , ⃗̌P𝑘+1

]

= P𝑚+1 ⋆ Q′
𝑘+1 ∈ 𝕂𝓁×(𝑘+1)

𝑛 . (38)
Then

A ⋆ P̌𝑘+1 = A ⋆ P𝑚+1 ⋆ Q′
𝑘+1

=
[

A ⋆ P𝑚,A ⋆ P⃗𝑚+1

]

⋆ Q′
𝑘+1

=
[

A ⋆ P𝑚,A ⋆ P⃗𝑚+1

]

⋆ J𝑘+1 ⋆
(

R′
𝑘+1

)−1

=
[

A ⋆ P𝑚 ⋆ B−1
𝑚 ⋆ U ′

𝑘 ⋆ S ′
𝑘 ,A ⋆ P⃗𝑚+1 − A ⋆ P𝑚 ⋆ 𝜷𝑚 ⋆ B−1

𝑚 ⋆ E⃗𝑚

]

⋆
(

R′
𝑘+1

)−1

=
[

Q𝑚 ⋆ U ′
𝑘 ⋆ S ′

𝑘 ,A ⋆ P⃗𝑚+1 − Q⃗𝑚 ⋆ 𝜷𝑚

]

⋆
(

R′
𝑘+1

)−1 .

Define
Q̌𝑘 = Q𝑚 ⋆ U ′

𝑘 ∈ 𝕂𝑝×𝑘
𝑛 . (39)

Using the orthogonality of A ⋆ P⃗𝑚+1 − 𝜷𝑚 ⋆ Q⃗𝑚 against the lateral slices of Q̌𝑘 gives

𝜶̌𝑘+1 ⋆
⃗̌
Q𝑘+1 = −𝜷𝑚 ⋆ Q⃗𝑚 + A ⋆ P⃗𝑚+1 − Q̌𝑘 ⋆

⎡

⎢

⎢

⎢

⎢

⎣

𝜸̌1
𝜸̌2
⋮
𝜸̌𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, (40)
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where ‖

‖

‖

‖

⃗̌
Q𝑘+1

‖

‖

‖

‖

= 1 and 𝜶̌𝑘+1 is the tube obtained from the normalization of the tensor

−𝜷𝑚 ⋆ Q⃗𝑚 + A ⋆ P⃗𝑚+1 − Q̌𝑘 ⋆

⎡

⎢

⎢

⎢

⎢

⎣

𝜸̌1
𝜸̌2
⋮
𝜸̌𝑘

⎤

⎥

⎥

⎥

⎥

⎦

with

Q̌𝐻
𝑘 ⋆

(

−𝜷𝑚 ⋆ Q⃗𝑚 + A ⋆ P⃗𝑚+1

)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜸̌1
𝜸̌2
⋮
𝜸̌𝑘

⎤

⎥

⎥

⎥

⎥

⎦

.

It follows from (39) and (40) that

A ⋆ P̌𝑘+1 =
⎡

⎢

⎢

⎣

Q𝑚 ⋆ U ′
𝑘 ⋆ S ′

𝑘 , 𝜶̌𝑘+1 ⋆
⃗̌
Q𝑘+1 + Q̌𝑘 ⋆

⎡

⎢

⎢

⎣

𝜸𝟏
⋮
𝜸̌𝑘

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

⋆
(

R′
𝑘+1

)−1

=
[

Q𝑚 ⋆ U ′
𝑘 ,

⃗̌
Q𝑘+1

]

⋆

⎡

⎢

⎢

⎢

⎢

⎣

𝒔′1 𝜸̌1
⋱ ⋮

𝒔′𝑘 𝜸̌𝑘
𝜶̌𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

⋆
(

R′
𝑘+1

)−1 .

Hence,
A ⋆ P̌𝑘+1 = Q̌𝑘+1 ⋆ B̌𝑘+1, (41)

with

B̌𝑘+1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝒔′1 𝜸̌1
⋱ ⋮

𝒔′𝑘 𝜸̌𝑘
𝜶̌𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

⋆
(

R′
𝑘+1

)−1 ∈ 𝕂(𝑘+1)×(𝑘+1)
𝑛 , (42)

where B̌𝑘+1 is an upper triangular tensor as it is the t-product of two upper triangular tensors.
To show (36), we first notice that

A 𝐻 ⋆ Q̌𝑘 = A 𝐻 ⋆ Q𝑚 ⋆ U ′
𝑘 = P𝑚+1 ⋆ B𝐻

𝑚,𝑚+1 ⋆ U ′
𝑘 = P𝑚+1 ⋆ V ′

𝑘 ⋆ S ′
𝑘 .

Using the fact that
B𝑚,𝑚+1 =

[

B𝑚, 𝜷𝑚 ⋆ E⃗𝑚

]

= B𝑚 ⋆
[

I𝑚, 𝜷𝑚 ⋆ B−1
𝑚 ⋆ E⃗𝑚

]

,
we get

B𝑚,𝑚+1 ⋆ V ′
𝑘 = U ′

𝑘 ⋆ S ′
𝑘 ⇔

[

I𝑚, 𝜷𝑚 ⋆ B−1
𝑚 ⋆ E⃗𝑚

]

⋆ V ′
𝑘 = B−1

𝑚 ⋆ U ′
𝑘 ⋆ S ′

𝑘 .

It follows from the above result that
V ′
𝑘 =

[

B−1
𝑚 ⋆ U ′

𝑘 ⋆ S𝑘 −𝜷𝑚 ⋆ B−1
𝑚 ⋆ E⃗𝑚

0 𝒆

]

⋆

[

I𝑘

E⃗ 𝐻
𝑚+1 ⋆ V ′

𝑘

]

= J𝑘+1 ⋆

[

I𝑘

E⃗ 𝐻
𝑚+1 ⋆ V ′

𝑘

]

.
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We obtain
A 𝐻 ⋆ Q̌𝑘 = A 𝐻 ⋆ Q𝑚 ⋆ U ′

𝑘

= P𝑚+1 ⋆ B𝑚,𝑚+1 ⋆ U ′
𝑘

= P𝑚+1 ⋆ V ′
𝑘 ⋆ S ′

𝑘

= P𝑚+1 ⋆ J𝑘+1 ⋆

[

I𝑘

E⃗ 𝐻
𝑚+1 ⋆ V ′

𝑘

]

⋆ S ′
𝑘

= P𝑚+1 ⋆ Q′
𝑘+1 ⋆ R′

𝑘+1 ⋆

[

I𝑘

E⃗ 𝐻
𝑚+1 ⋆ V ′

𝑘

]

⋆ S ′
𝑘

= P̌𝑘+1 ⋆ R′
𝑘+1 ⋆

[

I𝑘

E⃗ 𝐻
𝑚+1 ⋆ V ′

𝑘

]

⋆ S ′
𝑘 .

The relation (41) now yields
Q̌𝐻

𝑘 ⋆ A ⋆ P̌𝑘+1 = B̌𝑘,𝑘+1 ⇔ P̌𝐻
𝑘+1 ⋆ A 𝐻 ⋆ Q̌𝑘 = B̌𝐻

𝑘,𝑘+1,

where B̌𝑘,𝑘+1 ∈ 𝕂(𝑘+1)×𝑘
𝑛 is the subtensor of B̌𝑘+1, which is obtained by removing the last horizontal slice of B̌𝑘+1. Then

P̌𝐻
𝑘+1 ⋆ A 𝐻 ⋆ Q̌𝑘 = R′

𝑘+1 ⋆

[

I𝑘

E⃗ 𝐻
𝑚+1 ⋆ V ′

𝑘

]

⋆ S ′
𝑘 = B̌𝐻

𝑘,𝑘+1

and
P̌𝐻

𝑘+1 ⋆ A 𝐻 ⋆ ⃗̌
Q𝑘+1 = B̌𝐻

𝑘+1 ⋆ Q̌𝐻
𝑘+1 ⋆

⃗̌
Q𝑘+1 = B̌𝐻

𝑘+1 ⋆ E⃗𝑘+1 = 𝜶̌𝑘+1 ⋆ E⃗𝑘+1.
Hence,

A 𝐻 ⋆ ⃗̌
Q𝑘+1 = 𝜶̌𝑘+1 ⋆

⃗̌
P𝑘+1 +

⃗̌
R

′

𝑘+1 (43)
with ⃗̌

R
′

𝑘+1 ⟂ P̌𝑘+1. It follows that
A 𝐻 ⋆ Q̌𝑘+1 = P̌𝑘+1 ⋆ B̌𝐻

𝑘+1 +
⃗̌
R

′

𝑘+1 ⋆ E⃗ 𝐻
𝑘+1.

Normalization of ⃗̌
R

′

𝑘+1 gives
A 𝐻 ⋆ Q̌𝑘+1 = P̌𝑘+1 ⋆ B̌𝐻

𝑘+1 + 𝜷𝑘+1 ⋆
⃗̌
P𝑘+2 ⋆ E⃗ 𝐻

𝑘+1.

The orthonormality of the lateral slices of P̌𝑘+1 and Q̌𝑘+1 holds by the construction of these tensors. Specifically, it follows
from (38) that the lateral slices of P̌𝑘+1 are orthonormal. Due to (39), the first 𝑘 lateral slices of Q̌𝑘+1 are orthonormal.

Notice that if 𝜷𝑘+1 given in (36) vanishes, then we have determined 𝑘 singular triplets, i.e., these singular triplets of A can
be computed by using the singular triplets of B̌𝑘+1, as well as P̌𝑘+1 and Q̌𝑘+1 defined in (35) and (36). If 𝜷𝑘+1 does not vanish,
then we append new lateral slices to P̌𝑘+1 and Q̌𝑘+1 in a similar way as we did in the previous subsection. The following result
is analogous to Theorem 6.
Theorem 8. Carry out 𝑚 steps of Algorithm 5 and assume that eqs (35) and (36) hold for 𝑘 = 1, 2,… , 𝑚− 1. Further, let 𝜷𝑘+1
in (36) be nonvanishing. Then we have the following relations

A ⋆ P̌𝑚 = Q̌𝑚 ⋆ B̌𝑚,

A 𝐻 ⋆ Q̌𝑚 = P̌𝑚 ⋆ B̌𝐻
𝑚 + 𝜷𝑚 ⋆ ⃗̌

P𝑚+1 ⋆ E⃗ 𝐻 ,

where P̌𝑚 ∈ 𝕂𝑝×𝑚
𝑛 and Q̌𝑚 ∈ 𝕂𝓁×𝑚

𝑛 are orthonormal tensors, B̌𝑚 ∈ 𝕂𝑚×𝑚
𝑛 is an upper triangular tensor, 𝜷𝑚 is a tube of 𝑛

elements, ⃗̌
P𝑚+1 ∈ 𝕂𝑝

𝑛 is orthogonal to all the lateral slices of P̌𝑚 and E⃗ 𝐻 ∈ 𝕂𝓁
𝑛 is the canonical lateral slice under the t-

product, where the first 𝑘 lateral slices of P̌𝑚 and Q̌𝑚 are the same as the lateral slices of P̌𝑘+1 and Q̌𝑘+1, respectively, given
in Theorem 7.
Proof. These results can be shown similarly as Theorem 6.
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Theorem 7 requires the invertibility of B𝑚. Notice that this tensor is well conditioned if all the frontal slices of B̂𝑚 are well
conditioned, i.e., if

max
1≤𝑖≤𝑛

𝜅
(

B̂(𝑖)
𝑚

)

is small, where

𝜅(B̂(𝑖)
𝑚 ) =

(

𝒔̂B𝑚
1

)(𝑖)

(

𝒔̂B𝑚
𝑚

)(𝑖)
.

Algorithm 6 describes computations required to compute approximations of either the 𝑘 largest singular triplets or the 𝑘
smallest singular triplets of a third-order tensor A using the methods we developed in the present and previous subsections.

Algorithm 6 Tensor Lanczos Bidiagonalization Ritz (t-LBR) algorithm for computing the largest and the smallest singular
triplets.
Input: A ∈ 𝕂𝓁×𝑝

𝑛 .
𝑚: the number of tensor Lanczos bidiagonalization steps.
P⃗1 ∈ 𝕂𝑝

𝑛 with unit norm.
𝑘: the number of the desired singular triplets.
𝛿: The tolerance to accept the singular triplets approximated.
𝜖: machine epsilon.
type: A Boolean variable for the kind of augmentation which is either ’Ritz’ for Ritz
augmentation or ’Harm’ for harmonic Ritz augmentation.

Output: The 𝑘 desired singular triplets of A , {𝜎𝑖, U⃗𝑖, V⃗𝑖}𝑖=1∶𝑘.

1: Compute the Partial Lanczos bidiagonalization of A by Algorithm 5.
2: Compute the t-SVD of B𝑚 using Algorithm 2.
3: Check the convergence stated in Equation (17). If all the 𝑘 desired singular triplets are well approximated, then exist.
4: Compute the augmented vectors:
5: if type=’Ritz’ or 𝒌(B𝑚) > 𝜖

1
2 then

6: Compute the tensors P ∶= P̃𝑘+1, Q ∶= Q̃𝑘+1, B ∶= B̃𝑘+1 and the residual F⃗𝑘 from (20), (23), (24) and (26).
7: end if
8: if type=’Harm’ and 𝒌(B𝑚) ≤ 𝜖

1
2 then

9: Compute the t-SVD of B𝑚,𝑚+1.
10: Compute the t-QR factorization of J𝑘+1 in (37).
11: Compute the tensors P ∶= P̌𝑘+1, Q ∶= Q̌𝑘+1, B ∶= B̌𝑘+1 and the residual ⃗̌

R𝑚 from (38), (39), (42) and (43).
12: end if
13: Append 𝑚 − 𝑘 lateral slices to P and Q, and 𝑚 − 𝑘 horizontal and lateral slices to B to obtain P𝑚, Q𝑚 and B𝑚, and

determine a new residual R⃗𝑚.
14: Go to 2.

4 MULTIDIMENSIONAL PRINCIPAL COMPONENT ANALYSIS FOR FACIAL
RECOGNITION

Principal component analysis (PCA) is used in numerous areas of science and engineering, such as in data denoising, image
classification, and facial recognition. Some approaches to color image classification involve conversion of color images to gray
scale images to reduce the computational burden, because color images are represented by tensors, while gray scale images can
be represented by matrices; see33,34. However, this conversion entails loss of information. A color image in RGB format can be
represented by a third-order tensor. This section discusses the application of PCA to third-order tensors.
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PCA when applied to gray scale face recognition computes a set of characteristics (eigenfaces) corresponding to the main
components of the initial set of training images. Recognition is done by projecting the training images into the eigenface sub-
space, in which an image of a person is classified by comparing it with other available images in the eigenface subspace. The
main advantages of this procedure are its simplicity, speed, and insensitivity to small changes of the faces.

When applying PCA to third-order tensors, the t-product, tubes, lateral slices, and third-order tensors are analogues of scalars,
vectors, and matrices in the eigenface technique for classifying grayscale images. Using this identification, PCA for third-order
tensors that represent color images is structurally very similar to PCA for matrices that represent grayscale images. The latter is
described in14.

Let 𝑁 training color images 𝐼1, 𝐼2,… , 𝐼𝑁 of size 𝓁 × 𝑝 × 𝑛 be available. They are represented by the third-order tensors
I1,I2,… ,I𝑁 in 𝕂𝓁×𝑝

𝑛 . The procedure of recognizing color facial images using third-order tensors is as follows:
1. For each image 𝐼𝑖 for 𝑖 = 1, 2,… , 𝑁 , we determine a lateral slice X⃗𝑖 ∈ 𝕂𝓁𝑝

𝑛 by vectorizing each frontal slice, i.e.,
X⃗ (𝑠)

𝑖 = 𝚟𝚎𝚌(I (𝑠)
𝑖 ) for 𝑠 = 1, 2,… , 𝑛. We then construct a tensor, whose frontal slices are given by X⃗𝑖, i.e.,

X =
[

X⃗1, X⃗2,… , X⃗𝑁

]

∈ 𝕂𝓁𝑝×𝑁
𝑛 .

2. Compute the mean of the frontal slices of X , i.e.,

M⃗ =
𝑁
∑

𝑖=1

X⃗𝑖

𝑁
,

and let
X = [X⃗ 1, X⃗ 2,… , X⃗ 𝑁 ], X⃗ 𝑖 = X⃗𝑖 − M⃗ .

3. Determine the first 𝑘 left singular vectors of X . We denote them by U⃗1,… , U⃗𝑘. Construct the projection subspace
𝕌𝑘 = 𝚜𝚙𝚊𝚗

{

U⃗1, U⃗2,… , U⃗𝑘

}

(44)
and let

U𝑘 =
[

U⃗1, U⃗2,… , U⃗𝑘

]

∈ 𝕂𝓁𝑝×𝑘
𝑛 .

4. Project each face 𝐼𝑖 onto the subspace (44) to obtain U 𝐻
𝑘 ⋆ X⃗ 𝑖. A test image 𝐼0 also is projected onto the same space to

get U 𝐻
𝑘 ⋆

(

X⃗0 − M⃗
)

. Finally, determine the closest image to the test image by computing the minimal distance between
the projected test image and all the projected training images.

The main difference between methods that use PCA for facial recognition is the way that the first (dominant) left singular
vectors of X are computed. In the present paper, we use our proposed method to compute the dominant singular triplets that
are used in PCA. The following algorithm summarises the different steps in our approach.

Algorithm 7 Facial recognition using tensor Lanczos bidiagonalization with Ritz augmentation.
1: Input: Training set of images X (𝑁 images), mean image X , test image I0 with its associate lateral slice X⃗0 = 𝚟𝚎𝚌(I0);

𝑚 the number of tensor Lanczos bidiagonalization algorithm; 𝑘 the number of the desired left singular slices.
2: Output: Closest image in the database.
3: [U𝑘,S𝑘,V𝑘] = t-LBR(X , 𝑚, 𝑘) using Algorithm 6.
4: Project X onto 𝕌𝑘 to get P = U 𝐻

𝑘 ⋆ X .
5: Project the mean of the test image 𝐼0 onto 𝕌𝑘, P⃗0 = U 𝐻

𝑘 ⋆
(

X⃗0 − M⃗
)

= U 𝐻
𝑘 X⃗ 0.

6: Find 𝑖 = argmin
𝑖=1,2,…,𝑁

‖

‖

‖

P⃗0 − P⃗𝑖
‖

‖

‖𝐹
.
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𝑖 Methods 100 × 100 × 3 500 × 500 × 3 1000 × 1000 × 3 100 × 100 × 5 500 × 500 × 5

1 Ritz 7.13e-14 1.60e-13 2.27e-13 2.85e-14 1.63e-13
GK 8.16e-10 0.09 0.01 3.18e-08 0.01

2 Ritz 9.29e-14 1.98e-13 1.56e-13 5.62e-14 1.48e-13
GK 1.27e-05 0.07 0.44 3.12e-04 0.15

3 Ritz 5.01e-14 2.70e-13 8.93e-14 5.41e-14 2.66e-13
GK 0.02 0.95 1.78 6.05e-04 0.51

4 Ritz 3.39e-13 4.92e-11 9.01e-13 3.39e-14 6.74e-13
GK 0.01 1.60 3.37 0.08 2.03

Table 1 The Frobenius norm ‖S (𝑖, 𝑖, ∶) − 𝚺(𝑖, 𝑖, ∶)‖𝐹 , where S (𝑖, 𝑖, ∶) denotes the singular tubes computed by either augmen-
tation by Ritz lateral slices (Ritz) or by partial Lanczos bidiagonalization also known a partial Golub-Kahan bidiagonalization
(GK), and 𝚺(𝑖, 𝑖, ∶) stands for the singular tubes determined by the t-SVD method with 𝑚 = 20 for 𝑖 = 1, 2, 3, 4.

Ritz 100 × 100 × 3 500 × 500 × 3 1000 × 1000 × 3 100 × 100 × 5 500 × 500 × 5
augmentation iter time iter time iter time iter time iter time
𝑚 = 10 15 0.40 29 2.84 41 18.20 13 0.41 29 4.09
𝑚 = 20 3 0.15 5 2.14 7 12.88 3 0.18 5 2.91

Table 2 Number of iterations (iter) needed by the Ritz augmentation method to determine the four largest singular tubes for
third-order tensors of different sizes with 𝑚 = 10, 20. The columns with header “time” shows the CPU time in seconds.

5 NUMERICAL EXPERIMENTS

This section illustrates the performance of Algorithm 6 for detecting the largest or smallest singular triplets when applied to
synthetic data, tensor compression, and facial recognition. All computations are carried out on a laptop computer with 2.3 GHz
Intel Core i5 processors and 8 GB of memory using MATLAB 2018a.

5.1 Examples with synthetic data
We use synthetic data generated by the MATLAB command 𝚛𝚊𝚗𝚍𝚗(𝓁, 𝑝, 𝑛), which generates a tensor A ∈ 𝕂𝓁×𝑝

𝑛 , whose entries
are normally distributed pseudorandom numbers with mean zero and variance one.

5.1.1 Largest singular values
Table 1 displays the error in the four largest approximate singular tubes computed by augmentation by Ritz lateral slices (referred
to as Ritz in the table) and by the partial Lanczos bidiagonalization/Golub-Kahan algorithm (referred to as GK in the table) as
described in14, but using the t-product. These errors are given by ‖S (𝑖, 𝑖, ∶) − 𝚺(𝑖, 𝑖, ∶)‖𝐹 for 𝑖 = 1, 2, 3, 4 with 𝑚 = 20, where
S (𝑖, 𝑖, ∶), and 𝚺(𝑖, 𝑖, ∶) denote, respectively, the 𝑖𝑡ℎ approximated singular tube, and the 𝑖𝑡ℎ exact singular tube given from the
t-SVD. Table 2 shows the number of iterations required when using augmentation by Ritz lateral slices to approximate the four
largest singular triplets for tensors of different sizes and the number of Lanczos bidiagonalization steps 𝑚.

Table 1 shows the Ritz augmentation method to yield much higher accuracy than the GK method. Figures 1 and 2 display
the values of some frames of the first 10 singular tubes of third-order tensors of sizes 100 × 100 × 3 and 1000 × 1000 × 5,
respectively, computed by Ritz augmentation using Algorithm 6, the t-SVD, and partial Lanczos bidiagonalization (GK). Each
tube is denoted by S (𝑘, 𝑘, ∶) ∈ 𝕂𝑛, where 𝑛 is equal to 3 or 5, and 𝑘 = 1, 2,… , 10. In other word, for a fixed 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, we
plot S (𝑘, 𝑘, 𝑖) ∈ 𝕂𝑛 for 𝑘 = 1, 2,… , 10. As mentioned above, the 𝑖th computed singular triplet is accepted as an approximate
singular triplet if R⃗𝑚⋆ E⃗ 𝐻

𝑚 ⋆ U⃗𝑖 is small enough for 1 ≤ 𝑖 ≤ 𝑘, where 𝑘 is the number of desired singular triplets and the U⃗𝑖 are
left singular lateral slice of the current tensor B𝑚; see eq. (17). Figure 3 shows the evolution of the error computed by (17) for the
first three singular triplets determined by Algorithm 6 when applied to a third-order tensor of size 1000 × 1000 × 3 for 𝑚 = 20.
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Figure 1 On the left, we display the values of the first frontal slices (frames) of the first 10 singular tubes detected by t-SVD,
Ritz augmentation and Partial Lanczos bidiagonalization (GK) for a synthetic data of size 100 × 100 × 3 with 𝑚 = 20, and on
the right we plotted the third frontal slices of these tubes, i.e., S (𝑘, 𝑘, 𝑖) with 𝑘 = 1, 2,… , 10 and 𝑖 = 1, 3.

Figure 2 The left-hand side pane shows the values of the first frontal slices (frames) of the first 10 singular tubes computed by
t-SVD, Ritz augmentation, and the partial Lanczos bidiagonalization (GK) method for a synthetic data of size 1000 × 1000 × 5
with 𝑚 = 20. The right-hand side pane displays the third frontal slices of these tubes, i.e., S (𝑘, 𝑘, 𝑖) for 𝑘 = 1, 2,… , 10 and
𝑖 = 1, 3.

Figures 1 and 2 illustrate that using Algorithm 6 with Ritz augmented method gives more accurate approximations than the
GK method. In particular, the frontal slices of each tube computed with Algorithm 6 are very close to the corresponding frontal
slices of the tubes determined by the t-SVD, independently of the size of the third-order tensor.

5.1.2 Smallest singular values
This subsection illustrates the performance of Algorithm 6 with Ritz augmentation (referred to as Ritz) and with harmonic Ritz
augmentation (referred to as Harm) for computing the smallest singular triplets of synthetic third-order tensors of different sizes.
Table 3 displays the error in the fourth smallest singular tubes computed by Ritz augmentation and harmonic Ritz augmentation
for 𝑚 = 20, and compares with results determined by the t-SVD method. In Table 4 we show the number of iterations and the
required CPU time (in seconds) for these methods when 𝑚 = 20.

Tables 3 and 4 show that harmonic Ritz augmentation gives higher accuracy than Ritz augmentation when computing the
smallest singular triplets. Figures 4 and 5 depict the Frobenius norm of the remainder term R⃗𝑚 ⋆ E⃗ 𝐻

𝑚 ⋆ U⃗𝑖 for each iteration
with Algorithm 6 with Ritz augmentation and harmonic Ritz augmentation when approximating the last two singular triplets
for 𝑚 = 20.
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Figure 3 Evolution of the remainder term for a third-order tensor of size 1000×1000×3 when computing the first three singular
triplets by Algorithm 6 with Ritz augmentation.

i Method 100 × 100 × 3 100 × 100 × 5 500 × 500 × 3 500 × 500 × 5

𝑛 − 3 Ritz 3.82e-11 5.22e-12 1.34e-10 2.50e-10
Harm 1.03e-13 4.64e-13 4.66e-13 1.07e-13

𝑛 − 2 Ritz 1.99e-14 4.34e-13 1.20e-14 1.68e-11
Harm 4.94e-15 3.10e-13 2.46e-14 3.77e-14

𝑛 − 1 Ritz 8.36e-14 4.56e-14 1.77e-14 6.86e-12
Harm 1.64e-15 6.05e-15 2.88e-14 1.39e-13

𝑛
Ritz 1.38e-15 7.71e-16 6.49e-15 2.00e-12
Harm 8.59e-16 7.90e-16 3.01e-15 1.41e-14

Table 3 The Frobenius norm ‖S (𝑖, 𝑖, ∶) − 𝚺(𝑖, 𝑖, ∶)‖𝐹 , where S (𝑖, 𝑖, ∶) denotes the singular tubes determined by Ritz augmen-
tation or harmonic Ritz augmentation for 𝑚 = 20, and 𝚺(𝑖, 𝑖, ∶) are tubes computed by the t-SVD method for the four smallest
tubes, i.e., for 𝑖 = 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛.

Method 100 × 100 × 3 500 × 500 × 3 100 × 100 × 5 500 × 500 × 5
CPU time iter CPU time iter CPU time iter CPU time iter

Ritz 0.99 31 231.81 615 1.11 30 425.83 831
Harm 0.85 29 227.49 606 1.03 30 355.35 723

Table 4 CPU time in seconds, and number of iterations required by Algorithm 6 with Ritz augmentation and harmonic Ritz
augmentation for 𝑚 = 20 to compute the four smallest singular triplets of synthetic third-order tensors of different sizes.

Figures 4 and 5 show the error ‖R⃗𝑚⋆E⃗ 𝐻
𝑚 ⋆U⃗𝑖‖𝐹 associated with Ritz augmentation in Algorithm 6 to converge in a smoother

way than the corresponding error for harmonic Ritz augmentation. Both errors converge to zero as the number of iterations
increases.

5.2 Application to data compression
Figure 6 displays examples of image compression using two color images: “house” of size 256 × 256 × 3 and “Hawaii” of size
1200×1200×3. For each image, we compute the 𝑘 largest singular triplets using Ritz augmentation in Algorithm 6, which will
be referred to as “Ritz,” for different numbers 𝑘 of desired singular triplets. Figure 7 displays the relative error of the compressed
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Figure 4 The Frobenius norm of R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖 obtained by Algorithm 6 with Ritz augmentation when approximating the two

smallest singular triplets of a synthetic tensor of size 500 × 500 × 5 with 𝑚 = 20 at each iteration for 𝑖 = 499, 500.

Figure 5 The Frobenius norm of R⃗𝑚 ⋆ E⃗ 𝐻
𝑚 ⋆ U⃗𝑖 obtained by harmonic Ritz augmentation when approximating the last two

singular triplets of a synthetic tensor data of size 500 × 500 × 5 with 𝑚 = 20, at each iteration for 𝑖 = 499, 500.

images for 𝑘 = 5, 10, 15, 25, by using Ritz augmentation (Ritz) and the t-SVD method. This error is measured by
‖

‖

A𝑘 − A ‖

‖𝐹

‖A ‖𝐹
, (45)

where A denotes the tensor that represents the original image and A𝑘 =
∑𝑘

𝑖=1 U⃗𝑖 ⋆ 𝒔𝑖 ⋆ V⃗ 𝐻
𝑖 .

Figure 7 shows the relative errors obtained with Algorithm 6 with Ritz augmentation and the t-SVD are almost the same.
This means that the approximate singular tubes and the right and left singular lateral slices determined by Algorithm 6 with Ritz
augmentation are very accurate.

5.3 Facial recognition
We illustrate the application of Algorithm 7 to facial recognition using color images that are represented by third-order tensors.
The images in our test are from the Georgia Tech database GTDB_crop35, which contains 750 images of 50 persons, with
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Figure 6 Examples of image compression applied to the “house” and “Hawaii” images for 𝑘 = 5, 10, 15, 25 slices using
Algorithm 6 with Ritz augmentation.

Figure 7 Relative compression error (45) for the images “house” and “Hawaii” obtained with Algorithm 6 with Ritz augmen-
tation (Ritz) and the t-SVD method.

each person represented by 15 images that show various facial expressions and facial orientations, and different illumination
conditions. Figure 8 shows an example of images of one person in the data set.

Each image in the data set is of size 100 × 100 × 3 pixels, and we use 3 randomly chosen images of each person as test
images. The remaining 600 images form our training set and define the tensor X ∈ 𝕂10000×600

3 . We applied Algorithm 7 and
compared the results with those obtained by the t-SVD and also with results obtained by the Golub-Kahan (GK) algorithm using
the t-product. The performance of these methods is measured by the identification rate given by

Identification rate =
number of correctly matched images

number of test images × 100(%). (46)
Figures 9 and 10 show results obtained for 𝑘 = 1 and 𝑘 = 5 for two different persons. The mean image is defined as in Algorithm
7.
Figures 9 and 10 show that Algorithm 7 performs well for some values of the truncation index 𝑘. In Figure 11, we plotted the
identification rate (46) obtained with Algorithm 7 (Ritz augmentation), GK for 𝑚 = 𝑘, and with the exact t-SVD method for the
150 test images.
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Figure 8 An example of a person with different facial expressions and orientations.

Figure 9 A test for 𝑘 = 1.
k 2 3 4
Method Ritz t-SVD Ritz t-SVD Ritz t-SVD
CPU time (s) 10.60 52.82 13.11 63.63 13.88 64.77

Table 5 CPU time (in seconds) for Algorithm 7 (Ritz) and for the t-SVD method for 𝑚 = 10 and different values of the truncation
index 𝑘.
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Figure 10 A test for 𝑘 = 5.

Figure 11 Identification rates for different truncation indices 𝑘 by Ritz augmentation, t-SVD and Golub-kahan methods.

Table 5 reports CPU times for Algorithm 7 for 𝑚 = 10 (Ritz) and for the t-SVD method for different values of the truncation
index 𝑘. The results show Algorithm 7 to be very effective both in terms of accuracy and CPU time compared to the t-SVD and
the classical Golub-Kahan methods.
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6 CONCLUSION

This paper presents two new methods for approximating the largest or smallest singular triplets of a large third-order tensor us-
ing the t-product. We use restarted Lanczos bidiagonalization for third-order tensors to develop the Ritz augmentation method
to determine the largest or smallest singular triplets. Moreover, we propose the harmonic Ritz augmentation method to compute
the smallest singular triplets. These methods are applied to data compression and face recognition.
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