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Abstract. We consider the solution of linear discrete ill-posed systems of equations with a certain
tensor product structure. Two aspects of this kind of problems are investigated: They are transformed to
large linear systems of equations and the conditioning of the matrix of the latter system is analyzed. Also,
the distance of this matrix to symmetry and skew-symmetry is investigated. The aim of our analysis is to
shed light on properties of linear discrete ill-posed problems and to study the feasibility of using Krylov
subspace iterative methods in conjunction with Tikhonov regularization to solve Sylvester tensor equations
with severely ill-conditioned coefficient matrices. The performance of several proposed algorithms is studied
numerically. Applications include color image restoration and the solution of a 3D radiative transfer equation
that is discretized by a Chebyshev collocation spectral method.
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1. Introduction. This paper discusses the solution of severely ill-conditioned tensor
equations that arise in color image restoration, video restoration, and when solving certain
partial differential equations in several space-dimensions by collocation methods. A tensor
is a multidimensional array. The number of indices of its entries is referred to as mode or
way. Throughout this paper vectors (tensors of order one) and matrices (tensors of order
two) are denoted by lower case and upper case letters, respectively; Euler script letters stand
for tensors of order three or higher. The element (i1, i2, . . . , iN ) of an N -mode tensor X is
denoted by xi1i2...iN .

Consider the Sylvester tensor equation

(1.1) X×1 A
(1) + X×2 A

(2) + . . .+ X×N A(N) = D,

where the right-hand side tensor D ∈ R
I1×I2×...×IN and the coefficient matrices A(n) ∈

R
In×In (n = 1, 2, . . . , N) are known, and X ∈ R

I1×I2×...×IN is the unknown tensor to be
determined. The definition of the n-mode product ×n is the standard one, see, e.g., [27];
details are given in Subsection 1.1. Equations of the form (1.1) arise from the discretization
of a linear partial differential equation in several space-dimensions by finite differences [3,
4, 5, 7, 11] or by spectral methods [5, 29, 34, 35, 36, 45]. We refer the reader to [25] for
a survey of tensor numerical methods for the solution of partial differential equations in
many space-dimensions. Equations of the form (1.1) also arise in the restoration of color
and hyperspectral images, see, e.g., [6, 17, 30, 43], blind source separation [31], and when
describing a chain of spin particles [1].

Krylov subspace methods are popular solution methods for Sylvester tensor equations
(1.1). For the case when the right-hand side in (1.1) is a tensor of low rank, Krylov subspace
methods have been studied by Kressner and Tobler [28]. Ballani and Grasedyck [4] imple-
mented the GMRES method with Hierarchical Tucker Format (HTF) tensor truncation and
multigrid acceleration. Chen and Lu [11] proposed the GMRES method based on tensor
format (GMRES−BTF) for solving (1.1) in the situation when the right-hand side is not
necessarily a low-rank tensor. In [5], the tensor form of the FOM algorithm (FOM−BTF)
was proposed. Also a nested algorithm for the situation when Eq. (1.1) has nonsymmetric
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positive definite coefficient matrices was examined. We also refer to Fan et al. [16] for a
recent discussion on solution methods for Sylvester tensor equations (1.1) that arise from
the discretization of elliptic partial differential equations in higher space-dimensions.

To the best of our knowledge, the performance of iterative methods tailored for the
solution of problems of the form (1.1) has not received much attention in the literature
so far. We are primarily concerned with the situation when the equation stems from the
discretization of a linear ill-posed problem. Then (1.1) is referred to as a discrete ill-posed
problem. Such problems arise, e.g., in color image restoration. In this application the
right-hand side is typically contaminated by an error E, i.e.,

(1.2) D = D̃+ E,

where D̃ denotes the unknown error-free right-hand side. It represents a blurred, but noise-
free, image.

We would like to determine the solution, denoted by X̃, of minimum norm (to be defined)
of the tensor equation (1.1) with the right-hand side replaced by D̃, i.e., of the unavailable
Sylvester tensor equation

(1.3) X×1 A
(1) + X×2 A

(2) + . . .+ X×N A(N) = D̃.

This equation is assumed to be consistent, but equation (1.1) does not have to be. Since the
right-hand side D̃ is not known, we may try to determine an approximation of X̃ by solving
(1.1) with an available iterative method for the solution of Sylvester tensor equations, e.g.,
one of the methods described in [4, 5, 11, 16, 28]. However, when (1.1) is a discrete ill-posed
problem, the computed solution so obtained is likely to be a poor approximation of X̃ due
to severe propagation of the error E in D into the computed solution. It is the aim of the
present paper to generalize results and techniques in [6, 8, 38] to overcome this difficulty.
This leads us to a Tikhonov regularization strategy, in which the problem of solving (1.1) is
replaced by the solution of a minimization problem of the form

(1.4) min
X∈R

I1×I2×...×IN





∥∥∥∥∥

N∑

i=1

X×i A
(i) −D

∥∥∥∥∥

2

+ λ

∥∥∥∥∥∥

M∑

j=1

X×j L
(j)

∥∥∥∥∥∥

2




,

where 1 ≤ M ≤ N and the L(j) (j = 1, 2, . . . ,M) are regularization matrices. The nonnega-
tive constant λ is a regularization parameter. Note that N stands for the number of modes in
the unknown tensor X. Throughout this paper, we will measure a tensor X ∈ R

I1×I2×...×IN

with the norm

‖X‖ :=

√√√√
I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

x2
i1i2...iN

,

which generalizes the matrix Frobenius norm.
It is well-known that (1.1) is equivalent to the following linear system of equations

(1.5) Ax = b,

with x = vec(X), b = vec(D), and

(1.6) A =
N∑

j=1

I(IN ) ⊗ . . .⊗ I(Ij+1) ⊗A(j) ⊗ I(Ij−1) ⊗ . . .⊗ I(I1).

Here and throughout this paper, “vec” stands for the standard vectorization operator that
transforms a tensor to a vector. We note that vec(X) is obtained by using the standard
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vectorization operator with respect to frontal slices of X. Recall that for a given tensor
X ∈ R

I1×I2×...×IN , the frontal slices are defined by

X:: . . . :︸ ︷︷ ︸ k
(N−1)-times

∈ R
I1×I2×...×IN−1 , k = 1, 2, . . . , IN ,

which also are known as column tensors of X. The kth frontal slice of X is obtained by
setting the last index to k.

We primarily consider the situation when the solution of (1.1) (or equivalently of (1.5))
is an ill-posed problem. Therefore, we first investigate the dependence of the condition
number of A on the condition numbers of the matrices A(j) in (1.6). We are interested in
the behavior of iterative methods applied to the solution of (1.1) (or equivalently to the
solution of (1.5)). The behavior of iterative methods for the solution of large linear systems
of equations (1.5) with a symmetric matrix A is better understood than the behavior of
iterative methods applied to the solution of linear systems of equations with a nonsymmetric
matrix. When solving (1.5) by the GMRES iterative method, which is based on the Arnoldi
process (to be defined below), the distance of A to the set of symmetric and to the set of
skew-symmetric matrices is important; see [18]. The methods we consider for the solution
of (1.1) are based on the Arnoldi process. We are therefore interested in how the distance
of the matrices A(i), i = 1, 2, . . . , N , to the sets of symmetric and skew-symmetric matrices
affects the behavior of the iterative methods considered. We will study this by introducing
(fairly) easily computable distance measures for the matrix (1.6). A generalization of (1.6)
that arises in color image restoration with cross-channel blur also will be discussed.

This paper is organized as follows. In the remainder of this section, we review some basic
concepts and introduce notation used in later sections. In Section 2, which is motivated by
results in [33, 42], we derive lower and upper bounds for the condition number of A, given
by (1.6), in terms of extreme singular values of the matrices A(i) for i = 1, 2, . . . , N . Section
3 is concerned with measuring the distance of a matrix with Kronecker structure, that is
associated with (1.1), to the set of symmetric (positive or negative semi-definite) matrices,
or to the set of skew-symmetric matrices. A new distance measure is introduced that allows
efficient computation. The aim of Section 4 is to present iterative methods based on Arnoldi-
type processes that exploit the tensor structure to solve (1.4). To this end, we apply results
in [5] and extend techniques that have been described in [6, 8, 24, 38]. Numerical results
that illustrate the results of Sections 2 and 3, as well as the effectiveness of the proposed
iterative schemes are reported in Section 5. Concluding remarks can be found in Section 6.

1.1. Preliminaries. This subsection briefly reviews some basic definitions and prop-
erties that are used in the remainder of the paper. Our notation follows [27].

The inner product between two tensors of the same size X,Y ∈ R
I1×I2×...×IN is defined

by

〈X,Y〉 :=
I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

xi1i2...iN yi1i2...iN .

The n-mode (matrix) product of a tensor X ∈ R
I1×I2×...×IN with a matrix U ∈ R

J×In is
denoted by X×n U . It is of size I1 × . . .× In−1 × J × In+1 × . . .× IN and its elements are
given by

(X×n U)
i1...in−1jin+1...iN

=

In∑

in=1

xi1i2...iNujin , j = 1, 2, . . . , J.

The n-mode (vector) product of a tensor X ∈ R
I1×I2×...×IN with a vector v ∈ R

In is of order
N − 1 and is denoted by X×̄nv, where its size is given by I1 × . . .× In−1 × In+1 × . . .× IN .

3



We will use the ⊠N product between two N -mode tensors X and Y, which is a refor-
mulation of a special case of the contracted product. In fact, the product X ⊠N Y is the
contracted product of N -mode tensors X and Y along the first N − 1 modes; see [5, 12] for
further details.

We conclude this subsection with a proposition that can be established by using the
definitions of n-mode and contracted products. This result is useful for deriving iterative
methods in the tensor framework.

Proposition 1.1. Suppose that B ∈ R
I1×I2×...×IN×m is an (N + 1)-mode tensor with

column tensors B1,B2, . . . ,Bm ∈ R
I1×I2×...×IN and let z = (z1, z2, . . . , zm)T ∈ R

m. For an
arbitrary (N + 1)-mode tensor A with N -mode column tensors A1,A2, . . . ,Am, we have

A⊠(N+1) (B×̄
N+1

z) = (A⊠(N+1) B)z,

(A×̄
N+1

z)⊠(N+1) B = zT (A⊠(N+1) B).

1.2. Notation. For a real square matrix A with real eigenvalues, λmin(A) and λmax(A)
denote the minimum and maximum eigenvalues of A, respectively. Further, λ(A) stands for
an arbitrary eigenvalue of A, and the set of all eigenvalues of A is denoted by σ(A). The
identity matrix of order n is denoted by I(n), and the vector ei stands for the ith column of
an identity matrix of suitable order.

The symmetric and skew-symmetric parts of a real square matrix A are given by

(1.7) H(A) :=
1

2
(A+AT ) and S(A) := 1

2
(A−AT ),

respectively, where the superscript T denotes transposition. The condition number of a
(square) invertible matrix A is defined as cond(A) := ‖A‖

2
‖A−1‖

2
, where ‖ · ‖

2
denotes the

matrix spectral norm. We write A ≻ 0 (A < 0) to indicate that the matrix A is symmetric
positive (semi-)definite.

Let B be an arbitrary matrix. The maximum and minimum singular values of B are
denoted by σmax(B) and σmin(B), respectively. The notation Null(B) stands for the null
space of B.

The Kronecker product of two matrices X = [xij ] ∈ R
n×p and Y ∈ R

q×l is defined by
X ⊗ Y = [xijY ] ∈ R

nq×pl.

2. Conditioning. The Kronecker structure of the matrix A defined by (1.6) makes
it difficult to analyze the problem (1.5). In particular, it is difficult to approximate the
inverse of A for general matrices A(i) already for N = 2. This has recently been pointed
out by Simoncini [44, Section 9]. Nevertheless, some insight can be gained by investigating
the condition number of A. This section derives lower and upper bounds for cond(A). The
bounds obtained are helpful for discussing the conditioning of (1.1).

Let X̃ solve the Sylvester tensor equation with error-free right-hand side (1.3). Shi et
al. [42, p. 1443] obtained the relative error bound

(2.1)
‖X̃− X‖
‖X̃‖

≤
N∑

i=1

‖A(i)‖
F

N∏
i=1

cond(Ti)

min
λi∈σ(A(i))

|∑N
i=1 λi|

‖D̃−D‖
‖D̃‖

for the case when the matrices A(i) are diagonalizable, i.e., when there are nonsingular
matrices Ti and diagonal matrices Λi such that T−1

i A(i)Ti = Λi for i = 1, 2, . . . , N . The
norm ‖ · ‖

F
denotes the Frobenius matrix norm.

Let the matrix A be positive stable, i.e., all of its eigenvalues lie in the open right half
plane. Liang and Zheng [33, p. 8] considered the case when all the matrices A(i) are equal
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to the same positively stable matrix A. They established the relative error bound

(2.2)
‖X̃− X‖
‖X̃‖

≤ N‖A‖
F
‖A−1‖2

‖D̃−D‖
‖D̃‖

.

The bounds (2.1) and (2.2) are valid when there are no perturbations in the coefficient
matrices A(i). The identities

‖X̃− X‖
‖X̃‖

=
‖vec(X̃)− vec(X)‖

2

‖vec(X̃)‖
2

and
‖D̃−D‖

‖D̃‖
=

‖vec(D̃)− vec(D)‖
2

‖vec(D̃)‖
2

show that perturbation analysis for (1.1) is closely related to obtaining bounds for the
condition number of A.

We would like to derive lower and upper bounds for cond(A) in terms of singular values
of the matrices A(i) under some sufficient conditions. These kinds of bounds can be cheaply
computed since the sizes of the matrices A(i) are small in comparison to the size of A. The
main challenge is to determine bounds for ‖A−1‖

2
. Let us first recall the following result,

which is an immediate consequence of Weyl’s Theorem; see [23, Theorem 4.3.1].
Proposition 2.1. Let A,B ∈ R

n×n be symmetric matrices. Then

λmax(A+B) ≤ λmax(A) + λmax(B) and λmin(A+B) ≥ λmin(A) + λmin(B).

We derive a lower bound for the condition number of A by applying bounds for the
extreme eigenvalues of AAT . The following result will be used to achieve this goal.

Proposition 2.2. Let A ∈ R
n×n and B ∈ R

m×m. Then

(xT ⊗ yT )H(A⊗B)(x⊗ y) = (xTH(A)x)× (yTH(B)y)

for any vectors x ∈ R
n and y ∈ R

m.
Proof. From [46], it is known that H(A⊗B) = H(A)⊗H(B)+S(A)⊗S(B). The proof

now follows from the fact that xTS(A)x = 0 and yTS(B)y = 0.
Proposition 2.3. Assume that A and A(i) are invertible matrices for i = 1, 2, . . . , N .

Then

(2.3)
1

‖A−1‖22
= λmin(AAT ) ≤

(∑N

i=1
σmin(A

(i))

)2

and

λmax(AAT ) ≥
N∑

i=1

σ2
max(A

(i)) + 2

N∑

i=1

N∑

j=i+1

(yi ⊗ yj)
TH(A(i) ⊗A(j))(yi ⊗ yj),(2.4)

where A(i)(A(i))T yi = σ2
max(A

(i))yi with ‖yi‖2 = 1 for i = 1, 2, . . . , N .
Proof. For simplicity, we show the validity of the assertion for N = 3. A similar

strategy can be used to show (2.3) and (2.4) for an arbitrary integer N ≥ 1. For notational
convenience, set A(1) = A, A(2) = B, and A(3) = C. Let σ2

min(A), σ
2
min(B), and σ2

min(C)
stand for the minimal eigenvalues of AAT , BBT , and CCT , respectively, and let x, y, and
z denote corresponding unit eigenvectors.

Let Y = z ⊗ y ⊗ x. Straightforward computations and the Cauchy–Schwartz inequality
give

(zT ⊗ yT ⊗ xT )(I ⊗BT ⊗A)(z ⊗ y ⊗ x) = ‖z‖22 × 〈By, y〉 × 〈x,Ax〉
= σ2

min(B)〈y,B−1y〉 × σ2
min(A)〈A−1x, x〉

≤ σmin(B)σmin(A).(2.5)
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By computing the quadratic form associated with AAT , it can be seen that

YTAATY = 〈AATx, x〉‖y‖22‖z‖22 + 〈BBT y, y〉‖x‖22‖z‖22 + 〈CCT z, z〉‖x‖22‖y‖22
+ 〈By, y〉 × 〈x,Ax〉‖z‖22 + 〈y,By〉 × 〈Ax, x〉‖z‖22 + 〈z, Cz〉 × 〈By, y〉‖x‖22
+ 〈Cz, z〉 × 〈y,By〉‖x‖22 + 〈Cz, z〉 × 〈x,Ax〉‖y‖22 + 〈z, Cz〉 × 〈Ax, x〉‖y‖22.

Since x, y, z are unit eigenvectors for AAT , BBT and CCT , respectively, with similar com-
putations used for deriving (2.5), we obtain

YTAATY ≤ σ2
min(A) + σ2

min(B) + σ2
min(C)

+2σmin(A)σmin(B) + 2σmin(A)σmin(C) + 2σmin(B)σmin(C)

= (σmin(A) + σmin(B) + σmin(C))
2
.

As a result, using the fact that λmin(AAT ) ≤ YTAATY, the validity of (2.3) can be deduced.
We turn to the proof of (2.4). Let σ2

max(A), σ
2
max(B), and σ2

max(C) denote the maximum
eigenvalues of the matrices AAT , BBT , and CCT , respectively, and let x̃, ỹ, and z̃ stand
for associated unit eigenvectors. Setting Ỹ = z̃ ⊗ ỹ ⊗ x̃, it can be seen that

ỸTAAT Ỹ =σ2
max(A) + σ2

max(B) + σ2
max(C) + 2ỹTH(B)ỹ × x̃TH(A)x̃

+ 2z̃TH(C)z̃ × x̃TH(A)x̃+ 2z̃TH(C)z̃ × ỹTH(B)ỹ.

Using Proposition 2.2 and the fact that λmax(AAT ) ≥ ỸTAAT Ỹ, it is not difficult to verify
(2.4).

Remark 2.4. From the proof of the previous proposition, we may immediately conclude
that

cond(A) ≥

√∑N
i=1 σ

2
max(A

(i)) + 2
∑N

i=1

∑N
j=i+1

(
yTi H(A(i))yi

) (
yTj H(A(j))yj

)

N∑
i=1

σmin(A(i))

,

where A(i)(A(i))T yi = σ2
max(A

(i))yi with ‖yi‖2 = 1 for i = 1, 2, . . . , N . By adding some
mild conditions to the assumptions of Proposition 2.3, we obtain simpler lower bounds for
cond(A) in terms of the singular values of the matrices A(1), A(2), . . . , A(N). For instance,

• if all the matrices are equal, i.e., if A(i) = A for i = 1, 2, . . . , N , then

cond(A) ≥ σmax(A)√
Nσmin(A)

;

• if either of the following statements is true:
a) the (possibly nonsymmetric) matrices A(1), A(2), . . . , A(N) are all positive defi-

nite, or
b) the matrices of the form A(i) ⊗ A(j) for i, j = 1, 2, . . . , N and i 6= j are positive

definite,
then

cond(A) ≥

√
N∑
i=1

σ2
max(A

(i))

N∑
i=1

σmin(A(i))

.
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To derive an upper bound for the condition number of A, we require additional con-
ditions on the coefficient matrices A(i). Specifically, we need a condition that ensures the
positive definiteness of the matrices A(i) ⊗ (A(j))T for i, j = 1, 2, . . . , N . To this end, we
recall the following remark from [46].

Remark 2.5. Let F and G be two nonsymmetric matrices. If

λmin(H(G))λmin(H(F )) + min (−λ(S(G))λ(S(F ))) > 0,

then the symmetric part of GT ⊗ F is positive definite.
We now establish bounds for the extreme eigenvalues of AAT . These bounds will be

used to obtain an upper bound for cond(A). For notational simplicity, we assume that
N = 3 and let A = A(1), B = A(2), and C = A(3). Analogues of the bounds (2.6) and (2.7)
can be shown in a similar fashion when N is a general positive integer.

Proposition 2.6. Let A = (I ⊗ I ⊗A) + (I ⊗B ⊗ I) + (C ⊗ I ⊗ I). Then

(2.6) λmax(AAT ) ≤ (σmax(A) + σmax(B) + σmax(C))2.

Moreover, assume that A is invertible. Then, if BT ⊗A, CT ⊗A, and CT ⊗B are positive
definite, we have

(2.7)
1

λmin(AAT )
≤ 1

σ2
min(A) + σ2

min(B) + σ2
min(C)

.

Proof. The spectral norm of A = (I ⊗ I ⊗ A) + (I ⊗ B ⊗ I) + (C ⊗ I ⊗ I) and the
triangle inequality give (2.6). To show (2.7), we first note that C ⊗ I ⊗ AT is congruent to
I ⊗AT ⊗C. Hence, the positive definiteness of BT ⊗A, CT ⊗A, and CT ⊗B implies that
the symmetric parts of the matrices I ⊗BT ⊗A, CT ⊗B ⊗ I, and CT ⊗ I ⊗A are positive
definite. Some computations and Proposition 2.1 yield

λmin(AAT ) ≥ σ2
min(A) + σ2

min(B) + σ2
min(C) + λmin

(
(I ⊗BT ⊗A) + (I ⊗B ⊗AT )

)

+λmin

(
(CT ⊗B ⊗ I) + (C ⊗BT ⊗ I)

)
+ λmin

(
(CT ⊗ I ⊗A) + (C ⊗ I ⊗AT )

)

≥ σ2
min(A) + σ2

min(B) + σ2
min(C).

This completes the proof.
Remark 2.7. The above proposition shows that
• if the matrices BT ⊗ A, CT ⊗ A, and CT ⊗ B are positive definite, then we can
determine an upper bound for cond(A):

cond(A) ≤ σmax(A) + σmax(B) + σmax(C)√
σ2
min(A) + σ2

min(B) + σ2
min(C)

;

• if all the matrices A(i) that define A are all equal, i.e., if A(1) = . . . = A(N) = A,
and if A⊗AT is positive definite, then

cond(A) ≤
√
Nσmax(A)

σmin(A)
.

The following example reports some numerical experiments that illustrate the bounds
of Remarks 2.4 and 2.7.

Example 2.8. Let N = 3 in (1.1) and consider the two cases:
Case 1: All the coefficient matrices are equal to the n× n matrix

A(1) = A(2) = A(3) = M + 2rL+
1

(n+ 1)2
In,

where M = tridiag(−1, 2,−1), L = tridiag(0.5, 0,−0.5), and r = 0.01. These
matrices are discussed in [46].
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Table 1

Results for Cases 1 and 2 of Example 2.8.

Case 1 Case 2
n Lower bound cond(A) Upper bound Lower bound cond(A) Upper bound
10 2.54 · 101 7.12 · 101 7.61 · 101 2.91 · 101 8.46 · 101 8.72 · 101
20 9.32 · 101 2.65 · 102 2.79 · 102 1.05 · 102 3.05 · 102 3.16 · 102
30 2.03 · 102 5.57 · 102 6.08 · 102 2.28 · 102 6.60 · 102 6.84 · 102
40 3.54 · 102 1.00 · 103 1.06 · 103 3.97 · 102 1.14 · 103 1.19 · 103
50 5.55 · 102 1.55 · 103 1.63 · 103 −
60 7.75 · 102 2.22 · 103 2.32 · 103 −
70 1.04 · 103 3.00 · 103 3.12 · 103 −

Fig. 1. Lower and upper bounds for cond(A) versus the exact value: Case 1 (left) and Case 2 (Right).

Case 2: Regard the Sylvester tensor equation that arises from the discretization of a 3D
convection-diffusion partial differential equation by standard finite differences on a
uniform grid for the diffusion term and a second-order convergent scheme (Fromm’s
scheme) for the convection term. The coefficient matrices A(i) in (1.1) are given in
[5, Example 5.4].

Table 1 shows the bounds of Remarks 2.4 and 2.7. The symbol “−” in the table indicates
that the computer used for the calculations1 was not capable of computing the condition
number of A due to lack of memory. We remark that cond(A) is computed by using the
MATLAB function condest(A). Moreover, the condition number of A could not be computed
for n ≥ 80 in reasonable time in Case 1. Figure 1 depicts the computed upper and lower
bounds together with the computed values of cond(A). The figure shows the lower and upper
bounds for n ≤ 130, whereas the values of cond(A) are only reported up to the largest value

of n for which the condition number of A ∈ R
n3×n3

could be evaluated on our computer.
Remark 2.9. The restoration of color images without cross-channel blur requires the

solution of linear systems of equations (1.5) with a matrix of the form (1.6) with N = 3.
The matrices A(j), j = 1, 2, 3, model within channel blur of channels that represent red,
blue, and green light. Further details on color image restoration can be found, e.g., in [6].
In the presence of cross-channel blur, the matrix in the linear system of equations (1.5) is

given by Ã = C ⊗A, where

A = I(3) ⊗ I(2) ⊗A(1) + I(3) ⊗A(2) ⊗ I(1) +A(3) ⊗ I(2) ⊗ I(1).

A bound for the condition number of the matrix Ã can be obtained by applying the technique
of this section to determine a bound for the condition number of A and using the fact that

cond(Ã) = cond(C)cond(A).

1See Section 5 for details about the computer system.
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The condition number of the small matrix C can be easily computed. Typically, matrices
modeling cross-channel blur are not very ill-conditioned; see [6, Example 3] for an illustra-
tion.

3. Distance to symmetric semi-definiteness. For an arbitrary square matrix A ∈
R

l×l, the distances from A to the set of all symmetric positive semi-definite matrices and to
the set of all negative semi-definite matrices are defined by

δ+(A) := min
{
‖E‖ : E ∈ R

l×l, A+ E < 0
}

and

δ−(A) := min
{
‖E‖ : E ∈ R

l×l, A+ E 4 0
}
,

respectively, where ‖ · ‖ denotes a given matrix norm. Holmes (1974) and Higham (1988)
derived expressions for the spectral and Frobenius norms, respectively. These expressions
are provided in the following two theorems.

Theorem 3.1. [22] Let A ∈ R
l×l. Then

δ+
2
(A) = min

{
‖E‖2 : E ∈ R

l×l, A+ E < 0
}

= min
{
r ≥ 0 : r2I + (S(A))2 < 0 and G(r) < 0

}
,(3.1)

where G(r) := H(A) + (r2I + (S(A)2)1/2. The matrix P = G(δ+
2
(A)) is a positive semi-

definite approximation of A in the spectral norm.
Theorem 3.2. [21, Theorem 2.1] Let A ∈ R

l×l and let H(A) = UH be a polar decom-
position. Then XF = (H(A) +H)/2 is the unique best positive approximation of A in the
Frobenius norm. Moreover,

(3.2) δ+
F
(A)

2
=

∑

λi(H(A))<0

(λi (H(A)))
2
+ ‖S(A)‖2

F
.

Remark 3.3. Following a similar approach to the one used in [21, Theorem 2.1], one
can show that

(3.3) δ−
F
(A)

2
=

∑

λi(H(A))>0

(λi (H(A)))
2
+ ‖S(A)‖2

F
.

The aim of this section is to derive expressions for δ+(A) and δ−(A) for a suitable norm
in the case when A is given in the Kronecker form (1.6). When determining δ±

F
(A) by using

the coefficient matrices A(i) (i = 1, 2, . . . , N) and applying (3.1) and (3.2) (or (3.3)), this
tends to be computationally expensive. We therefore propose to use an alternative norm.

Consider the real-valued function ‖ · ‖ss over the set of square matrices,

‖A‖ss = ‖H(A)‖
2
+ ‖S(A)‖

2
,

where H(A) and S(A) are defined by (1.7). It is immediate to see that ‖ · ‖ss is a norm on
the set of square matrices.

We will measure the distance of A ∈ R
l×l to the set of positive and negative semi-definite

matrices by

δ+ss(A) = min
{
‖E‖ss : E ∈ R

l×l, A+ E < 0
}

and

δ−ss(A) = min
{
‖E‖ss : E ∈ R

l×l, A+ E 4 0
}
,
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respectively, because of the relative ease of the computation of these quantities; see below.
We next derive expressions for δ+ss(A) and δ−ss(A) in terms of extreme eigenvalues of A.

To this end, we first present the following result.
Proposition 3.4. Let the matrix B ∈ R

l×l be symmetric. Then

B + ‖B‖
2
I < 0 and B − ‖B‖

2
I 4 0.

Proof. Let λ ∈ σ(B). Then |λ| ≤ ‖B‖
2
and λ ± ‖B‖

2
are eigenvalues of B ± ‖B‖

2
I.

Therefore, the eigenvalues of B+‖B‖
2
I are larger than or equal to zero, and the eigenvalues

of B − ‖B‖
2
I are smaller than or equal to zero. This shows the assertion.

The proof of the following proposition can be used to provide a simpler proof of [22,
Theorem 1].

Proposition 3.5. For any square matrix A, the following statements hold:

δ+ss(A) = max {0,−λmin(H(A))}+‖S(A)‖
2

and δ−ss(A) = max {0, λmax(H(A))}+‖S(A)‖
2
.

Proof. We only show the validity of the first equality; the expression for δ−ss(A) can be
shown similarly. For any X < 0, it follows from the symmetry of X that

‖A−X‖ss = ‖H(A)−X‖
2
+ ‖S(A)‖

2
,

which shows that

min
X<0

‖A−X‖ss = min
X<0

‖H(A)−X‖
2
+ ‖S(A)‖

2
.

To complete the proof, it suffices to show that

(3.4) min
X<0

‖H(A)−X‖
2
= min {r ≥ 0 : H(A) + rI < 0} .

Let r̃ = ‖H(A)−X‖
2
, where X < 0 is given. Then H(A)−X + r̃I < 0 by Proposition 3.4.

Therefore,

r̃ ≥ min {r ≥ 0 : H(A) + rI < 0} .

Since the above inequality holds for any X < 0, we conclude that

(3.5) min
X<0

‖H(A)−X‖
2
≥ min {r ≥ 0 : H(A) + rI < 0} .

Now let r̂ = min {r ≥ 0 : H(A) + rI < 0}. We have H(A) + r̂I < 0 and

min
X<0

‖H(A)−X‖
2
≤ ‖H(A)− (H(A) + r̂I)‖

2

= min {r ≥ 0 : H(A) + rI < 0} .

The preceding inequality together with (3.5) ensure that (3.4) holds.
Consider the symmetric/skew-symmetric splittings of the coefficient matrices A(i) =

H(A(i)) + S(A(i)) for i = 1, 2, . . . , N . It is immediate to see that the symmetric and skew-
symmetric parts of A have the forms, respectively,

H(A) =
N∑

j=1

I(IN ) ⊗ . . .⊗ I(Ij+1) ⊗H(A(j))⊗ I(Ij−1) ⊗ . . .⊗ I(I1)
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and

(3.6) S(A) =
N∑

j=1

I(IN ) ⊗ . . .⊗ I(Ij+1) ⊗ S(A(j))⊗ I(Ij−1) ⊗ . . .⊗ I(I1).

Proposition 3.6. Let A be defined by (1.6). The following relation holds for the
spectral norm of its skew-symmetric part,

(3.7) ‖S(A)‖2 =

N∑

j=1

‖S(A(j))‖2 .

Proof. It is well known that the skew-symmetric matrix S(A) is a normal matrix and,
therefore, it is unitarily diagonalizable. Now, we can conclude the result immediately from
(3.6), which provides a relation between eigenvalues of S(A) and S(A(i)) for i = 1, 2, . . . , N .

Our reason for defining distance in terms of the norm ‖ · ‖ss, instead of in terms of the
spectral or Frobenius norms, is that the quantities δ∓ss(A) are easier to compute than δ∓

2
(A)

and δ∓
F
(A) when A is a square matrix with Kronecker structure (1.6). This is discussed in

the following remark.
Remark 3.7. The distance of a matrix A with Kronecker structure (1.6) to the set

of positive or negative semi-definite matrices may be measured by using δ±2 (A), δ±F (A), or
δ±ss(A). We obtain from Propositions 3.5 and 3.6 that

δ+ss(A) = max {0,−λmin(H(A))}+
N∑

j=1

‖S(A(j))‖
2

and

δ−ss(A) = max {0, λmax(H(A))}+
N∑

j=1

‖S(A(j))‖2 .

The eigenvalues of a matrix A with Kronecker structure (1.6) are all possible sums of the

form λ
(1)
i1

+ λ
(2)
i2

+ . . .+ λ
(N)
iN

, where λ
(j)
ij

∈ σ(A(j)) and 1 ≤ ij ≤ Ij for j = 1, 2, . . . , N . It is

more expensive to compute all positive (or negative) eigenvalues of H(A) than to evaluate
the extreme eigenvalues only. It follows that the quantities δ±ss(A) are cheaper to evaluate
than δ±

F
(A).

We also note that ‖S(A)‖
F
may be much larger than ‖S(A)‖

2
for j = 1, 2, . . . , N . In

fact,

‖S(A)‖2

F
=

N∑

j=1

I1 × . . .× Ij−1 × Ij+1 × . . .× IN × ‖S(A(j))‖2
F
,

where I0 = 1 and A(j) ∈ R
Ij×Ij for j = 1, 2, . . . , N .

For completeness, we note that

‖H(A)‖2 = max{|λmax(H(A))|, |λmin(H(A))|}

= max

{∣∣∣∣∣

N∑

i=1

λmin(H(A(i)))

∣∣∣∣∣ ,
∣∣∣∣∣

N∑

i=1

λmax(H(A(i)))

∣∣∣∣∣

}
.
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Table 2

Distances to the symmetric positive definite and negative definite tensors for Example 3.8.

n ‖S(A)‖2 ‖H(A)‖2
‖S(A)‖2

‖A‖
ss

‖H(A)‖2

‖A‖
ss

δ+ss(A)
‖A‖

ss

δ−ss(A)
‖A‖

ss

100 2.998 2.998 0.5 0.5 1 1
500 2.999 2.999 0.5 0.5 1 1
1000 3 3 0.5 0.5 1 1

We turn to a simple test example for which the GMRES−BTF algorithm [11] breaks
down after a few steps and produces a poor approximate solution of the Sylvester tensor
equation that we try to solve. It can be shown that the use of GMRES−BTF is mathe-
matically equivalent to the application of GMRES to the solution of the linear system of
equations (1.5); see [5]. To be able to discuss the cause of breakdown in a simple manner,
we consider the equivalent linear system of equations (1.5).

Example 3.8. Consider the Sylvester tensor equation

(3.8) X×1 A
(1) + X×2 A

(2) + X×3 A
(3) = D,

in which the A(i), for i = 1, 2, 3, are n× n downshift matrices, i.e,

(3.9) A(i) =




0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0

0
. . .

... 0 0
. . . 0 0

0 1 0




∈ R
n×n.

Regard the linear system (1.5) corresponding to (3.8), and choose the right-hand side D

so that vec(D) = en ⊗ en−m+1 ⊗ en for some integer 1 ≤ m < n. Then X∗ with vec(X∗) =
en ⊗ en−m ⊗ en is a solution of (3.8). The GMRES−BTF algorithm [11] applied to the
solution of (3.8) with the zero tensor as initial iterate breaks down at step m. In particular,
for m = 1, the GMRES−BTF algorithm determines the zero tensor as approximate solution
when it breaks down at the first step. Thus, GMRES−BTF is not a useful solution method
for this problem. Related examples when the linear system of equations (1.5) does not have a
tensor structure and the matrix is of the form (3.9) are discussed in [10, 18]. We remark that
while the system (3.8) is artificial, related systems are obtained when seeking to deblur color
images that have been contaminated by noise and motion blur. A discussion on the deblurring
of monochromatic images that have been contaminated by noise and motion blur can be found
in [13]. Table 2 reports the distance of A in (1.5) to the sets of (skew-)symmetric and positive
(negative) semi-definite matrices.

The relative distance of A in the present example to the set of symmetric (symmetric
positive semi-definite) matrices is equal to the distance to the set of skew-symmetric (sym-
metric negative semi-definite) matrices. This is shown in [18] in the situation when A only
consists of the matrix (3.9). The proof can be adapted to the present situation. The tensor
A may be considered the “worst” tensor for GMRES−BTF.

We conclude this section with an example that includes different matrices in the Kro-
necker structure (1.6), but their distances to the sets of symmetric matrices and skew-
symmetric matrices are almost equal. The GMRES−BTF algorithm is seen to perform
quite differently for one of the mentioned cases.

Example 3.9. Let N = 2, n1 = 500, and n2 = 2. We consider the solution of a
Sylvester tensor equations using the GMRES−BTF algorithm with the zero tensor as initial
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iterate. The equation is described by

(3.10) X×1 Ã
(1) + X×2 A

(2) = D,

with Ã(1) = A(1) + tridiag(−α, 0, α), where the diagonal and off-diagonal entries of A(1) are
equal to 8 and 5, respectively. Here α is a prescribed nonnegative parameter and

A(2) =

[
0 0
1 0

]
∈ R

2×2

is the downshift matrix. The right-hand side tensor D is constructed so that X∗ ∈ R
n1×2×n1 ,

with vec(X∗) = en1
⊗ e1 ⊗ en1

, solves the Sylvester tensor equation (3.10).

Let A be the matrix in form (1.6) that corresponds to (3.10). We applied the GMRES−BTF
algorithm (without restarting) using an implementation based on Givens rotations. The
iterations were terminated as soon as the relative norm of the residuals became less than
10−11. We remark that residual tensors were not formed explicitly and their norm were
computed by using Givens rotations; see [41, Chapter 6].

Table 3 shows the performance of the GMRES−BTF method, as well as the relative
distances of the Kronecker structure (1.6) to the set of all symmetric and skew-symmetric
matrices for different values of α. The matrix X̃ denotes the computed approximate solution,
and “Iter” stands for the required number of iterations to satisfy the stopping criterion of
the algorithm. The GMRES−BTF method can be seen to terminate after four iterations and
determines a poor approximate solution when α ≤ 10−9.

Notice that for α ≤ 0.001, the relative distances to the set of symmetric matrices are the
same to four decimal digits. However, the GMRES−BTF algorithm performs much better
when α is not too small. This example illustrates that the performance of GMRES−BTF
does not only depend on the distance of the matrix (1.5) to the set of symmetric matrices
and the set of skew-symmetric matrices. It is well-known that the performance of GMRES
when applied to the solution of a linear system of equations with a square nonsingular matrix
depends on the eigenvalues and eigenvectors of the matrix, as well as on the right-hand side;
see Du et al. [14] for a recent discussion.

Table 3

Relative distances of A in (1.5) to the set of (skew-)symmetric matrices and the performance of
GMRES−BTF for (3.10).

α 0 10−9 10−6 10−3 10−1 1 10

‖S(A)‖2 0.5000 0.5000 0.5000 0.5020 0.7000 2.5000 20.4996

‖H(A)‖2 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103

‖S(A)‖2

‖A‖
ss

1.9968 · 10−4 1.9968 · 10−4 1.9968 · 10−4 2.0048 · 10−4 2.7953 · 10−4 9.9759 · 10−4 0.0081

‖H(A)‖2

‖A‖
ss

0.9998 0.9998 0.9998 0.9998 0.9997 0.9990 0.9919

‖X̃−X
∗‖

‖X∗‖ 0.3151 0.3151 2.2147 · 10−7 1.1073 · 10−7 3.1635 · 10−9 7.9453 · 10−10 2.8813 · 10−10

Iter 4 4 5 6 10 23 165

4. Tikhonov regularization methods based on tensor format. We present sev-
eral iterative schemes in tensor framework. Two of these methods apply the Arnoldi and gen-
eralized Arnoldi processes to the approximate solution of the Tikhonov minimization prob-
lem (1.4). The corresponding algorithms are referred to as the Arnoldi–Tikhonov method
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based on tensor format (AT−BTF) and the generalized AT−BTF (GAT−BTF) method.
These algorithms generalize methods discussed by Huang et al. [24] for the situation when
there is no exploitable tensor structure; see also Bouhamidi et al. [8]. In the situation when
all matrices A(i) are symmetric, the AT−BTF method reduces to the Lanczos–Tikhonov
method based on tensor format (LT−BTF). In addition, we describe a flexible AT−BTF
method, which will be referred to as FAT−BTF. This method is an adaption of the flexible
Arnoldi process introduced by Saad [41], and more recently discussed by Gazzola and Nagy
[19] and Morikuni et al. [37], for the solution of linear systems of equations with no tensor
structure, to the solution of Sylvester tensor equations. Details of the derivations of the
algorithm are left to the reader.

4.1. The AT−BTF method. Introduce the linear operator

M : RI1×I2×...×IN → R
I1×I2×...×IN ,

X 7→ M(X) := X×1 A
(1) + X×2 A

(2) + . . .+ X×N A(N)(4.1)

and define the tensor Krylov subspace

Km(M,D) = span{D,M(D), . . . ,Mm−1(D)}.
The Arnoldi−BTF process, described by Algorithm 1, produces an orthonormal basis for
Km(M,D), provided that m is small enough so that breakdown does not occur. Let Ṽℓ

denote the (N + 1)-mode tensor with the column tensors V1,V2, . . . ,Vℓ for 1 ≤ ℓ ≤ m + 1
produced by Algorithm 1. It is not difficult to see that Ṽℓ ⊠

(N+1) Ṽℓ = Iℓ for 1 ≤ ℓ ≤ m. In
the sequel, the matrix H̄m = [hij ] ∈ R

(m+1)×m is of upper Hessenberg form; its nontrivial
entries are computed in lines 6 and 9 of Algorithm 1. The matrix Hm ∈ R

m×m is obtained
by deleting the last row of H̄m. It is shown in [5, Theorem 3.1] that

(4.2) W̃m = Ṽm+1 ×(N+1) H̄
T
m,

where W̃m is an (N + 1)-mode tensor generated by Algorithm 1, has the column tensors
Wj := M(Vj) for j = 1, 2, . . . ,m. Moreover, by [5, Proposition 3.2], we have

(4.3) Ṽm ⊠(N+1) W̃m = Hm

and Ṽm+1 ⊠
(N+1) W̃m = H̄m.

Algorithm 1: The Arnoldi−BTF process [5].

1 Input: Coefficient matrices A(1), A(2), . . . , A(N), right-hand side D, and initial
approximate solution X0.

2 Compute R0 := D−M(X0), β := ‖R0‖, V1 := R0/β.
3 for j = 1, 2, . . . ,m do
4 W := M(Vj);
5 for i = 1, 2, . . . , j do
6 hij := 〈W,Vi〉 ;
7 W := W− hijVi;

8 end
9 hj+1,j := ‖W‖. If hj+1,j := 0, then stop;

10 Vj+1 := W/hj+1,j ;

11 end

If the matrices A(1), A(2), . . . , A(N) are symmetric positive definite, then in view of
(4.3), the Hessenberg matrix Hm is symmetric positive definite and, therefore, tridiago-
nal. It follows that Algorithm 1 reduces to the Lanczos process based on tensor format
(Lanczos−BTF), which is described in [5, Algorithm 2].
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Having carried out m := k steps with Algorithm 1, we determine an approximate
solution Xk ∈ Kk(M,D) of (1.4) as follows. Let

Xk =

k∑

i=1

y
(i)
k Vi = Ṽk×̄(N+1)yk, where yk = (y

(1)
k ; . . . ; y

(k)
k ) ∈ R

k.

Using (4.2) and Proposition 1.1, we obtain

‖D−M(Xk)‖ = ‖ ‖D‖ e1 − H̄kyk‖2
and

∥∥∥∥∥∥

M∑

j=1

Xk ×j L
(j)

∥∥∥∥∥∥

2

= yTk

(
M̃k ⊠(N+1) M̃k

)
yk,

where

M̃k =

M∑

j=1

Ṽk ×j L
(j)

is an (N +1)-mode tensor. It follows from these relations that (1.4) can be expressed as the
Tikhonov minimization problem

(4.4) min
y∈Rk

{∥∥‖D‖ e1 − H̄ky
∥∥2
2
+ λyT

(
M̃k ⊠(N+1) M̃k

)
y
}

with solution y = yk ∈ R
k.

The expression (4.4) generalizes a solution method proposed by Huang et al. [24] to
equations (1.4) with a tensor structure. The matrix

(4.5) Nk = M̃k ⊠(N+1) M̃k

in the regularization term is a Gram matrix and, therefore, positive semi-definite.
Referring to [24, eq. (3.6)], without going into details, let Nk denote the Gram matrix

there (which corresponds to the matrix Nk introduced above). The quadratic form yTNky
in [24, eq. (3.6)] is replaced by ‖L̃T

k y‖22, where the matrix L̃k has to be determined. When

Nk is positive definite, Huang et al. [24] let L̃k be the Cholesky factor of Nk; when Nk

is singular they propose to let L̃T
k = D

1/2
k QT

k , where Nk = QkDkQ
T
k , Qk ∈ R

k×k is an
orthogonal matrix and the matrix Dk is diagonal. We follow the same strategy for the
Gram matrix (4.5) and obtain from (4.4) a Tikhonov minimization problem in general form,

(4.6) min
y∈Rk

{∥∥‖D‖ e1 − H̄ky
∥∥2
2
+ λ

∥∥∥L̃T
k y
∥∥∥
2

2

}
.

In applications of interest to us, k generally is fairly small. We therefore may solve (4.6)
by computing the generalized singular value decomposition of the matrix pair {H̄k, L̃

T
k };

see, e.g., [15, 20]. Another solution approach is to let Ĥk = H̄kL̃
−T
k and express (4.6) as a

Tikhonov minimization problem in standard form,

(4.7) min
z∈Rk

{∥∥∥‖D‖ e1 − Ĥkz
∥∥∥
2

2
+ λ ‖z‖22

}
.

This approach is discussed in [24, cf. (3.8) and (3.9)]. Since in many applications the matrix
L̃k is not very ill-conditioned, the solution of linear systems of equations with the matrix
L̃k, which is required when forming Ĥk, is feasible.
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It is interesting to investigate when the matrix Nk is invertible. The following result
provides sufficient conditions. Using a similar technique, one can derive sufficient conditions
for nonsingularity of the matrix Nk in [24, Eq. (3.6)].

Theorem 4.1. Assume that k steps of Algorithm 1 have been carried out and let Ṽk be
the (N+1)-mode tensor with the column tensors V1,V2, . . . ,Vk determined by the algorithm.

Let M̃k =
∑M

j=1 Ṽk ×j L
(j). If the matrix

(4.8) L :=

M∑

j=1

I(IM ) ⊗ . . .⊗ I(Ij+1) ⊗ L(j) ⊗ I(Ij−1) ⊗ . . .⊗ I(I1)

is invertible, or if

Null (L) ∩ span {vec(V1), . . . , vec(Vk)} = {0} ,

then the k × k matrix Nk = M̃k ⊠(N+1) M̃k is nonsingular.
Proof. Since Nk ∈ R

k×k is a Gram matrix, we only need to show that the frontal slices of
M̃k are linearly independent. This ensures the invertibility of Nk. As M ≤ N , we conclude
that k frontal slices of the (N + 1)-mode tensor M̃k are given by

Mℓ =

M∑

j=1

Vℓ ×j L
(j), ℓ = 1, 2, . . . , k.

Suppose that

0 =

k∑

ℓ=1

αℓMℓ =

k∑

ℓ=1

M∑

j=1

αℓVℓ ×j L
(j) =

M∑

j=1

(
k∑

ℓ=1

αℓVℓ

)
×j L

(j)

for some scalars α1, α2, . . . , αk. The above relation is equivalent to

k∑

ℓ=1

αℓvec(Vℓ) ∈ Null (L) .

The vectors vec(V1), vec(V2), . . . , vec(Vk) are linearly independent. The assertion therefore
follows.

Remark 4.2. The spectrum of L is given by

σ(L) =
{

M∑

i=1

λi : λi ∈ σ(L(i)) for i = 1, 2, . . . ,M

}
.

This shows that if all regularization matrices L(i) are symmetric positive semi-definite, with
at least one of them positive definite, then L is invertible.

The reduced Tikhonov minimization problem in standard form (4.7) is solved by the
technique used in [24], where the regularization parameter λ is determined with the aid of
the discrepancy principle (see Appendix A for further details). Algorithm 2 summarizes the
computations. The algorithm can be implemented by using the Matlab Tensor Toolbox
[2].

4.2. The flexible AT−BTF method. We describe how the flexible Arnoldi process
discussed in [19, 37, 41] can be adapted to the tensor framework. We refer to the iterative
scheme as the flexible Arnoldi method based on tensor format (FAT−BTF). The computa-
tions are summarized in Algorithm 3. We remark that we may replace line 4 of the algorithm
by other ways for determining a suitable basis Z1,Z2, . . . ,Zm of the solution subspace. For
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Algorithm 2: The AT−BTF (LT−BTF) regularization method.

1 Input: The coefficient matrices A(i), i = 1, 2, . . . , N ; the right-hand side tensor D;

the regularization matrices L(j), j = 1, 2, . . . ,M , chosen so that (4.8) is
nonsingular (cf. Remark 4.2); and the parameters δ and η > 1 used in the
discrepancy principle (see Appendix A for details).

2 for k = 1, 2, . . . until convergence do

3 Compute Ṽk with the column tensors Vi and H̄k by Algorithm 1 (or by

Lanczos−BTF process if all the A(i) are symmetric);

4 Compute column tensors of M̃k by Mi =
M∑
j=1

Vi ×j L
(j) (i = 1, 2, . . . , k);

5 Compute Nk = M̃k ⊠(N+1) M̃k;

6 Compute the Cholesky factorization of Nk = L̃kL̃
T
k ;

7 Compute Ĥk = H̄kL̃
−T
k ;

8 Compute the zero λ > 0 of φ(λ) = ‖‖D‖e1 − Ĥkzλ,k‖22 − η2δ2, where δ is a
bound for the norm of the error E in D. We comment that the vector zλ,k in
φ(λ) is written as a (one-variable) function of λ; see Appendix A for more
details. After computing the regularization parameter λ, determine the vector
zλ,k by solving the following (small) least-squares problem

min
z∈Rk

∥∥∥∥
[

Ĥk

λ1/2Ik

]
z −

[
‖D‖e1

0

]∥∥∥∥
2

2

;

Let yk = (y
(1)
k ; . . . ; y

(k)
k )T := L̃−T

k zλ,k and compute

X =
k∑

i=1

y
(i)
k Vi = Ṽk×̄(N+1)yk;

9 end

instance, we may carry out more steps with the BiCGSTAB−BTF method [11]. We found
the basis determined by Algorithm 3 to perform well for the problems of Section 5.

Having carried out k steps with Algorithm 3, we can determine an approximate solution
Xk of (1.4) of the form

(4.9) Xk =
k∑

i=1

y
(i)
k Zi = Z̃k×̄(N+1)yk, yk = (y

(1)
k ; . . . ; y

(k)
k ) ∈ R

k,

in which Z̃k denotes the (N + 1)-mode tensor with the column tensors Z1,Z2, . . . ,Zk. It is
not difficult to see that

D−M(Xk) = Ṽk×̄(N+1)(‖D‖ e1 − H̄kyk)

and
∥∥∥∥∥∥

M∑

j=1

Xk ×j L
(j)

∥∥∥∥∥∥

2

= yTk

(
M̂k ⊠(N+1) M̂k

)
yk,

where M̂k =
M∑
j=1

Z̃k×jL
(j), and Z̃k denotes the (N+1)-mode tensor with the column tensors

Z1,Z2, . . . ,Zk. Using the above relations, the Tikhonov minimization problem (1.4) can be
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Algorithm 3: The flexible Arnoldi−BTF process.

1 Input: Coefficient matrices A(1), A(2), . . . , A(N), right-hand side D, and initial
approximate solution X0.

2 Compute R0 = D−M(X0), β := ‖R0‖, V1 := R0/β, h0,1 = 0, and V0 = 0.
3 for j = 1, 2, . . . ,m do
4 Apply two steps of BiCGSTAB−BTF [11] to find Zj as an approximate solution

of M(Zj) = Vj ;
5 W := M(Zj);
6 for i = 1, 2, . . . , j do
7 hij := 〈W,Vi〉 ;
8 W := W− hijVi;

9 end
10 hj+1,j := ‖W‖. If hj+1,j := 0, then stop;
11 Vj+1 := W/hj+1,j ;

12 end

reduced to

(4.10) min
y∈Rk

{∥∥‖D‖ e1 − H̄ky
∥∥2
2
+ λyT

(
M̂k ⊠(N+1) M̂k

)
y
}
.

This minimization problem can be solved similarly as the corresponding minimization prob-
lem of the previous subsection. We refer to this solution method as the flexible Arnoldi–
Tikhonov method based on tensor format. We will abbreviate it by FAT−BTF also.

4.3. The GAT−BTF method. Consider the Tikhonov regularization problem

min
x∈Rn

{
‖Ax− b‖22 + λ ‖Lx‖22

}
,

where A is a severely ill-conditioned matrix and L is a general regularization matrix. A
technique for determining an approximate solution in a generalized Krylov subspace is de-
scribed in [38]. This method is based on simultaneously reducing the matrices A and L by
a generalized Arnoldi process proposed by Li and Ye [32]. The method is extended in [8] to
the solution of a class ill-posed matrix equation. Here we describe an extension that can be
applied to the solution of equation (1.4). We refer to the resulting scheme as the GAT−BTF
method.

Introduce the linear operator

L : RI1×I2×...×IN → R
I1×I2×...×IN ,

X 7→ L(X) := X×1 L
(1) + X×2 L

(2) + . . .+ X×M L(M).(4.11)

Algorithm 4, which generalizes the method described in [38], generates generalized Krylov
subspaces spanned by elements of the form

(4.12) D,M(D),L(D),M2(D),M(L(D)),L(M(D)),L2(D), . . . .

The execution of k steps of this algorithm requires k applications of the operators (4.1) and
(4.11). A generalization of the algorithm in [38] is described in [40]. The latter algorithm
also can be modified to be applicable to the operators (4.1) and (4.11).

Let αk and βk stand for the values of ℓ in lines 17 and 27, respectively, of Algorithm 4,
and let H̄M,k = [HM(i, j)] ∈ R

αk×k and H̄L,k = [HL(i, j)] ∈ R
βk×k denote the matrices,

whose nontrivial entries are computed in lines 10 and 13, and in lines 20 and 23, respectively,
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of the algorithm. In the sequel, suppose that Ṽαk
and Ṽβk

are (N + 1)-mode tensors,
whose column tensors Vi are determined by Algorithm 4. It is not difficult to see that
Ṽαk

⊠(N+1) Ṽαk
= I(αk) and Ṽβk

⊠(N+1) Ṽβk
= I(βk). With a strategy similar to the one

used in [5, Theorem 3.1], it can be shown that

(4.13) W̃ = Ṽαk
×(N+1) H̄T

M,k and Ŵ = Ṽβk
×(N+1) H̄T

L,k,

where W̃ and Ŵ are two (N + 1)-mode tensors with column tensors W̃j := M(Vj) and

Ŵj := L(Vj) for j = 1, 2, . . . , k
The following proposition is useful for deriving a Tikhonov regularization problem of low

dimension by projecting (1.4) onto a generalized Krylov subspace spanned by elements of the
form (4.12). The proof follows from properties of contracted product and straightforward
computations. We omit the details.

Proposition 4.3. Let Ṽr be an (N + 1)-mode tensor with the column tensors Vj,

for j = 1, 2, . . . , r, such that Ṽr ⊠(N+1) Ṽr = I(r). Assume that D̃r = Ṽr×̄(N+1)zD with

zD = Ṽr ⊠(N+1) D = (〈V1,D〉, . . . , 〈Vr,D〉)T , where D is an N -mode tensor. For all
z, d ∈ R

r, we have
1. 〈Ṽr×̄(N+1)z, Ṽr×̄(N+1)d〉 = 〈z, d〉2 and ‖Ṽr×̄(N+1)z‖ = ‖z‖2,
2. 〈Ṽr×̄(N+1)z,D〉 = 〈z, zD〉2,
3. ‖D− D̃r‖

2
= ‖D‖2 − ‖zD‖22,

4. ‖Ṽr×̄(N+1)z −D‖2 = ‖z − zD‖22 + ‖D‖2 − ‖zD‖22,
5. if V1 = D/‖D‖, then ‖Ṽr×̄(N+1)z −D‖2 = ‖z − ‖D‖e1‖22.

Here 〈x, y〉2 denotes the standard Euclidean inner product between two real vectors x and y
of the same size, i.e., 〈x, y〉2 = xT y.

Consider the subspaces Fk = span {V1,V2, . . . ,Vk} for k = 0, 1, 2, . . . and let Ṽr be an
(N+1)-mode tensor with the column tensors Vi, for i = 1, 2, . . . , r, generated by Algorithm 4.
After k steps of the algorithm, the GAT−BTF method determines an approximate solution
Xk ∈ Fk of the form

Xk =
k∑

i=1

y
(i)
k Vi = Ṽk×̄(N+1)yk, yk = (y

(1)
k , . . . , y

(k)
k )T .

Using (4.13) and Proposition 4.3, one may easily verify that equation (1.4) can be reduced
to the low-dimensional problem,

min
yk∈Rk

{
‖H̄M,kyk − ‖D‖e1‖22 + λ‖H̄L,kyk‖22

}
,

which can be solved by one of the techniques described in Subsection 4.1.

We conclude this section by noting that all of the iterative schemes described in this
section can be used to solve operator equations of the form S(X) = C, where S(·) is a fairly
general linear operator from R

I1×I2×...×IN to R
I1×I2×...×IN .

5. Numerical experiments. We report results for three test problems to illustrate
the performance of the algorithms described. The right-hand side tensor D in (1.1) is
contaminated by an error tensor E with normally distributed random entries with zero
mean and scaled to correspond to a specific noise level ν := ‖E‖/‖D‖. All computations
were carried out on a computer with an Intel Core i7-4770K CPU @ 3.50GHz processor and
24GB RAM using MATLAB R2014a. We used the Tensor Toolbox [2].

The first example stems from the discretization of a dimensionless radiative transfer
equation (RTE) by a spectral method. This gives rise to an equation of the form (1.1) with
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Algorithm 4: The GAT−BTF process for operator pairs {M,L}.
1 Input: the coefficient A(i), i = 1, 2, . . . , N ; the right-hand side tensor D; the

parameter associated with the discrepancy principle η > 1 (see Appendix A for
more details); and an integer k > 0.

2 Choose the regularization matrices L(j)s for j = 1, 2, . . . ,M ;
3 Set ℓ = 1 and V1 := D/‖D‖;
4 for j = 1, 2, . . . , k do
5 if j > ℓ then
6 exit;
7 end
8 W := M(Vj);
9 for i = 1, . . . , ℓ do

10 HM(i, j) := 〈W,Vi〉;
11 W = W−HM(i, j)Vi;

12 end
13 HM(ℓ+ 1, j) := ‖W‖;
14 if HM(ℓ+ 1, j) > 0 then
15 ℓ = ℓ+ 1;
16 Vℓ = W/HM(ℓ, j);

17 end
18 W = L(Vj);
19 for i = 1, . . . , ℓ do
20 HL(i, j) := 〈W,Vi〉;
21 W = W−HL(i, j)Vi;

22 end
23 HL(ℓ+ 1, j) := ‖W‖;
24 if HL(ℓ+ 1, j) > 0 then
25 ℓ = ℓ+ 1;
26 Vℓ = W/HL(ℓ, j);

27 end

28 end

dense and severely ill-conditioned matrices A(i), i = 1, 2, 3. In the second test example, we
focus on the performances of the proposed iterative methods as a function of the distance
of the matrix A (given by (1.6)) to the set of symmetric matrices using results from Section
3. The last example is concerned with the restoration of a hyperspectral image. For each
example, we display the relative error

Err :=
‖Xλk,k − X̃‖

‖X̃‖
.

Here X̃ denotes the desired solution of the error-free problem (1.3), and Xλk,k is the kth
approximation computed by the algorithm used for solving (1.1) with an error-contaminated
right-hand side. The regularization parameter λk is determined by the discrepancy principle;
see below. We terminate the iterations as soon as

∥∥Xλk,k − Xλk−1,k−1

∥∥
∥∥Xλk−1,k−1

∥∥ ≤ τ

for a specified tolerance τ > 0 (defined in each example), or when the maximum number of
iterations kmax = 17 is reached. The initial approximate solution in all experiments is the
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zero tensor. We remark that the quality of the computed solution does not change much if
we decrease τ or increase kmax; however, the number of iterations may increase. Our choices
of kmax and τ give computed solutions of (1.1) of near-optimal quality and illustrate the
relative performance of the iterative solution methods considered.

Under the table headings “Iter” and “CPU–time (sec)”, we report the number of itera-
tions and the CPU-time (in seconds) required. The regularization matrices are the tridiag-
onal matrices L(i) = tridiag(−1, 2,−1) in all examples.

We apply the discrepancy principle (with the user-chosen constant η = 1.01) to deter-
mine the regularization parameter λ > 0; see Appendix A and [24] for further details. Other
methods, such as the L-curve criterion and generalized cross-validation (GCV) also may be
used; see, e.g., [8, 26, 38] for discussions and references.

Example 5.1. Consider the dimensionless RTE,

(5.1)
1

τL
(Ω · ∇)G(r∗,Ω) +G(r∗,Ω) = (1− ω)Θ4(r∗) +

ω

4π

∫

4π

G(r∗,Ω′)Φ(Ω,Ω′) dΩ′,

where G is the dimensionless radiative intensity. The integral in (5.1) and its boundary
condition are discretized by a Nyström quadrature rule with Chebyshev–Gauss–Lobatto
collocation points with the dimensionless radiative intensity approximated by an interpola-
tion polynomial. The matrix obtained by this discretization of the dimensionless RTE can
be written in the form of a Sylvester tensor equation

(5.2) G×1 A
(1) + G×2 A

(2) + G×3 A
(3) = D,

where the matrices A(1), A(2), and A(3) are given in [45, Eqs. (20)-(23)]. We consider the
case when A(1) = A(2) = A(3). When constructing these matrices, we choose the physically
meaningful parameters τL = 1, µ = η = ξ = 0.1, and m = 2, for which the resulting
coefficient matrices are nonsymmetric, dense, and highly ill-conditioned2. The right-hand
side tensor is determined so that (5.2) has the exact solution G̃ = [g̃ijk]n×n×n, where

g̃ijk = (xi − sin2(xi))(yj − sin2(yj))(zk − sin2(zk)),

where the xi, yj , and zk are equidistant nodes in [−1, 1] for i, j, k = 1, 2, . . . , n.
The numerical results show the GAT−BTF method to give more accurate approximate

solutions than the AT−BTF and FAT−BTF methods; see Table 4. GAT−BTF also requires
the most iterations and, therefore, is slower than the other methods. The condition numbers
reported are computed with the MATLAB command cond(·). Notice that from Remark 2.4,
we have the lower bound for the condition number

cond(A) ≥ 1√
3
cond(A(1)),

which shows that the matrix A is extremely ill-conditioned. The values determined by the
MATLAB function cond might not be very accurate, but they show that the matrices are
numerically singular for all grid sizes considered.

Table 4 shows the performance of (F)AT−BTF to deteriorate as the grid size decreases.
The following remark discusses the distance of matrix A (of the form (1.6)) to the set of
symmetric matrices associated with different grid sizes.

Remark 5.2. Let A be the matrix with Kronecker structure (1.6) associated with the
Sylvester tensor equation of Example 5.1. Table 5 reports the relative distances of A to
the sets of all symmetric, skew-symmetric, and positive or negative semi-definite matrices.

2The parameter τL represents optical thickness, and the symbols µ, η, and ξ are, receptively, direction
cosines in the x, y, and z directions. The parameter m denotes angular direction of radiation; see [45, page
092701–7].
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Table 4

Results for Example 5.1 (with τ = 1 · 10−2).

Grid cond(A(1)) ν Method Iter Err CPU-times(sec)

90× 90× 90 4.55 · 1016
0.01

AT−BTF 2 2.48 · 10−1 0.35
FAT−BTF 2 2.75 · 10−1 0.79
GAT−BTF 7 6.52 · 10−2 2.97

0.001

AT−BTF 4 1.05 · 10−1 1.07
FAT−BTF 2 8.81 · 10−2 0.85
GAT−BTF 10 3.62 · 10−2 6.17

120× 120× 120 4.86 · 1016
0.01

AT−BTF 6 4.24 · 10−1 3.20
FAT−BTF 13 9.35 · 10−1 20.11
GAT−BTF 12 7.72 · 10−2 24.12

0.001

AT−BTF 2 3.82 · 10−1 0.72
FAT−BTF 7 8.22 · 10−1 6.16
GAT−BTF 10 5.20 · 10−2 17.64

145× 145× 145 1.14 · 1017
0.01

AT−BTF 6 6.23 · 10−1 5.42
FAT−BTF 5 9.92 · 10−1 6.52
GAT−BTF 13 4.86 · 10−2 49.78

0.001

AT−BTF 2 5.95 · 10−1 1.15
FAT−BTF 3 9.83 · 10−1 3.41
GAT−BTF 14 3.97 · 10−2 58.61

200× 200× 200 8.21 · 1016
0.01

AT−BTF 4 8.94 · 10−1 7.09
FAT−BTF 3 10.57 · 10−1 8.89
GAT−BTF 18 6.03 · 10−2 295.47

0.001

AT−BTF 11 5.90 · 10−1 47.21
FAT−BTF 5 10.55 · 10−1 16.34
GAT−BTF 14 6.01 · 10−2 157.63

Table 5

Distances to symmetry, skew-symmetry, positive(negative) definiteness of A for Example 5.1.

Size(D) ‖S(A)‖2 ‖H(A)‖2
‖S(A)‖2

‖A‖
ss

‖H(A)‖2

‖A‖
ss

δ+ss(A)
‖A‖

ss

δ−ss(A)
‖A‖

ss

90× 90× 90 65.1847 93.7889 0.4100 0.5900 0.9874 1.0000
120× 120× 120 116.5079 166.8792 0.4111 0.5889 0.9929 1.0000
145× 145× 145 170.5865 243.8935 0.4116 0.5884 0.9952 1.0000
200× 200× 200 325.7488 464.8630 0.4120 0.5880 0.9975 1.0000

Recall that ‖A‖ss = ‖S(A)‖2 + ‖H(A)‖2, where H(A) and S(A) denote the symmetric
and skew-symmetric parts of A, respectively. The table shows the relative distances of the
matrix A to both the sets of symmetric and skew-symmetric matrices to converge to 0.5 as
the mesh size decreases. This may be a reason for the poor performance of the (F)AT−BTF
methods in the previous example.

The observation of Remark 5.2 motivated us to further examine the dependence of
the performances of the proposed algorithms to the distance of A to the set of symmetric
matrices. We note that in the previous test problem, equation (1.1) has a solution of low
rank. However, the right-hand side is not a tensor of low-rank since it is contaminated by
error. In the following test problem, we examine the performances of (F)AT−BTF for the
cases when the exact solution is of low rank and when it is not. The coefficient matrices
A(i) are sparse.

Example 5.3. Consider the Sylvester tensor equation (1.1), in which A(l) = (I+αS)Hl

for l = 1, 2, 3. We let S = tridiag(−1, 0, 1) ∈ R
n×n. The matrices Hl = [h

(l)
ij ] ∈ R

n×n are
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Fig. 2. Outside figure: “cond(A(i))” (left) and “lower bound for cond(A)” (right) versus α; Inside

figure: Relative distance of A ∈ R
n
3
×n

3
to the symmetric matrices versus α for n = 450 (left) and n = 100

(right).

Toeplitz matrices given by

h
(l)
ij =





1

2r − 1
, |i− j| ≤ r,

0, otherwise,
(5.3)

for l = 1, 2, 3. Note that A ∈ R
n3×n3

. We consider two values of n:
• When n = 100, we set r = 6 for H1, H2, and H3. The noise level was ν = 0.01 and
we set τ = 3 · 10−2. We were able to compute the lower bound for cond(A) by using
Remark 2.4. This bound is reported in Figure 2.

• When n = 450, we set r = 5 for H1, r = 6 for H2, and r = 5.5 for H3. The noise
level was ν = 0.01 and we set τ = 6 · 10−2.

For each dimension, Figure 2 depicts the relative distance of A to the set of symmetric
matrices together with information about condition numbers. Note that the distance depends
on the parameter α. Equations (1.1) with the two exact solutions of the associated error-free
problem are considered:
Case I: Let x̃ = x̃1⊗ x̃2⊗ x̃3, where x̃i = rand(n, 1) for i = 1, 2, 3. The MATLAB function

rand generates uniformly distributed random numbers in the interval [0, 1]. We
determine the error-free right-hand side so that X̃, with vec(X̃) = x̃1 ⊗ x̃2 ⊗ x̃3, is
the exact solution of (1.1). Thus, the solution of the error-free equation associated
with eq. (1.1) has low rank.

Case II: We determine the error-free right-hand side so that X̃ = rand(n, n, n) is the solu-
tion of the error-free equation associated with (1.1).

Figures 3 and 4 show the performance of the iterative methods for different values of α.
The quality of the computed approximate solutions are shown in the right-hand side plots
and the required CPU-times in the left-hand side plots. For Case I, where the problem has
a low-rank solution, the relative performances of the methods agree with the observations of
Remark 5.2, i.e., poor performance of (F)AT−BTF is observed as the relative distance of
A tends to 0.5. The situation for matrices of Class II is more complicated. This illustrates
that the performance of (F)AT−BTF does depend on the properties of the right-hand side
and, therefore, on the properties of the desired solution.

Differently from Example 5.1, the AT−BTF and FAT−BTF methods determine approx-
imate solutions of, generally, higher quality than the GAT−BTF method for test Examples
5.3 and 5.4.

Example 5.4. The exact solution of this test example is a 1017×1340×33 tensor that
represents a hyperspectral image; see [17, 30, 43] for discussions on hyperspectral image
restoration. Each slice of the solution tensor corresponds to an image of the same scene
measured at a different wavelength. We consider the following Sylvester tensor equation

X×1 A
(1) + X×2 A

(2) + X×3 A
(3) = D,
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Fig. 3. Performance of the iterative methods applied to the matrices of Example 5.3; Cases I (top)
and II (bottom) for n = 100.

Fig. 4. Performance of the iterative methods applied to the matrices of Example 5.3; Cases I (top)
and II (bottom) for n = 450.

where A(1) = [a
(1)
ij ], A(2) = [a

(2)
ij ], and A(3) = [a

(3)
ij ] are 1017 × 1017, 1340 × 1340, and

33×33 matrices, respectively, in the form A(l) = (I+αRl)Hl with Hl given by (5.3), and Rl

has uniformly distributed random entries in the interval [0, 1]. The dimensions are suitably
chosen for l = 1, 2, 3. We set r = 5 for A(1), and r = 7 for A(2) and A(3). The condition
numbers for these matrices are reported in Table 6. When α = 0, the coefficient matrices
A(l) reduce to blurring matrices exploited in [8].

In Table 6, LT−BTF stands for the method obtained by replacing the Arnoldi process
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(a) (b)

(c) (d) (e)

Fig. 5. (a) Exact solution, (b) Noisy data, (c) Restored data with GAT−BTF, (d) FAT−BTF and (e)
AT−BTF for level of noise ν = 0.01 and α = 0.001.

in AT−BTF by the Lanczos process, which requires less arithmetic work. This replacement
is possible because the matrices A(l) are symmetric for α = 0. We remark that also the
GAT−BTF method can be simplified when all matrices are symmetric. Since the GAT−BTF
method gives restorations of worse quality than LT−BTF, we will not dwell on this simpli-
fication. Figure 5 shows the uncontaminated image that we would like to determine, as well
as the contaminated image that is assumed to be available. Restorations achieved by the
AT−BTF, FAT−BTF, and GAT−BTF methods also are displayed in Figure 5.

We report the distances of the matrices A to the sets of symmetric, skew-symmetric,
and positive (negative) definite matrices in Table 7. It can be seen that for small α > 0,
the matrix A is almost symmetric. For α = 0.001, the coefficient matrices are dense and
the AT−BTF and GAT−BTF methods perform similarly. The FAT−BTF method produces
more accurate solutions, but requires more CPU-time than the other methods. The matrices
A(l) are sparse and symmetric when α = 0. Then the LT−BTF can be applied. This method
is faster than the other methods.

Table 6

Results for Example 5.4 (with τ = 3 · 10−2).

α cond(A(i)) Method Iter Err CPU-times(sec)

0

cond(A(1)) = 2.32 · 1017 LT−BTF 2 4.42 · 10−2 15.07
cond(A(2)) = 1.48 · 1018 FAT−BTF 2 3.49 · 10−2 50.82
cond(A(3)) = 2.96 · 1017 GAT−BTF 2 4.45 · 10−2 27.09

0.001

cond(A(1)) = 1.52 · 1017 AT−BTF 3 5.71 · 10−2 30.79
cond(A(2)) = 9.33 · 1017 FAT−BTF 2 3.84 · 10−2 52.03
cond(A(3)) = 1.58 · 1017 GAT−BTF 2 5.70 · 10−2 28.67
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Table 7

Distances to symmetry, skew-symmetry, positive (negative) definiteness of A for Example 5.4.

α ‖S(A)‖2 ‖H(A)‖2
‖S(A)‖2

‖A‖
ss

‖H(A)‖2

‖A‖
ss

δ+ss(A)
‖A‖

ss

δ−ss(A)
‖A‖

ss

0 0 3.4558 0 1 0.2143 1.0000
0.001 0.0272 4.8596 0.0056 0.9944 0.1572 1.0000

6. Conclusions. This paper considers linear systems of equations with a matrix with
the structure

(6.1) A =
N∑

j=1

I(IN ) ⊗ . . .⊗ I(Ij+1) ⊗A(j) ⊗ I(Ij−1) ⊗ . . .⊗ I(I1).

An extension is discussed in Remark 2.9. We first show some bounds for the condition
number of the matrix (6.1) and discuss ways of measuring the distance of this matrix to the
sets of (skew-)symmetric and positive (negative) definite matrices. These results are then
used to compare several iterative solution methods for very ill-conditioned Sylvester tensor
equations. These methods are based on the Arnoldi process, the flexible Arnoldi process,
or a generalized Arnoldi process. Tikhonov regularization is applied. The iterative methods
considered generalize methods discussed in [8, 24, 38], as well as the flexible Arnoldi process
[41]. Numerical examples with applications to the solution of a radiative transfer equation
in 3D and to color image restoration illustrate that approximate solutions of high quality
can be computed with fairly few iteration steps and, hence, with fairly little computational
effort.
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Appendix A. We briefly describe how the discrepancy principle can be used for deter-
mining a suitable value of the regularization parameter in the proposed algorithms. We will
use the notation of Algorithm 2. The algorithms reduce the minimization problem (1.4) to
a low-dimensional problem of the form

(6.2) min
z∈Rk

{∥∥∥‖D‖e1 − Ĥkz
∥∥∥
2

2
+ λ ‖z‖22

}

for some λ > 0. The tensor D is contaminated by an error E; cf. (1.2). Assume that a
bound δ > 0 for the norm of E is available, i.e.,

‖E‖ ≤ δ.

Then the discrepancy principle can be used to determine the regularization parameter λ.
The discrepancy principle prescribes that λ > 0 is chosen so that the solution zλ,k of (6.2)
satisfies

(6.3)
∥∥∥‖D‖e1 − Ĥkzλ,k

∥∥∥
2

2
= η2δ2,

where η > 1 is a user-chosen parameter that is independent of δ. The vector zλ,k is known in
closed form. Substituting this vector into (6.3) and using the singular value decomposition
of Ĥk gives a simple equation for λ; see, e.g., [24] for related formulas. This equation can
be solved quite inexpensively by, e.g., Newton’s method. Other zero-finders are descibed in
[9, 39].
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