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Abstract This paper is concerned with Krylov subspace methods based on the
tensor t-product for computing certain quantities associated with generalized third-
order tensor functions. We use the tensor t-product and define the tensor global
Golub-Kahan bidiagonalization process for approximating tensor functions. Pairs
of Gauss and Gauss-Radau quadrature rules are applied to determine the desired
quantities with error bounds. An applications to the computation of the tensor
nuclear norm is presented and illustrates the effectiveness of the proposed meth-
ods.
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1 Introduction

Matrix functions are required in many scientific fields. They appear, e.g., in expo-
nential integrators in differential equations [19] and as centrality and communica-
bility measures [9] in network analysis. For square matrices, matrix functions can
be defined in terms of the spectral decomposition or the Jordan canonical form
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[18]. Generalized matrix functions of rectangular matrices were first proposed by
Hawkins and Ben-Israel [17], who based these matrix functions on the singular
value decomposition (SVD) or the compact singular value decomposition (CSVD)
of the matrix. These generalized matrix functions find applications in Hamiltonian
dynamical systems [6] and the analysis of directed networks [1].

Tensors are multidimensional arrays of data and generalize matrices. They have
essential roles in, e.g., network analysis [4] and multidifferential equations [26].
Kilmer, Martin, and their collaborators [27,31] introduced the tensor t-product.
It generalizes matrix-matrix and matrix-vector products to tensors and has many
nice properties. The t-product has found applications in image processing [7,8,25,
31,34,35], signal processing [28,36], and data completion and denoising [2,10,16,
22,30,38]. Lund [29] defined tensor functions based on the t-product of third-order
f-square tensors. The frontal slices of these tensors are square matrices and can
be expressed in terms of their spectral factorization [29] or their Jordan canonical
form [33]. Generalized functions of tensors, whose frontal slices are rectangular
matrices, have been described by Miao et al. [32] in terms of the tensor singular
value decomposition (t-SVD) and the tensor compact singular value decomposition
(t-CSVD). These decompositions are based on the tensor t-product; the t-SVD has
been proposed by Kilmer et al. [27].

Global Krylov subspace techniques for reducing large matrices to smaller ma-
trices were first described in [23,24] and were there applied to the solution of
linear systems of equations with multiple right-hand sides. These subspace meth-
ods are block Krylov methods that use a non-standard inner product, referred
to as a Frobenius inner product. The tensor t-global Arnoldi method for color
image processing has been described in [7,34]. This paper introduces the tensor
t-global Lanczos method, as well as the tensor t-global Golub-Kahan method for
approximating generalized tensor functions. These methods are based on the ten-
sor t-product. We describe how pairs of Gauss-type quadrature rules can be used
in conjunction with the tensor t-global Lanczos and tensor t-global Golub-Kahan
methods to compute upper and lower bounds (or estimates of such bounds) for
expressions of the form

trace(1)(g(A
T ∗ A)), (1)

where A ∈ Rm×n×p is a third-order tensor, the superscript T stands for transpo-
sition (see Definition 2 below), g(t) := (

√
t)−1f(

√
t), where the function f is such

that g is well defined for t ≥ 0, and trace(1)(K) :=
s∑
i=1

K
(1)
ii . Here K

(1)
ii denotes

the diagonal entries of the first frontal slice of the third-order tensor K ∈ Rs×s×p.
The need to evaluate matrix functions of the form (1) arises, for instance, when
computing tensor nuclear norms; see below.

For small tensors A, we can evaluate (1) in a straightforward manner. When
the tensor A is too large to make straightforward computation of (1) feasible or
attractive, we determine upper and lower bound, or estimates of such bounds,
by first applying a few steps of the t-global Golub-Kahan method to A. This
yields a small bidiagonal matrix, and multiplication by its transpose gives a small
symmetric tridiagonal matrix, which can be associated with Gauss quadrature
rules. These rules can be applied to determine upper and lower bounds for (1), or
estimates of such bounds. The main computational effort when applying these rules
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is the evaluation of a few tensor-matrix products that are required by the t-global
Golub-Kahan algorithm. When the tensor A is symmetric, the t-global Golub-
Kahan method can be replaced by the t-global Lanczos method. This reduces the
computational work. The latter method also will be described.

This paper is organized a follows. Section 2 reviews definitions of the tensor
t-product and some algebraic properties of third-order tensors. We also recall the
definition of t-functions given by Lund [29] and the definition of generalized tensor
functions introduced by Miao et al. [32] using the t-CSVD, and describe some of
their properties. Section 3 introduces the tensor t-global Lanczos and the tensor t-
Golub-Kahan methods. This section also discusses the computation of Gauss-type
quadrature rules that can be used to bound or determine estimates of bounds
of the expression (1). Numerical examples with applications to tensor nuclear
norm computations are presented in Section 4, and Section 5 contains concluding
remarks.

2 The tensor t-product

This section reviews the tensor t-product for third order tensors and some of its
properties. This product was proposed by Kilmer and Martin [27]. It is gener-
ally evaluated with the aid of the Discrete Fourier Transformation (DFT). The
beginning of this section reviews results in [27].

Let v ∈ Rp. The DFT of v, denoted by v̄, is given by

v̄ = Fpv ∈ Cp, (2)

where Fp = [fij ]
p−1
i,j=0 is the DFT matrix with entries

fij = [ωijp ], i, j = 0, 1, . . . , p− 1,

and ωp = exp(−2πi/p) is the primitive pth root of unity with i =
√
−1. The

Fast Fourier Transform (FFT) allows the evaluation of the matrix-vector product
(2) in only O(p log2(p)) arithmetic floating point operations (flops). Since F−1

p =
1
pF

H , where the superscript H denotes transposition and complex conjugation,

the matrix-vector products F−1
p v also can be evaluated in O(p log2(p)) flops. The

FFT and its inverse are implemented in Matlab by the functions fft and ifft,
respectively, i.e., v̄ = fft(v) and v = ifft(v̄).

Let v ∈ Rp. It is well known that the entries of the vector

v̄ = [v̄1, v̄2, . . . , v̄p] = fft(v)

satisfy

v̄1 ∈ R, and conj(v̄i) = v̄p−i+2, i = 2, . . . ,

⌊
p+ 1

2

⌋
,

where the operator conj complex conjugates its argument.
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Let the third order tensor A ∈ Rm×n×p have frontal slices A(k) ∈ Rm×n,
k = 1, 2, . . . , p. The operations bcirc, unfold, and fold are defined as

bcirc(A) :=



A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

A(p) A(p−1) . . . A(2) A(1)


, unfold(A) =



A(1)

A(2)

...

...

A(p)


,

and fold(unfold(A)) := A. Block circular matrices can be block diagonalized by
using the DFT [25]. In detail, for any third-order tensor A ∈ Rm×n×p, there is a
block diagonal matrix such that

bcirc(A) = (FHp ⊗ Im)


A1

A2

. . .

Ap

 (Fp ⊗ In),

where A1, . . . , Ap ∈ Cm×n. The diagonal blocks Ai satisfy{
Ai ∈ Cm×n,
conj(Ai) = Ap−i+2,

where conj(Ai) denotes the complex conjugate of the matrix Ai. Introduce the
tensor Ā ∈ Cm×n×p, whose frontal slices are the diagonal blocks A1, . . . , Ap, i.e.,

Ā = fold


A1

A2

...
Ap

 .
The tensor Ā can be computed by applying the FFT to tubes of the tensor A.
This can be done with the Matlab command

Ā = fft(A, [ ], 3).

Moreover, ifft(Ā, [ ], 3) = A.

Definition 1 ([27]) Let A ∈ Rm×n×p and B ∈ Rn×s×p be third-order tensors.
Then the t-product A ∗ B ∈ Rm×s×p is given by

A ∗ B := fold(bcirc(A) unfold(B)).

We note that
unfold(A ∗ B) = bcirc(A) unfold(B).

Definition 2 ([25,27,29])

– The transpose of the tensor A ∈ Rm×n×p is the tensor AT ∈ Rn×m×p obtained
by transposing each of the frontal slices of A and then reversing the order of
the transposed frontal slices 2 through p.
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Algorithm 1 The t-product [21]

Input: A ∈ Rm×n×p and B ∈ Rn×`×p.

1. Compute Ā = fft(A, [ ], 3) and B̄ = fft(B, [ ], 3).
2. Compute each frontal slice of C̄ by

C̄(i) =

 Ā(i)B̄(i), i = 1, · · · ,
⌈
p+1
2

⌉
conj

(
C̄(p−i+2)

)
, i =

⌈
p+1
2

⌉
+ 1, · · · , p

3. Compute C = ifft(C̄, [ ], 3).

Output: C = A ∗ B ∈ Rm×`×p.

– A tensor is said to be “f-diagonal” if each frontal slice is diagonal.
– A tensor A ∈ Rn×n×p is said to be t-symmetric if AT = A.
– The identity tensor Innp ∈ Rn×n×p is the tensor, whose first frontal slice is the
n× n identity matrix, and the other frontal slices are n× n zero matrices.

– A tensor P ∈ Rn×n×p is said to be orthogonal if PT ∗ P = P ∗ PT = Innp.
– A tensor A ∈ Rn×n×p is said to be invertible, if there is a tensor B ∈ Rn×n×p

such that A∗B = Innp and B ∗A = Innp. In this case, we denote the inverse B
by A−1. It is clear that A is invertible if and only if bcirc(A) is invertible.

– The inner product of the tensors A,B ∈ Rn×s×p is defined by

〈A,B〉 :=
n∑

i1=1

s∑
i2=1

p∑
i3=1

Ai1i2i3Bi1i2i3 = trace(1)(A
T ∗ B),

where for K ∈ Rs×s×p,

trace(1)(K) :=
s∑
i=1

K
(1)
ii ,

and K(1) denotes the first frontal slice of K.
– The Frobenius norm of A ∈ Rn×s×p is given by

‖A‖F :=
√
〈A,A〉.

– The trace of A ∈ Rn×s×p is defined by

trace(A) := trace(bcirc(A)).

– The trace of A ∈ Rn×s×p can be computed in terms of trace(1)(A) as

trace(A) := p trace(1)(A). (3)

– The tensors {V1,V2, . . . ,Vm} with Vi ∈ Rn×s×p are said to be F-orthonormal if

〈Vj ,Vk〉 =

{
1 j = k,

0 j 6= k.

Definition 3 ([7]) Let the tensors

M = [M1,M2, . . . ,Ms] ∈ Rn×sk×p and N = [N1,N2, . . . ,N`] ∈ Rn×`k×p

be partitioned into lateral slices Mi and Ni of size n × k × p, respectively. Then
the �-product of the tensors M and N is given by

MT � N = [〈Nj ,Mi〉]j=1,2,...,`
i=1,2,...,s ∈ Rs×`.
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Let A,B ∈ Rn×n×p, and let the function f be such that the matrix f(bcirc(A))
is well defined. Then Lund [29] introduced the tensor t-function

f(A) ∗ B := fold [f(bcirc(A)) unfold(B)] .

2.1 Generalized tensor functions by the tSVD

Generalized matrix functions of a matrix A ∈ Rm×n with m 6= n are described,
e.g., by Ben-Israel and Greville [3]. They are based on the compact singular value
decomposition (CSVD),

A = UrΣrV
T
r , (4)

where r ≤ min{m,n} is the rank of A. Here the matrices Ur ∈ Rm×r and Vr ∈ Rn×r
have orthonormal columns, and the nontrivial entries of the diagonal matrix Σr =
diag[σ1, σ2, . . . , σr] ∈ Rr×r are the nonvanishing singular values of A. Typically,
the singular values are ordered in nonincreasing order, σ1 ≥ σ2 ≥ . . . ≥ σr > 0; see,
e.g., [14] for details on the CSVD.

Let the function f : R→ R be defined on the positive real axis. The generalized
matrix function determined by f and (4) is given by

fgen(A) = Urf(Σr)V
T
r , f(Σr) = diag[f(σ1), f(σ2), . . . , f(σr)]. (5)

Lemma 1 Let A ∈ Rm×n, and let fgen : Rm×n → Rm×n be the generalized matrix

function (5). Then

1. [fgen(A)]T = fgen(AT ),

2. Let the matrices X ∈ Rm×m and Y ∈ Rn×n be orthogonal. Then fgen(XAY ) =
Xfgen(A)Y .

3. fgen(A) = f(
√
AAT )(

√
AAT )†A = A(

√
ATA)†f(

√
ATA),

where M† is the Moore-Penrose pseudoinverse of M .

Proof The first two properties are shown by Arrigo et al. [1], the last one by Ben-
Israel and Greville [3].

The analogue of formula (5) for tensors recently was introduced by Miao et
al. [32]. To define these functions, we require the t-CSVD decomposition of a
rectangular tensor.

Lemma 2 ([21]) The tensor A ∈ Rm×n×p can be factored as

A = Ur ∗ Sr ∗ QTr , (6)

where Ur ∈ Rm×r×p and Qr ∈ Rn×r×p are orthogonal tensors, and Sr ∈ Rr×r×p
is an f-diagonal tensor. The parameter r = max{r1, r2, . . . rp}, where rj = rank(Σj)
denotes the tubal-rank of A based on the t-product.

The block circulant matrices bcirc(Qr), bcirc(Sr), and bcirc(Ur) can be block
diagonalized by the FFT as follows:

bcirc(Qr) = (FHp ⊗ In)


Q1

Q2

. . .

Qp

 (Fp ⊗ Ir), where


Q1

Q2

. . .

Qp

 = bdiag(fft(Qr, [ ], 3)),

(7)
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bcirc(Sr) = (FHp ⊗ Ir)


Σ1

Σ2

. . .

Σp

 (Fp ⊗ Ir), where


Σ1

Σ2

. . .

Σp

 = bdiag(fft(Sr, [ ], 3)),

(8)

and

bcirc(Ur) = (FHp ⊗ Im)


U1

U2

. . .

Up

 (Fp ⊗ Ir), where


U1

U2

. . .

Up

 = bdiag(fft(Ur, [ ], 3)),

with Σj ∈ Rr×r, Uj ∈ Rm×r, and Qj ∈ Rn×r, for j = 1, 2, . . . , p. Here the function
bdiag applied to a tensor D ∈ Rm×n×p gives a block diagonal matrix, whose
diagonal blocks are the frontal slices D(i), i = 1, 2, . . . , p, of D, i.e.,

bdiag(D) =


D(1)

D(2)

. . .

D(p)

 .

Let the σ
(j)
i ∈ R be the diagonal entries of the matrix Σj , ordered so that

σ1 ≥ σ2,≥ . . . ≥ σp ≥ 0, and let q
(j)
i denote the ith column of the matrix Qj , i.e.,

Σj = diag[σ
(j)
1 , σ

(j)
2 , . . . , σ

(j)
r ],

Qj = [q
(j)
1 , q

(j)
2 , . . . , q

(j)
r ].

(9)

We may have σ
(j)
i = 0 for some i and j, since r = max{r1, r2, . . . , rp}.

Consider the matrix A ∈ Rm×n. The square root of the positive eigenvalues
of the matrix ATA ∈ Rn×n are the nonvanishing singular values of A. This result
extends to tensors. According to (6), the tensor AT ∗A has the spectral decompo-
sition

AT ∗ A = Qr ∗ (STr ∗ Sr) ∗ QTr . (10)

Thus, the set of t-eigenvalues of AT ∗A can be defined as the set of eigenvalues of
bcirc(STr ∗ Sr), where

spec(bcirc(STr ∗ Sr)) = {(σ(j)i )2, 1 ≤ j ≤ p, 1 ≤ i ≤ r}.

Here the operator spec extracts the spectrum of the matrix. The quantities σ
(j)
i

are the t-singular values of the tensor A. We are now in a position to describe the
generalized tensor function defined by Miao et al. [32].

Proposition 1 ([32]) Let the third-order tensor A ∈ Rm×n×p have the factorization

(6), and let the function f : R → R be defined on the nonnegative real axis. Introduce

the function fgen : Rm×n×p → Rm×n×p by

fgen(A) = Ur ∗ f̃(Sr) ∗ QTr , (11)
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where

f̃(Sr) = bcirc
−1

(
(FHp ⊗ Ir)


f̃(Σ1)

f̃(Σ2)
. . .

f̃(Σp)

 (Fp ⊗ Ir)

)
(12)

and

f̃(Σi) = f

(√
ΣiΣ

T
i

)(√
ΣiΣ

T
i

)†
Σi = Σi

(√
ΣTi Σi

)†
f

(√
ΣTi Σi

)
, i = 1, 2, . . . , p.

The matrices Σi ∈ Rr×r are defined by (8), and M† denotes the Moore-Penrose pseu-

doinverse of the matrix M .

Lemma 3 ([32]) Consider the third-order tensor A ∈ Rm×n×p, let f : R→ R, and let

fgen : Rm×n×p → Rm×n×p be the corresponding generalized function for third-order

tensors. Then

1. [fgen(A)]T = [fgen(AT )].
2. Let P ∈ Rm×m×p and Q ∈ Rn×n×p be orthogonal tensors. Then fgen(P∗A∗Q) =
P ∗ fgen(A) ∗ Q.

3. fgen(A) = f(
√
A ∗ AT ) ∗ (

√
A ∗ AT )† ∗ A = A ∗ (

√
AT ∗ A)† ∗ f(

√
AT ∗ A).

3 Approximation of trace(1)(WT ∗ fgen(A) ∗ V)

The evaluation of generalized tensor functions (11) requires the tensor singular
value decomposition (6). However, when m, n, and p are large, the computation of
this decomposition may be unfeasible or unattractive due to the large computa-
tional burden. Fortunately, many applications do not require the evaluation of the
whole tensor function fgen(A). Instead, it may suffice to determine an estimate of
quantities of the form

I(f) := trace(1)(W
T ∗ fgen(A) ∗ V), (13)

where W ∈ Rm×s×p and V ∈ Rn×s×p, with s� min{m,n}.
According to the third equation of Lemma 3, the expression (13) can be written

as bilinear forms involving functions of the tensors A ∗ AT and AT ∗ A. We have

trace(1)(W
T ∗ fgen(A) ∗ V) = trace(1)(W̃

T ∗ g(AT ∗ A) ∗ V) (14)

= trace(1)(W ∗ g(A ∗ A
T ) ∗ Ṽ), (15)

where Ṽ = A ∗ V, W̃ = AT ∗W, and g(t) = (
√
t)−1f(

√
t).

We will focus on the expression in the right-hand side of (14); the discussion

for the expression (15) proceeds similarly. First, note that if W̃ 6= V, then we can
use the polarization identity, see, e.g., [11,15],

trace(1)(W̃
T ∗ g(AT ∗ A) ∗ V) =

1

4
[trace(1)((W̃ + V)T ∗ (g(AT ∗ A) ∗ (W̃ + V)))

− trace(1)((W̃ − V)T ∗ (g(AT ∗ A) ∗ (W̃ − V)))],
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and therefore limit ourselves to compute approximations in the case when W̃ = V.
Thus, it suffices to compute approximations of expressions of the form

Is(g) := trace(1)(V
T ∗ (g(AT ∗ A) ∗ V)), (16)

where A ∈ Rn×n×p, V ∈ Rn×s×p, and g(AT ∗ A) = (
√
AT ∗ A)† ∗ f(

√
AT ∗ A).

To this end, we express (16) as a Riemann-Stieltjes integral by using the spectral
factorization of AT ∗ A.

Proposition 2 Let the σ
(j)
i be t-singular values of A and let the vectors q

(j)
i ∈ Rn

be defined by (9). The matrix Vj denotes the jth frontal slice of the discrete Fourier

transformation of V. Let the function f : R→ R satisfy f(0) = 0. Then the expression

(16) can be written as the Riemann-Stieltjes integral

Is(g) =

p∑
j=1

r∑
i=1

f(σ
(j)
i )

σ
(j)
i

trace(1)(Ṽ
(j)
i ) =

∫ σ2
max

σ2
min

g(t)dα(t), (17)

where

r = max(rank(Σj)), σmax = max
1≤i≤r

{σ(j)i }, σmin = min
1≤i≤r

{σ(j)i }, j = 1, 2, . . . p,

and

bcirc(Ṽ
(j)
i ) = (FHp ⊗ Is)(EjV Tj q

(j)
i q

(j),T
i VjE

T
j )(Fp ⊗ Is).

The matrix Ej ∈ Rps×s is made up of the columns (j−1)p+1, (j−1)p+2, . . . , jp of the

identity matrix Ips ∈ Rps×ps and α(λ) is a nondecreasing piece-wise constant function

with possible discontinuities at the positive eigenvalues (σ
(j)
i )2 of bcirc(AT ∗A); dα(λ)

is the associated measure.

Proof It follows from (10) that

AT ∗ A = Qr ∗ (STr ∗ Sr) ∗ QTr .

By the definition (11) of generalized tensor functions, we obtain

VT ∗ g(AT ∗ A) ∗ V = VT ∗ Qr ∗ g(STr ∗ Sr) ∗ QTr ∗ V.

Moreover,

bcirc(V) = (FHp ⊗ In)


V1

V2
. . .

Vp

 (Fp ⊗ Is). (18)

Using (7), (18), and the orthogonality of the matrix Fp, we get

bcirc(VT ∗Qr) = bcirc(V)T bcirc(Qr) = (FHp ⊗Is)


V T1 Q1

V T2 Q2

. . .

V Tp Qp

 (Fp⊗Is).
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It follows from (12) that the matrix bcirc(g(STr ∗ Sr)) ∈ Crp×rp can be written as

bcirc(g(STr ∗ Sr)) = (FHp ⊗ Ir)


g(ΣT1 Σ1)

g(ΣT2 Σ2)
. . .

g(ΣTp Σp)

 (Fp ⊗ Ir).

Using the above relations, we obtain

bcirc(VT ∗ g(AT ∗ A) ∗ V) = bcirc(VT ∗ Qr ∗ g(STr ∗ Sr) ∗ QTr ∗ V)

= bcirc(VT ∗ Qr) bcirc(g(STr ∗ Sr)) bcirc(QTr ∗ V)

= (FHp ⊗ Is)


V T1 Q1g(Σ

T
1 Σ1)QT1 V1

. . .

. . .

V Tp Qpg(Σ
T
p Σp)Q

T
p Vp

 (Fp ⊗ Is).

Since f(0) = 0, we have

V Tj Qjg(Σ
T
j Σj)Q

T
j Vj =

r∑
i=1

f(σ
(j)
i )

σ
(j)
i

V Tj q
(j)
i q

(j),T
i Vj , for j = 1, 2, . . . , p.

It follows that

bcirc(VT ∗ g(AT ∗ A) ∗ V) = (FHp ⊗ Is)



∑r
i=1

f(σ
(1)
i )

σ
(1)
i

V T1 q
(1)
i q

(1),T
i V1

. . .

. . . ∑r
i=1

f(σ
(p)
i )

σ
(p)
i

V Tp q
(p)
i q

(p),T
i Vp


(Fp ⊗ Is).

The above equation can be written as

bcirc(VT ∗ g(AT ∗ A) ∗ V) =

p∑
j=1

r∑
i=1

f(σ
(j)
i )

σ
(j)
i

(FHp ⊗ Is)EjV Tj q
(j)
i q

(j),T
i VjE

T
j (Fp ⊗ Is)

=

p∑
j=1

r∑
i=1

f(σ
(j)
i )

σ
(j)
i

bcirc(Ṽ
(j)
i ).

Using the linearity of the operator bcirc−1, we obtain

VT ∗ g(AT ∗ A) ∗ V =

p∑
j=1

r∑
i=1

f(σ
(j)
i )

σ
(j)
i

Ṽ
(j)
i .

Finally, we get

trace(1)(V
T ∗ g(AT ∗ A) ∗ V) =

p∑
j=1

r∑
i=1

f(σ
(j)
i )

σ
(j)
i

trace(1)(Ṽ
(j)
i ) =

∫ σ2
max

σ2
min

g(t)dα(t).

We remark that the condition f(0) = 0 in Proposition 2 is required only

when some singular values σ
(j)
i vanish. The following subsections describe two

approaches to approximate generalized tensor functions.
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3.1 The tensor t-global Lanczos method and Gauss quadrature

Let A be a large symmetric tensor. We describe the tensor t-global Lanczos
method for generating an orthonormal basis for the tensor global Krylov sub-
space Kgm(A ,V). In the computed examples reported in Section 4, we let A =
AT ∗ A ∈ Rn×n×p, where A ∈ Rm×n×p, but the method can be applied to reduce
an arbitrary large symmetric tensor to a small symmetric tensor.

The tensor t-global Lanczos method is a special case of the t-global Arnoldi
method, which was introduced in [7]. The latter method is designed to determine
an F-orthonormal basis for a t-global Krylov subspace when A ∈ Rn×n×p is a
nonsymmetric tensor. The generation of a new element Vj+1 of the F-orthonormal
basis by the t-global Arnoldi method requires explicit orthogonalization against all
already available basis elements, say V1,V2, . . . ,Vj , by using a recurrence relation
of the form

V1 =
V
‖V‖F

,

hj+1,jVj+1 = A ∗ Vj −
j∑
i=1

hi,jVi, j = 1, 2, . . . , k.
(19)

The coefficients hi,j are determined so that the tensors V1,V2, . . . ,Vj+1 are F-
orthonormal. Specifically,

hi,j = 〈A ∗ Vj ,Vi〉, 1 ≤ i ≤ j, hj+1,j = ‖A ∗ Vj −
j∑
i=1

hi,jVi‖F .

The following result is the foundation of the tensor t-global Lanczos method.

Proposition 3 Apply k steps of the t-global Arnoldi method to a t-symmetric tensor

A with initial tensor V 6= O. Then generically the coefficients hi,j generated by the

algorithm satisfy

hi,j = 0 for 1 ≤ i < j − 1, (20)

hj,j+1 = hj+1,j , (21)

for j = 1, 2, . . . , k.

Proof We first show (20). Since the tensor A is t-symmetric, we have

hi,j = 〈A Vj ,Vi〉 = 〈A Vi,Vj〉.

It follows from (19) that

A ∗ Vi ∈ span{V1,V2, . . . ,Vi+1}.

Due to the F-orthonormality of V1,V2, . . . ,Vj+1 and (19), we obtain hi,j = 〈AVi,Vj〉 =
0 for 1 ≤ i < j − 1. Equality (21) is a consequence of

hj,j+1 = 〈A ∗ Vj+1,Vj〉 = 〈A ∗ Vj ,Vj+1〉 = hj+1,j .
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We are in a position to describe the tensor t-global Lanczos algorithm. This
algorithm computes an F-orthonormal basis {V1,V2, . . . ,Vk+1} by a three-term
recurrence relation. It can be written as follows: Let V ∈ Rn×s×p\{O} and define

V1 := V/β0, with β0 = ‖V‖F . (22)

The t-global Lanczos algorithm is determined by the recursion relations

βjVj+1 := A ∗ Vj − αjVj − βj−1Vj−1, j = 1, 2, . . . , k, (23)

with
αj = 〈A ∗ Vj ,Vj〉, βj = ‖A ∗ Vj − αjVj − βj−1Vj−1‖F .

The βj are normalization coefficients such that ‖Vj+1‖F = 1. The tensor t-global
Lanczos algorithm is summarized in Algorithm 2.

Algorithm 2 The tensor t-global Lanczos algorithm

Input: t-symmetric tensor A ∈ Rn×n×p, initial tensor V ∈ Rn×s×p\{O}, and the number of
steps k.

1. β0 = ‖V‖F ; V1 = V/β0; V0 = On×s×p;
2. for j = 1 : k

(a) Ṽj = A ∗ Vj − βj−1Vj−1;

(b) αj = 〈Vj , Ṽj〉;
(c) Ṽj = Ṽj − αjVj ;
(d) βj = ‖Ṽj‖F ;

(e) Vj+1 = Ṽj/βj ;
3. end

Output: The t-global Lanczos decomposition (24).

Algorithm 2 computes an F-orthonormal tensor basis {V1,V2, . . . ,Vk+1} with
Vj ∈ Rn×s×p, and the scalars {α1, α2, . . . , αk;β1, β2, . . . , βk}, assuming that all
coefficients βj generated are positive. This is the generic situation.

We next discuss some useful properties of Algorithm 2. It follows from the
recursion formulas of the algorithm that generically the algorithm yields the de-
composition

A ∗Vk = Vk ~ Tk + βk[On×s×p, . . . ,On×s×p,Vk+1], (24)

where Vk = [V1,V2, . . . ,Vk] ∈ Rn×ks×p is made up of orthonormal lateral tensor
slices Vj , with

VTk �Vk = Ik, Tk = tridiag([α1, α2, . . . , αk], [β1, β2, . . . , βk−1]),

and the product ~ is defined by

Vk ~ Tk = [Vk ~ T·,1,Vk ~ T·,2, . . . ,Vk ~ T·,k] ∈ Rn×ks×p.

Here T·,j denotes the jth column of Tk and

Vk ~ y =
k∑
j=1

yjVj , y = [y1, y2, . . . , yk]T ∈ Rk.
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Lemma 4 Let Z = [Z1, Z2, . . . , Zk] ∈ Rn×ks×p be made up of tensors Zi ∈ Rn×s×p,

and let T, S ∈ Rk×k. Then

(Z ~ T ) ~ S = Z ~ (TS).

Proof Let S·,j and T·,j denote the jth columns of the matrices S and T , respectively,
and let si,j and ti,j be (i, j)th entries of S and T , respectively. Using the definition
of the ~ product, we obtain

[Z ~ T ] ~ S = [(Z ~ T ) ~ S·,1, . . . , (Z ~ T ) ~ S·,k]

= [
k∑
j=1

(Z ~ T·,j)sj,1, . . . ,
k∑
j=1

(Z ~ T·,j)sj,k]

= [
k∑
j=1

(
k∑
l=1

tl,jZl)sj,1, . . . ,
k∑
j=1

(
k∑
l=1

tl,jZl)sj,k]

= [
k∑
j=1

k∑
l=1

tl,jsj,1Zl, . . . ,

k∑
j=1

k∑
l=1

tl,jsj,kZl]

= [
k∑
l=1

k∑
j=1

tl,jsj,1Zl, . . . ,

k∑
l=1

k∑
j=1

tl,jsj,kZl]

= [
k∑
l=1

[TS]l,1Zl, . . . ,
k∑
l=1

[TS]l,kZl]

= [Z ~ (TS)·,1, . . . , Z ~ (TS)·,k]

= Z ~ (TS).

The recursion formulas of Algorithm 2 show that

Vj = pj−1(A ) ∗ V, j = 1, 2, . . . , k + 1, (25)

for certain polynomials pj−1 of degree j − 1. These polynomials satisfy the same
recursion relation as the tensors Vj . The following proposition provides the details.

Proposition 4 Let A be a t-symmetric tensor and let the coefficients αj and βj be

those in (22) and (23). Then the sequence of polynomials p0, p1, . . . , pk defined by (25)
are orthonormal with respect to the bilinear form

(p, q) = 〈p(A ) ∗ V, q(A ) ∗ V〉 =

∫ σ2
max

σ2
min

p(λ)q(λ)dα(λ),

where the limits of integration σ2min and σ2max, and the measure dα are defined in (17).

These polynomials satisfy the three-term recurrence relation

β1p1(λ) = (λ− α1)p0(λ), p0(λ) = 1/β0,
βj+1pj+1 = (λ− αj+1)pj(λ)− βjpj−1(λ), j = 1, 2, . . . , k − 1,

where

αj = (pj−1, λpj−1),

and the βj > 0 are determined by the requirements that (pj , pj) = 1.
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We turn to Gauss-type quadrature rules associated with the measure dα in
(17). Introduce the spectral factorization of the matrix Tk in (24),

Tk = PkSkP
T
k ,

where Sk = diag[θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ] and the matrix Pk ∈ Rk×k is orthogonal. It is

well known that the weights of the k-node Gauss rule associated with the measure
dα are given by wj = (eT1 Pkej)

2 for j = 1, 2, . . . , k, and the nodes of this quadrature

rule are the eigenvalues θ
(k)
j , j = 1, 2, . . . , k; see, e.g., [12,13,15] for details. The

k-node Gauss quadrature rule for the approximation of the expression (16) can be
written as

GLank (g) := ‖V‖2F e
T
1 Pkg(Sk)PTk e1 = ‖V‖2F e

T
1 g(Tk)e1

= ‖V‖2F e
T
1 (
√

Tk)†f(
√
Tk)e1, (26)

where θ
(k)
i denotes the ith eigenvalue of Tk, and e1 is the first column of the

identity matrix Ik ∈ Rk×k; see [15].
A (k+ 1)-node Gauss-Radau quadrature rule with a fixed node ξ smaller than

or equal to σ2min or larger than or equal to σ2max can be computed by using the
spectral factorization of the matrix

Tk+1,ξ :=

[
Tk βkek
βke

T
k α̃ξ

]
∈ R(k+1)×(k+1),

where ek = [0, . . . , 0, 1] ∈ Rk. The entry α̃ξ is determined so that the matrix Tk+1,ξ

has an eigenvalue at ξ. It can be shown that α̃ξ satisfies

α̃ξ = ξ + β2
ke
T
k (Tk − ξIk)−1ek;

see, e.g., [12,13,15] for details.
Analogously to (26), the (k + 1)-node Gauss-Radau quadrature rule can be

expressed as

RLan,ξk+1 (g) := ‖V‖2F ẽ
T
1 g(Tk+1,ξ)ẽ1 = ‖V‖2F ẽ

T
1 (
√

Tk+1,ξ)
†f(
√
Tk+1,ξ)ẽ1, (27)

where ẽ1 = [1, 0, . . . , 0]T ∈ Rk+1; see [15].

Let θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k denote the nodes of the Gauss rule (26), and assume that

the integrand g is 2k times continuously differentiable in the interval of integration
[σ2min, σ

2
max]. Then the remainder term for this rule is given by

Is(g)− GLank (g) =
g(2k)(θ̃)

(2k)!

∫ σ2
max

σ2
min

s2(λ)dα(λ), (28)

where θ̃ ∈ [σ2min, σ
2
max] and s(λ) = (λ−θ(k)1 ) · · · (λ−θ(k)k ); see, e.g., [13,15]. Similarly,

let θ
(k)
1,ξ , θ

(k)
2,ξ , . . . , θ

(k)
k,ξ denote the k “free” nodes of the Gauss-Radau quadrature rule

(27). The remainder formula for this rule is given by

Is(g)−RLan,ξm+1 (g) =
g(2k+1)(θ̃ξ)

(2k + 1)!

∫ σ2
max

σ2
min

(λ− ξ)s̃2(λ)dα(λ), (29)
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Table 1 Upper and lower bounds for Is(g)

sign(g(2k)) sign(g(2k+1)) Choice of ξ Bounds

g(2k) > 0 g(2k+1) > 0 ξ ≥ σ2
max GLank (g) ≤ Is(g) ≤ RLan,ξk+1 (g)

g(2k) > 0 g(2k+1) < 0 ξ ≤ σ2
min GLank (g) ≤ Is(g) ≤ RLan,ξk+1 (g)

g(2k) < 0 g(2k+1) > 0 ξ ≤ σ2
min RLan,ξk+1 (g) ≤ Is(g) ≤ GLank (g)

g(2k) < 0 g(2k+1) < 0 ξ ≥ σ2
max RLan,ξk+1 (g) ≤ Is(g) ≤ GLank (g)

where the scalar θ̃ξ lives in the smallest open interval that contains the point set

{ξ, σ2min, σ
2
max}, and s̃(λ) = (λ−θ(k)1,ξ ) · · · (λ−θ(k)k,ξ ); see [13,15]. When the derivatives

g(2k) and g(2k+1) of the integrand g do not change sign in the interval of integration
[σ2min, σ

2
max], the Radau node ξ can be chosen ξ ≤ σ2min or ξ ≥ σ2max so that the

remainder term (29) is of opposite sign as the remainder term (28) for standard
Gauss quadrature. Then the Gauss and Gauss-Radau rules give quadrature errors
of opposite sign and their values, therefore, bracket the exact value of the integral
(16); see [15] for further details.

Table 1 displays the bounds obtained depending on the signs of the derivatives
g(2k) and g(2k+1), and the allocation of ξ.

Algorithm 3 describes how an approximation of (16) can be computed by a
pair of Gauss and Gauss-Radau quadrature rules using the t-tensor global Lanczos
method. When the algorithm is applied to AT ∗A, the evaluation of AT ∗A∗Vj in
line [3.(a)] is carried out by computing the two products u = A∗Vj and v = AT ∗u.

We approximate the integral (16) by Uapp(g) = [GLank (g) + RLan,ξk+1 (g)]/2 and
estimate the error in Uapp(g) by the difference

|GLank (g)−RLan,ξk+1 (g)]|/|GLank (g) +RLan,ξk+1 (g)]|.

Algorithm 3 Approximation of trace(1)(VT ∗ g(A ) ∗ V) by pairs of Gauss and
Gauss-Radau quadrature rules using the t-tensor global Lanczos method.

Input: t-symmetric tensor A ∈ Rn×n×p, initial tensor V ∈ Rn×s×p, and function f .

1. Choose tolerance ε > 0 and the maximum number of iterations Imax.
2. β0 = ‖V‖F ; V1 = V/β0; V0 = On×s×p;
3. for j = 1 : Imax

(a) Ṽj = A ∗ Vj − βj−1Vj−1;

(b) αj = 〈Vj , Ṽj〉; Ṽj = Ṽj − αjVj ;
(c) Hj = tridiag([α1, . . . , αj ], [β1, . . . , βj−1]);

(d) Gj(g) = eT1 (
√

Tj)†f(
√

Tj)e1;

(e) βj = ‖Ṽj‖F ; Vj+1 = Ṽj+1/βj ;

(f) τj = [0, . . . , 0, 0, βj ]
T ;

(g) α̃ξ = ξ + τTj (Tj − ξIj)−1τj ;

(h) Compute Tj+1,ξ = tridiag([α1, . . . , αj , α̃ξ], [β1, . . . , βj−1, βj ]);

(i) Rj+1,ξ(g) = ẽT1 (
√

Tj+1,ξ)
†f(
√

Tj+1,ξ)ẽ1;
(j) if |Gj(g)−Rj+1,ξ(g)|/|Gj(g) +Rj+1,ξ(g)| < ε

Uapp(g) = β2
0 [Gj(g) +Rj+1,ξ(g)]/2; Break;

endif
4. endfor

Output: Approximation Uapp(g) of trace(1)(VT ∗ g(A ) ∗ V) given by (16).
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3.2 The tensor t-global Golub-Kahan bidiagonalization method and Gauss
quadrature

This subsection describes the application of the tensor t-global Golub-Kahan algo-
rithm to determining upper and lower bounds for the bilinear form (16). The tensor
t-global Golub-Kahan algorithm has been described in [7]. Application of k steps
of this algorithm to the tensor A with initial tensor V yields the decompositions

A ∗Vk = Wk ~Bk,

AT ∗Wk = Vk ~BTk + βk[On×s×p, . . . ,On×s×p,Vk+1],
(30)

where Bk ∈ Rk×k is an upper bidiagonal matrix

Bk =


α1 β1

0 α2
. . .

. . .
. . . βk−1

0 αk

 . (31)

The tensors

Vk = [V1,V2, . . . ,Vk], Wk = [W1,W2, . . . ,Wk], (32)

are made up of F -orthonormal tensors Vj ∈ Rm×s×p and Wj ∈ Rn×s×p, and

A∗Vk = [A∗V1,A∗V2, . . . ,A∗Vk], AT ∗Wk = [AT ∗W1,AT ∗W2, . . . ,AT ∗Wk].

The ~ product in (30) is defined in (24). The tensor t-global Golub-Kahan bidi-
agonalization algorithm is described by Algorithm 4.

Algorithm 4 The tensor t-global Golub-Kahan algorithm

Input: The tensors A ∈ Rm×n×p,V ∈ Rn×s×p, and an integer k.

1. Set β1 = ‖V‖F , V1 = V/β1, and β0 = 0.
2. for j = 1 : k

(a) W̃j = A ∗ Vj − βj−1Wj−1

(b) αj = ‖W̃j‖F
(c) Wj = W̃j/αj
(d) Ṽj+1 = AT ∗Wj − αjVj
(e) βj = ‖Ṽj+1‖F
(f) Vj+1 = Ṽj+1/βj

3. endfor

Output: The t-global Golub-Kahan decompositions (30).

Proposition 5 Let Vk = [V1, . . . ,Vk] be the tensor in (32), and let the matrix Bk be

defined by (31). Then

AT ∗ A ∗Vk = Vk ~ (BTk Bk) + βkαk[On×s×p, . . . ,On×s×p,Vk+1].
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Proof We obtain from relation (30) that

AT ∗ A ∗Vk = AT ∗ (Wk ~Bk).

Set Bk = [B·,1, . . . , B·,k], where B·,j denotes the jth column of Bk, and bi,j is the
(i, j)th entry of Bk. Then

AT ∗ (Wk ~Bk) = [AT ∗ (Wk ~B·,1), . . . ,AT ∗ (Wk ~B·,k)]

= [AT ∗
k∑
j=1

Bj,1Wj , . . . ,AT ∗
k∑
j=1

bj,kWj ]

= [
k∑
j=1

bj,1AT ∗Wj , . . . ,

k∑
j=1

bj,kAT ∗Wj ]

= [(AT ∗Wk) ~B·,1, . . . , (AT ∗Wk) ~B·,k]

= (AT ∗Wk) ~Bk.

It follows from (30) that

AT ∗ A ∗Vk = [(Vk ~BTk ) + βk[On×s×p, . . . ,On×s×p,Vk+1]] ~Bk

= (Vk ~BTk ) ~Bk + βk[On×s×p, . . . ,On×s×p,Vk+1] ~Bk,

and Lemma 4 yields
(Vk ~BTk ) ~Bk = Vk ~BTk Bk.

Moreover,

[On×s×p, . . . ,On×s×p,Vk+1] ~Bk = [bk,1Vk+1, . . . , bk,k−1Vk+1, bk,kVk+1].

Using the structure of Bk, i.e., the facts that bk,1 = · · · = bk,k−1 = 0 and bk,k = αk,
we obtain

[On×s×p, . . . ,On×s×p, Vk+1] ~Bk = [On×s×p, . . . , On×s×p, αkVk+1].

The matrix BTk Bk is symmetric and tridiagonal, and coincides (in exact arith-
metic) with the matrix Tk obtained when the Lanczos algorithm is applied to
A = AT ∗A. Therefore, the quadratic form in (16) can be approximated by using
a k-node Gauss quadrature rule

GGKk (g) := ‖V‖2F e
T
1 g(B

T
k Bk)e1 = ‖V‖2F e

T
1 (
√
BTk Bk)†f(

√
BTk Bk)e1. (33)

Similarly as in our discussion above of the Gauss rule GLank (g), we have that if the
derivative g(2k) is of constant sign in the interval of integration, [σ2min, σ

2
max], then

the Gauss rule (33) provides an upper or lower bound for (16). To obtain the other
bound, we use a (k + 1)-point Gauss-Radau quadrature rule with a fixed node ξ.
This rule is defined by

RGK,ξk+1 (g) := ‖V‖2F ẽ
T
1 g(Ĥk+1,ξ)ẽ1 = ‖V‖2F ẽ

T
1 (

√
Ĥk+1,ξ)

†f(

√
Ĥk+1,ξ)ẽ1, (34)

where

Ĥk+1,ξ :=

[
BTk Bk βkαkek
βkαke

T
k ω̃ξ

]
∈ R(k+1)×(k+1)
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Table 2 Upper and lower bounds for Is(g).

sign(g(2k)) sign(g(2k+1)) Choice of ξ Bounds

g(2k) > 0 g(2k+1) > 0 ξ ≥ σ2
max GGKk (g) ≤ Is(g) ≤ RGK,ξk+1 (g)

g(2k) > 0 g(2k+1) < 0 ξ ≤ σ2
min GGKk (g) ≤ Is(g) ≤ RGK,ξk+1 (g)

g(2k) < 0 g(2k+1) > 0 ξ ≤ σ2
min RGK,ξk+1 (g) ≤ Is(g) ≤ GGKk (g)

g(2k) < 0 g(2k+1) < 0 ξ ≥ σ2
max RGK,ξk+1 (g) ≤ Is(g) ≤ GGKk (g)

and

ω̃ξ = ξ + (βkαk)2eTk (BTk Bk − ξIk)−1ek.

The situations when Gauss and Gauss-Radau quadrature rules give upper or
lower bounds of the integral Is(g) are summarized in Table 2.

Algorithm 5 describes how an approximation of (16) can be computed by a
pair of Gauss and Gauss-Radau quadrature rules using the tensor t-global Golub-
Kahan bidiagonalization algorithm. Similarly as in Subsection 3.1, we approximate
(16) by Uapp(g) = [GGKk (g) + RGK,ξk+1 (g)]/2 and estimate the error in Uapp(g) by
the difference

|GGKk (g)−RGK,ξk+1 (g)]|/|GGKk (g) +RGK,ξk+1 (g)]|.

Algorithm 5 Approximation of trace(1)(VT ∗g(AT ∗A)∗V) by a pair of Gauss and
Gauss-Radau quadrature rules by using the tensor t-global Golub-Kahan method.

Input: T-symmetric tensor A ∈ Rm×n×p, initial tensor V ∈ Rn×s×p and function f .

1. Choose tolerance ε > 0 and the maximum number of iterations Imax.
2. Set β1 = ‖V‖F , V1 = V/β1, and β0 = 0.
3. for j = 1 : Imax

(a) W̃j = A ∗ Vj − βj−1Wj−1;

(b) αj = ‖W̃j‖F ; W̃j = W̃j/αj ;
(c) Bj = bidiag([α1, . . . , αj ], [β1, . . . , βj−1]);

(d) Gj(g) = eT1 (
√
BTj Bj)

†f(
√
BTj Bj)e1;

(e) Ṽj+1 = AT ∗Wj − αjVj ;
(f) βj = ‖Ṽj+1‖F ; Vj+1 = Ṽj+1/βj ;

(g) τj = [0, . . . , 0, 0, αjβj ]
T ;

(h) w̃ξ = ξ + τTj (BTj Bj − ξIj)−1τj ;

(i) Compute

Hj+1,ξ =

[
BTj Bj τj
τT w̃ξ.

]
(j) Rj+1,ξ(g) = ẽT1 (

√
Hj+1,ξ)

†f(
√

Hj+1,ξ)ẽ1;
(k) if |Gj(g)−Rj+1,ξ(g)|/|Gj(g) +Rj+1,ξ(g)| < ε

Uapp(g) = β2
0 [Gj(g) +Rj+1,ξ(g)]/2; Break;

endif
4. endfor

Output: Approximation Uapp(g) of trace(1)(VT ∗ g(AT ∗ A) ∗ V).
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4 Numerical experiments

This section describes some numerical examples that illustrate the effectiveness of
the proposed methods. All experiments were carried out using MATLAB R2015a
on a computer with an Intel Core i-3 processor and 3.89 GBytes of RAM. The
computations were done with about 15 significant decimal digits. We show the
performance of the tensor t-global Lanczos method (TTGLM) described by Al-
gorithm 3 as well as of the tensor t-global Golub-Kahan method (TTGGKM)
described by Algorithm 5 when applied to compute tensor nuclear norms.

The tensor nuclear norm of the tensor A ∈ Rm×n×p is given by

‖A‖? =
r∑
i=1

Sr(i, i, 1), (35)

where Sr is defined by the t-CSVD of A in (6).

Proposition 6 The tensor nuclear norm can be computed by using tensor functions

as follows

‖A‖? = trace(1)

(√
AT ∗ A

)
. (36)

Proof By using (10) and the definition of generalized tensor functions (11), we
have √

AT ∗ A = Qr ∗
√
STr ∗ Sr ∗ QTr .

Application of (3) now gives

trace(1)(
√
AT ∗ A) =

1

p
trace(

√
AT ∗ A)

=
1

p
trace(Qr ∗

√
STr ∗ Sr ∗ QTr )

=
1

p
trace(

√
STr ∗ Sr ∗ QTr ∗ Qr)

=
1

p
trace(

√
STr ∗ Sr)

= trace(1)(
√
STr ∗ Sr)

=
r∑
i=1

Sr(i, i, 1) = ‖A‖?.

Using (36), we can express the tensor nuclear norm as

‖A‖? =
n∑
i=1

[
√
AT ∗ A]

(1)
ii

=
n∑
i=1

(ETi ∗
√
AT ∗ A ∗ Ei)(1)

=
n∑
i=1

unfold(ETi )
√

bcirc(AT ∗ A) unfold(Ei)

=
n∑
i=1

ẽTi

√
bcirc(AT ∗ A)ẽi, (37)
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where ẽi = unfold(Ei) = [ei, 0, . . . , 0]T ∈ Rnp×1, Ei = fold(ei ⊗ Ip) ∈ Rn×1×p, and
ei denotes the ith canonical basis vector of Rn.

Straightforward evaluation of (37) or (36) requires considerable computational
effort when n is large. A popular approach to reduce the computational burden
is to use the stochastic trace estimator by Hutchinson [20]. Let Z be a discrete
random variable with values {−1, 1} with probability 1/2 to achieve each value.
Ubaru et al. [37] applied this stochastic trace estimator to approximate expressions
of the form

trace(f(A)) =

nA∑
i=1

eTi f(A)ei, where A ∈ RnA×nA .

They considered a sequence of vectors, {v1, v2, . . . , vs}, where vi ∈ RnA . The entries
of vi correspond to independent samples of Z. Then

trace(f(A)) ≈ 1

s

s∑
j=1

vTi f(A)vi.

We compute an approximation of (37) by the same technique and exploit the
fact that the vectors {ẽ1, ẽ2, . . . , ẽn} have zero entries after the first n entries. Define
s vectors z1, z2, . . . zs, zi ∈ Rnp, such that the first n entries of each zi contain n

independent samples of Z, and zeros elsewhere, i.e.,

zi =


zi
0
...
0

 , i = 1, 2, . . . , s,

where the subvectors zi ∈ Rn are generated by n independent samples of Z. Then
(37) can be approximated by

n∑
i=1

ẽTi

√
bcirc(AT ∗ A)ẽi ≈

1

s

s∑
i=1

zTi

√
bcirc(AT ∗ A)zi.

Letting Zi = fold(zi) ∈ Rn×1×p, i = 1, 2, . . . , s, we obtain

‖A‖? ≈
1

s

s∑
i=1

zTi

√
bcirc(AT ∗ A)zi =

1

s

s∑
i=1

(ZTi ∗
√
AT ∗ A ∗ Zi)(1)

≈ 1

s
trace(1)(V

T ∗
√
AT ∗ A ∗ V), (38)

where V = [Z1, Z2, . . . , Zs] ∈ Rn×s×p.
The right-hand side of (38) is a particular case of the generalized tensor func-

tion (16) when f(t) = t2, i.e., g(t) =
√
t. Therefore, the proposed methods can be

applied to the approximation of the tensor nuclear norm. For both TTGLM and
TTGGKM, the fixed node ξ associated with the Gauss-Radau quadrature rules is
set to ξ = 0. Then we have the bounds

RLan,ξk+1 (g) ≤ Is(g) ≤ GLank (g)

and
RGK,ξk+1 (g) ≤ Is(g) ≤ GGKk (g)
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Table 3 Example 1: Approximation of the tensor nuclear norm

Tensors Methods Time Iterations TNN Comp. Rel. Err.
A1 TTGLM 2.49 12 3.8403 · 103 0.0102

n = 1133 TTGGKM 3.12 12 3.8403 · 103 0.0102
p = 3, s = 20 t-SVD 7.05 −− 3.8799 · 103 −−

A2 TTGLM 13.26 15 5.7763 · 103 0.0015
n = 2642 TTGGKM 20.32 15 5.7763 · 103 0.0015

p = 3, s = 20 t-SVD 65.44 −− 5.7847 · 103 −−
A3 TTGLM 43.57 11 9.6701 · 103 0.0023

n = 5488 TTGGKM 72.78 11 9.6701 · 103 0.0023
p = 3, s = 20 t-SVD 206.35 −− 9.6484 · 103 −−

A4 TTGLM 190.52 17 1.0189 · 104 0.0208
n = 6927 TTGGKM 222.43 17 1.0189 · 104 0.0208

p = 3, s = 20 t-SVD 719.76 −− 9.9809 · 103 −−

for every k, where RLan,ξk+1 (g), GLank (g), RGK,ξk+1 (g), and GGKk (g) are defined by (27),
(26), (34), and (33), respectively; see Tables 1 and 2 for details.

Example 1: We consider four real-world networks that can be found in the
Suite Sparse Matrix Collection [5]. The tensors in this example have three frontal
slices, each of which corresponds to the adjacency matrix for a graph. When
the adjacency matrices A1, A2, and A3 do not have the same size, we let n =
max{n1, n2, n3}, where ni is the size of Ai and zero-pad the matrices Ai as neces-
sary. We will use four n× n× 3 tensors A1,A2,A3, and A4 defined as follows

A1 = fold

( Roget

delaunay n10

email

), A2 = fold

( CSphd

yeast

minnesota

),
A3 = fold

( EPA

power

Erdos972

), A4 = fold

( Erdos992

p2p-Gnutella08

Erdos02

).
We apply the TTGLM and TTGGKM methods to obtain approximations of

tensor nuclear norms using the right-hand side of (38), and set ε < 2 · 10−2 and
Imax = 50 for both Algorithms 3 and 5. The number of sample fibers s is set to
be 20. We also compute the exact tensor nuclear norm (35) by using the t-SVD
[27]. Table 3 reports the required CPU time (Time) in seconds, the number of
iterations (Iterations), the computed approximation of the tensor nuclear norm
(TNN Comp.), and the relative error (Rel. Err.) in the computed approximate
solutions; we here consider the nuclear norm determined by the t-SVD to be exact.
Table 3 also reports the required CPU time (Time) in seconds to find the exact
tensor nuclear norm (TNN Comp.) using the t-SVD. As can be seen from this table,
the computational cost for the t-SVD is much higher than for the TTGLM and
TTGGKM methods. The table shows both the TTGLM and TTGGKM methods
to determine approximations of about the same quality for the chosen tensors.
However, the TTGGKM method demands more CPU time than the TTGLM
method to approximate the tensor nuclear norm.

To illustrate the quality of the computed bounds of the left-hand side of (38)
determined by pairs of Gauss and Gauss-Radau quadrature rules associated with
the TTGLM and TTGGKM methods, we consider the tensors A2 and A3. Figures
1 and 2 show the upper and lower bounds determined by Algorithms 3 and 5 versus
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Fig. 1 Upper and lower bounds for
1

s
trace(1)

(
VT ∗

√
AT2 ∗ A2 ∗ V

)
≈ ‖A2‖?.

the number of iterations. The figures illustrate the effectiveness of the quadrature
rules to bracket the tensor nuclear norm.

Example 2 (Application to image completion): The need to evaluate a ten-
sor nuclear norm also arises in color image completion. The minimization of the
tensor nuclear norm then often is combined with regularization. Image comple-
tion enhances the quality of a given incomplete image by solving the optimization
problem

arg min
A

‖A‖∗ + λR(A), (39)

where λ is a regularization parameter and λR(A) denotes a low-rank regularization
term; see [2,16,10,38] for discussions on different regularization procedures. In this
example, we are interested in tensor completion using the tensor nuclear norm and
the second order total variation technique (TNN-TV2) discussed and studied in
[2]. The low-rank regularization term in this approach is given by

R(A) = TV 2(A) = ‖(TV2(A(1)), TV2(A(2)), . . . , TV2(A(p))‖2,

where

TV2(A(k)) =
n∑
i=1

n∑
j=1

√
(D1

2A(k))2i,j + (D2
2A(k))2i,j , k = 1, 2, . . . , p.

The matrices D1
2 and D2

2 are defined as follows:

D1
2A(k) = A(k)Cn and D2

2A(k) = CmA(k),
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Fig. 2 Upper and lower bounds for
1

s
trace(1)

(
VT ∗

√
AT3 ∗ A3 ∗ V

)
≈ ‖A3‖?.

with

Ci =
1

2



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . 1 −2 1
1 . . . . . . 0 1 −2


∈ Ri×i, i ∈ {m,n}.

Moreover, the authors of [2] apply the Alternating Direction Method of Multipliers
(ADMM) to solve the optimization problem (39) based on the TNN-TV2 technique
where the approximation of tensor nuclear norms is required. The implementation
of TNN-TV2 is described in algorithm [2, Algorithm 5]. The convergence analysis
of this algorithm is also detailed in [2].

We consider three color images: Airplane, Brezinski, and fruits. They are rep-
resented by tensors of size 512× 512× 3. Each frontal slice is a the matrix of that
gives the color saturation in red, green, or blue. We illustrate the performance of
TTGLM and TTGGKM when applied to approximate the tensor nuclear norm in
(39). The recovered images are determined with the TNN-TV2 algorithm in [2].
Only 10% of the pixels of the available given images are assumed to be known. We
would like to determine approximations of the remaining 90% of the pixels. We
use the same configuration parameters as in [2]. Figure 3 displays the “original”
uncorrupted images, the available “observed” images, and the restored images ob-
tained with the TNN-TV2 algorithm. The unknown pixel values for each color in
the available images are set to zero. The pixel value zero corresponds to black.
The TTGLM and TTGGKM methods are applied to obtain approximations of
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Fig. 3 Original, observed, and restored images.

the tensor nuclear norm using the right-hand sides of (38), where the number of
sample fibers s is set to 10 (V ∈ Rn×s×p). We let ε < 2 · 10−2 and Imax = 70 for
both Algorithms 3 and 5. Table 4 displays the results obtained with the TTGLM,
TTGGKM, and the t-SVD method. The tables shows the proposed methods to
require less CPU time than the t-SVD and to require fewer iterations to satisfy
the stopping criterion. Figures 4 and 5 show the upper and lower bounds for the

approximation
1

s
trace(1)(VT ∗

√
AT ∗ A ∗ V) obtained for the Brezinski image.

5 Conclusion

This paper proposes the tensor global Lanczos method and the tensor global
Golub-Kahan bidiagonalization method based on the tensor t-product. Gauss and
Gauss-Radau quadrature rules are applied to compute upper and lower bounds for
quantities of the form (16) associated with generalized tensor functions. Applica-
tions to the computation of the tensor nuclear norm are described. The computed
examples illustrate the effectiveness of the proposed methods.
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≈ ‖A‖? for the observed

Brezinski image.
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Table 4 Example 2: Approximation of the tensor nuclear norm

Images Methods Time Iterations TNN Comp. Rel. Err.
airplan (Observed) TTGLM 0.53 6 1.2371 · 106 0.0067
m = n = 512 TTGGKM 0.61 6 1.2371 · 106 0.0067
p = 3, s = 10 t-SVD 0.83 −− 1.2455 · 106 −−

airplan (Recovered) TTGLM 0.82 15 1.0453 · 106 0.0193
m = n = 512 TTGGKM 0.94 15 1.0453 · 106 0.0193
p = 3, s = 10 t-SVD 1.02 −− 1.0981 · 106 −−

fruits (Observed) TTGLM 0.35 7 1.0973 · 106 0.0064
m = n = 512 TTGGKM 0.64 7 1.0973 · 106 0.0064
p = 3, s = 10 t-SVD 0.97 −− 1.1044 · 106 −−

fruits (Recovered) TTGLM 0.55 18 1.0047 · 106 0.0031
m = n = 512 TTGGKM 0.83 18 1.0047 · 106 0.0031
p = 3, s = 10 t-SVD 1.01 −− 1.0078 · 106 −−

Brezinski (Observed) TTGLM 0.46 9 7.1899 · 105 0.0029
m = n = 512 TTGGKM 0.69 9 7.1899 · 105 0.0029
p = 3, s = 10 t-SVD 0.86 −− 7.1693 · 105 −−

Brezinski (Recovered) TTGLM 0.56 24 6.5854 · 105 0.0319
m = n = 512 TTGGKM 0.83 24 6.5854 · 105 0.0319
p = 3, s = 10 t-SVD 0.94 −− 6.8022 · 105 −−

Data availability

Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.
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