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1 Introduction

We are interested in the solution of Fredholm integral equations of the first
kind, ∫

Ω1

κ(s, t)x(t) dt = g(s), s ∈ Ω2, (1.1)

with a square integrable kernel κ. The Ωi are subsets of Rdi for i = 1, 2, where
di is a small positive integer. Such integral equations are common in numerous
applications including remote sensing, computerized tomography, and image
restoration.

Two major problems arise when solving (1.1): i) The function space is of
infinite dimensionality, and ii) small changes in g may correspond to large
changes in x as exemplified by

max
s∈Ω2

|
∫
Ω1
κ(s, t) cos(2πmt) dt|, Ω1 = Ω2 = [0, 1],

where the maximum can be made tiny by choosing m large, despite the
fact that the maximum of | cos(2πmt)| is one. This is a consequence of the
Riemann–Lebesgue theorem; see, e.g., [7,12] or below for discussions of this
result. The second problem is particularly relevant when the available right-
hand side g is a measured quantity subject to observational errors, as is the
case in many applications.

Usually one deals with problem i) by first discretizing the functions x(t)
and g(s) in (1.1) using, for instance, n piece-wise constant, linear, or poly-
nomial basis functions; see e.g., [11] or [13]. The kernel κ(s, t) is discretized
analogously. This transforms the integral equation (1.1) into a linear system
of algebraic equations. Problem ii) causes the coefficient matrix of said sys-
tem to be ill-conditioned when n is large. Straightforward solution of this
linear system of equations generally is not meaningful because of severe error
propagation. Therefore, the linear system has to be regularized. This can, for
instance, be achieved by Tikhonov regularization or truncated singular value
decomposition (TSVD). While the first dampens the influence of small sin-
gular values, the latter outright ignores them. One is then often faced with a
trade-off between a small discretization error and a small error caused by the
regularization; see, e.g., Natterer [18]. In fact, often the more basis functions
are used for the discretization, the more ill-conditioned the resulting coefficient
matrix becomes, and the larger the need of regularization.

In this paper, we first regularize and then discretize the problem. Regu-
larization is achieved by modifying the singular value expansion (SVE) of the
kernel. This expansion provides an excellent starting point for discretizing the
problem. The discretized problem is a linear system of equations with a diag-
onal matrix. This system can be solved trivially. Furthermore, a user does not
have to choose the number of discretization points. Regularizing first simplifies
the discretization.

We will compute the SVE of the kernel using Chebfun [6], which is a
software package that simulates working with functions in MATLAB. Chebfun
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approximates functions by piece-wise polynomials. The computed solution is
a piece-wise polynomial approximation of the desired solution x(t) of (1.1).
The advantage of using Chebfun is that the computed solution will feel and
behave like a function. Therefore, our approach is arguably closer to directly
solving (1.1) than to discretizing the integral equation before solution.

This paper is organized as follows. In the second section, we provide basic
definitions, introduce our notation, and briefly discuss Chebfun and the singu-
lar value expansion. Section 3 discusses the truncated singular value expansion
method (TSVE) for the solution of ill-posd problems, and the Tikhonov reg-
ularization method is described in Section 4. Numerical results that illustrate
the performances of these methods are reported in Section 5. After we have
established that this regularize-first approach works for linear ill-posed prob-
lems in one space-dimension, we will extend the ideas to problems in two
space-dimensions in Section 6. Concluding remarks can be found in Section 7.

We note that other approaches to work with functions are described in the
literature; see, e.g., Yarvin and Rokhlin [25]. We are not aware of discussions
of this approach to the solution of linear ill-posed problems. The availability
of Chebfun [6] makes the regularize-first technique easy to implement.

2 Basics

Let L2(Ωi) for i = 1, 2 be spaces of Lebesgue measurable square integrable
functions with inner products

〈a, b〉Ωi
=

∫
Ωi

a(t) b(t) dt, for i = 1, 2, (2.1)

where a(t) represents the complex conjugate of a(t) ∈ C. Based on these inner
products, we define the L2-norms

‖f‖Ωi
= 〈f, f〉1/2Ωi

, for i = 1, 2.

The spaces L2(Ωi) for i ∈ {1, 2} equipped with the norms above are complete
vector spaces, i.e., they are Hilbert space; see, e.g., [11].

A given kernel κ(·, ·) ∈ L2(Ω1 × Ω2) induces the bounded linear operator
A : L2(Ω1) → L2(Ω2) defined by

(Ax)(s) =

∫
Ω1

κ(s, t)x(t) dt; (2.2)

see, e.g., [11, Thm. 3.2.7]. The operator is sometimes called a Hilbert-Schmidt
integral operator and the kernel κ a Hilbert-Schmidt kernel. We can write (1.1)
as

Ax = g. (2.3)
We assume here that g is in the range of A. If A has a nontrivial null space,
then we are interested in the solution of (2.3) of minimal norm. We refer to
this solution as xexact.
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In applications that arise in the sciences and engineering, the right-hand
side g of (1.1) often is a measured quantity and therefore is subject to observa-
tional errors. We are therefore interested in the situation when the error-free
function g is not available, and only an error-contaminated approximation
gδ ∈ L2(Ω2) of g is known. We assume that gδ satisfies∥∥g − gδ

∥∥
Ω2

≤ δ,

with a known bound δ > 0. The solution of the equation

Ax = gδ, with x ∈ L2(Ω1) and gδ ∈ L2(Ω2), (2.4)

generally is not a meaningful approximation of the desired solution xexact of
(2.3), since A is not continuously invertible. In fact, equation (2.4) might not
even have a solution.

The operator A depends on the kernel κ. We will now take a closer look at
known theory about the kernel function κ. For any square integrable kernel κ,
we define the singular value expansion (SVE) [21, §4] as

κ(s, t) =

∞∑
i=1

σiφi(s)ψi(t) (2.5)

with convergence in the L2-sense. The functions φi ∈ L2(Ω2) and ψi ∈ L2(Ω1)
are referred to as singular functions. These functions are orthonormal with
respect to the appropriate inner product (2.1) [21, §5], i.e.,

〈ψi, ψj〉Ω1
= 〈φi, φj〉Ω2

= δij , for i, j = 1, 2, . . . .

The quantities σi are known as singular values. They are nonnegative and we
assume them to be ordered non-increasingly,

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ 0.

It can be shown that the only limit point of the singular values for square
integrable kernels is zero [21, §5].1

Let the series (2.5) be uniformly convergent for s ∈ Ω2 and t ∈ Ω1. Then,
as shown in [21, §8], the series converges point-wise. When the summation is
finite, the kernel κ is said to be separable (or degenerate). Most applications
do not have a separable kernel. However, square integrable kernels can be ap-
proximated well by such a kernel, which is obtained by truncating the number
of terms in (2.5) to a suitable finite number `. Let

κ`(s, t) =
∑̀
i=1

σiφi(s)ψi(t). (2.6)

This is the closest kernel of rank at most ` to κ in the L2-norm [21, §18
Approximation Theorem]. We will use this result to justify the application of
the truncated singular value expansion method (TSVE) discussed in Section 3.

1Schmidt calls the singular values eigenvalues, since he is mainly concerned with symmetric
kernels and the concept of singular values was not developed when he published his paper.
We follow modern notation here.
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We also will be using the Approximation Theorem to restrict our expansion
to singular values that are larger than ε, where ε is a small enough cut-off, say
10−8 or 10−16. There is a trade-off between computing time and approximation
accuracy. We try to choose ε far below the regularization error so that our
choice does not have a significant effect on the accuracy. At the same time,
a small ε means higher cost for computing the singular value expansion and
forming the computed approximate solution.

In this paper, we will use two regularization methods, TSVE and Tikhonov
regularization, to compute an approximate solution of (2.3). The right-hand
side g is assumed not to be available; only a perturbed version gδ is assumed
to be known; cf. (2.4).

The TSVE method is based on the Approximation Theorem mentioned
above. Thus, we approximate the kernel κ by κ` for some suitable ` ≥ 0.
This results in an approximation A` to A. We are interested in computing the
solution x` of minimal norm of the problem

min
x∈L2(Ω1)

∥∥A`x− gδ
∥∥
Ω2
, (2.7)

where
(A`x)(s) =

∫
Ω1

κ`(s, t)x(t) dt, s ∈ Ω2.

The parameter ` is a regularization parameter that determines how many
singular values and basis functions of κ are used to compute the approximate
solution x` of (2.4). The remaining singular values, which are smaller than or
equal to σ`, are ignored.

Tikhonov regularization replaces the system (2.4) by the penalized least-
squares problem

min
x∈L2(Ω1)

{∥∥Ax− gδ
∥∥2
Ω2

+ λ2‖x‖2Ω1

}
, (2.8)

which has a unique solution, denoted by xλ, for any nonvanishing value of the
regularization parameter λ. Substituting the SVE (2.5) into (2.8) shows that
Tikhonov regularization dampens the contributions to xλ of singular functions
with large index i the most; increasing λ > 0 results in more damping. Since
we cannot deal with an infinite series expansion, we will, in practice, first cut-
off all singular values that are less than ε as explained above, and then apply
Tikhonov regularization. This is sometimes referred to as a discretization by
kernel approximation [11, Sect. 4.2].

The determination of suitable values of the regularization parameters, ` in
(2.7) and λ in (2.8), is important for the quality of the computed approximate
solution. Several methods have been described in the literature including the
discrepancy principle, the L-curve criterion, and generalized cross validation;
see [4,8,15,16,19,20] for recent discussions on their properties and illustrations
of their performance. Regularization methods typically require that regularized
solutions for several values of the regularization parameter be computed and
compared in order to determine a suitable approximate solution of (2.4).
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2.1 Chebfun

We solve (1.1) by first regularizing followed by discretization. However, we
still want to compute the solution numerically. Thus, we need a numerical
library that can handle functions in an efficient way. Since a function t 7→ f(t)
represents uncountable many pairs of {t, f(t)}, a computer only can handle
approximations to functions numerically.2

We chose the MATLAB package Chebfun [6] for this purpose. Chebfun
uses piece-wise polynomials anchored at Chebyshev points, so-called cheb-
funs, to approximate functions. All computations within Chebfun’s framework
are done with these approximations of actual functions. This means that we
project the functions in L2(Ω2) onto a space of piece-wise Chebyshev poly-
nomials over Ω2. Thus, Chebfun simulates computation with functions that
are approximated. One may argue that this is a discretization. However, Cheb-
fun’s framework is significantly different from other discretizations in the sense
that it gives a user the feeling of computing with functions. In particular, a
user does not explicitly have to determine a discretization or where to split
functions into polynomial pieces.

Chebfun’s functionality includes the computation of sums and products of
functions and derivatives, inner products, norms, and integrals. Chebfun2/3,
Chebfun’s extensions to functions of two and three variables, also can compute
outer products and, most importantly for us here, the singular value expan-
sion [23]. The algorithm behind the singular value expansion uses a continuous
analogue of adaptive cross approximation: The approximation of κ(s, t) is com-
puted by an iterative process. First, an approximation of a maximum point
(ŝ, t̂) of κ(s, t) is determined. The exact computation of a maximum point
is not important, and the maximum point is not required to be unique. The
function is then approximated by

κ1(s, t) =
κ(s, t̂)κ(ŝ, t)

κ(ŝ, t̂)
,

where s 7→ κ(s, t̂) and t 7→ κ(ŝ, t) are one-dimensional chebfuns in s and
t, respectively. This process is then repeated for κ(s, t) − κ1(s, t) to find a
rank-1 approximation of the remainder. By recursion one obtains after k steps
a rank-k approximation of the original kernel. As soon as the remainder is
sufficiently small, the computed rank-k approximation is the sought approxi-
mation to κ(s, t). At the end we have κ(s, t) ≈ C(s)MR(t)T , with C(s) and
R(t) row vectors of functions, and M a dense matrix of size k × k.

Based on this approximation, it is easy to compute the singular value
expansion. Chebfun’s continuous analogue of the QR factorization can be used
to find orthogonal bases for C(s) and R(t),

C(s) = Qc(s)Rc, R(t) = Qr(t)Rr,

2There are some notable exceptions such as f(t) = t. However, we cannot assume that the
solution of (1.1) will fall into this very small set of functions.
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where the columns of Qc and Qr are orthonormal functions and the k × k
matrices Rc and Rr are upper triangular. Let

M̃ = RcMRT
r

and compute the singular value decomposition M̃ = UΣV T . Then

κ(s, t) ≈ Qc(s)UΣV
TQr(t)

T

is the desired singular value expansion of the approximation of the kernel. The
singular functions are the columns of Qc(s)U and Qr(t)V ; see [23] for further
details. A very similar process, known as adaptive cross approximation [2,3],
was used in [17] for the discrete case of matrices and vectors.

Chebfun has some limitations. Currently only functions of at most three
variables can be approximated by Chebfun. Hence, we are limited to ill-
posed problems in one space-dimension and to problems in higher dimension
with a special structure. We will in Section 6 discuss problems in two space-
dimensions with special kernels that can be handled by the present version of
Chebfun. In higher dimensions, Chebfun is limited to domains that are ten-
sor products of intervals, disks, spheres, or solid spheres. In this paper, all
domains are rectangles. Chebfun also needs multivariate functions to be of
low rank for an efficient approximation, i.e., there has to exist a sufficiently
accurate separable approximation. This is for instance not the case for the
kernel κ(s, t) = st−min(s, t) from the deriv2 example of the Regularization
Tools package [13]. This limits the application of the methods described in this
paper. However, the Chebfun package is still under development and some of
the limitations mentioned might not apply to future releases.

3 The TSVE method

Assume that the kernel can be expressed as

κ(s, t) =

∞∑
i=1

σiφi(s)ψi(t) (3.1)

and is not separable, and that the solution of (1.1) can be written as

x(t) =

∞∑
j=1

βjψj(t). (3.2)

The fact that κ is non-separable implies that all σi are positive, and the as-
sumption that the solution is of the form (3.2) essentially states that the
solution has no component in the null space of A. This assumption is justified
since the null space of A is orthogonal to all the ψj and, thus, a component in
the null space would increase the norm of the solution, but not help with the
approximation of (1.1).
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Substituting (3.1) and (3.2) into (1.1), and using the orthonormality of the
basis functions yields

∞∑
i=1

σiβiφi(s) = g(s).

We further probe the equation with φk(s) for all k and use the orthonormality
of the basis functions to obtain

σkβk =

∫
Ω2

φk(s)g(s) ds, for all k.

Thus, the exact solution of (2.3) is given by

x(t) =

∞∑
j=1

βjψj(t), with βj =

∫
Ω2
φj(s)g(s) ds

σj
. (3.3)

Truncating this series after ` terms and using the error-contaminated right-
hand side gδ instead of g, we obtain the TSVE solution of (2.4),

x`(t) =
∑̀
j=1

βδ
jψj(t), with βδ

j =

∫
Ω2
φj(s)g

δ(s) ds

σj
. (3.4)

The truncation parameter ` can be chosen as needed. Its choice will be dis-
cussed below.

The following lemma links the projection of the error onto the space spanned
by the φi to the bound δ for the norm of the error in the data.

Lemma 3.1 Let n(s) = g(s)− gδ(s) with ‖n‖Ω2
≤ δ. Then,

∞∑
i=1

(∫
Ω2

φi(s)n(s) ds

)2

≤ δ2, (3.5)

where the φi are orthonormal basis functions determined by the SVE of the
kernel κ.

Proof Using the basis functions φi, the error n can be represented as

n(s) =

∞∑
j=1

γjφj(s) + φ⊥(s)

for certain coefficients γj , where the function φ⊥ is orthogonal to all the func-
tions φj . It follows that

∫
Ω2

φi(s)n(s) ds =

∫
Ω2

φi(s)

 ∞∑
j=1

γjφj(s) + φ⊥(s)

 ds.
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The orthogonality of the basis functions φj allows us to simplify the above
expression to∫

Ω2

φi(s)n(s) ds = γi.

The same argument can be used to show that

∞∑
j=1

γ2j ≤ ‖n‖2Ω2
≤ δ2.

Combining these results shows (3.5). �

4 Tikhonov regularization

Instead of solving (2.3) exactly, we solve the minimization problem

min
x∈L2(Ω1)

{∥∥Ax− gδ
∥∥2
Ω2

+ λ2‖x‖2Ω1

}
, (4.1)

where the regularization parameter λ > 0 typically is determined during the
solution process. This parameter balances the influence of the norm of the
residual Ax − gδ and the norm of the solution x. Using the definition of the
L2-norm, equation (4.1) can be written as

min
x∈L2(Ω1)

{∫
Ω2

∣∣Ax− gδ
∣∣2 ds+ λ2

∫
Ω1

|x|2 dt
}
. (4.2)

This minimization problem can be solved in a variety of ways. For instance,
one could apply a continuous version of Golub–Kahan bidiagonalization to
the operator A. Then A is reduced to (an infinite) bidiagonal matrix. The
bidiagonalization process can be truncated as soon as a solution of the reduced
problem that satisfies the discrepancy principle has been found; this approach
is analogous to the computations described in [5] for discretized problems.
A straightforward way to solve (4.2), though not necessarily the fastest, is to
determine the minimizer by applying the SVE (2.5). We will use this approach
in the computed examples. Thus, substituting (3.1) and (3.2) into (4.2), and
using the orthonormality of the basis functions, we obtain

min
x∈L2(Ω1)

∞∑
i=1

(
σ2
i β

2
i − 2σiβi

∫
Ω2

φi(s)g
δ(s) ds+ λ2β2

i

)
+

∫
Ω2

|gδ(s)|2 ds.

We now can compute the solution as

xλ(t) =

∞∑
j=1

β
(λ)
j ψj(t), with β

(λ)
j =

σj
∫
Ω2
φj(s)g

δ(s) ds

(σ2
j + λ2)

. (4.3)
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Table 5.1: 1D examples used for the numerical experiments.

Example Domain κ(s, t), x(t) and g(s) Reference

Baart Ω1 = [0, π] κ(s, t) = exp(s cos(t)) [1, Ex. 4.2]
Ω2 = [0, π/2] x(t) = sin(t)

g(s) = 2 sinh(s)/s

Fox-Goodwin3 Ω1 = [0, 1] κ(s, t) = (s2 + t2)
1
2 [9, p. 520]

Ω2 = [0, 1] x(t) = t

g(s) = 1
3
((1 + s2)

3
2 − s3)

Gravity Ω1 = [0, 1] κ(s, t) = (1 + (s− t)2)−
3
2 [24, p. 17]

Ω2 = [0, 1] x(t) = sin(π t) + 1
2
sin(2π t)

Shaw Ω1 = [−π
2
, π
2
] κ(s, t) = (cos(s) + cos(t))

(
sin(u)

u

)2
[22, p. 97]

Ω2 = [−π
2
, π
2
] u = π(sin(s) + sin(t))

x(t) = 2e−6(t−0.8)2 + e−2(t+0.5)2

Wing Ω1 = [0, 1] κ(s, t) = t exp(−s t2) [24, p. 109]
Ω2 = [0, 1] x(t) = 1[ 1

3
, 2
3
]

g(s) =
exp(−s/9)−exp(−4s/9)

2s

5 Numerical experiments

In this section, we illustrate the performance of the methods described in
Sections 3 and 4 by reporting some numerical results. In particular, we com-
pare the performance of the regularize-first approaches based on Chebfun dis-
cussed in this paper to more commonly used discretize-first approach. Both
approaches have their advantages and the regularize-first approach can be ex-
pected to be slower due to the effort required to work with chebfuns. The
examples of this section show this to be the case, but usually not by very
much. This indicates that the regularize-first approach based on Chebfun is a
practical solution method for many linear ill-posed problems.

We first consider five test problems in one space-dimension. These problems
are from Regularization Tools by Hansen [13]. In the next section, we will follow
up with two 2D problems, an image deblurring problem with Gaussian blur and
a diffusion problem inspired by IR Tools [10]. All computations were carried
out in MATLAB R2020b running on a computer with two CPUs: Intel(R)
Xeon(R) E5-2683 v4@2.10 GHz processor with 512 GB of RAM. There are
two MATLAB Live Scripts accompanying this paper that showcase the most
important of the following numerical experiments.

Each test problem from Regularization Tools by Hansen [13] provides us
with an integral equation of the form (1.1). These test problems are listed
in Table 5.1. For two examples, Gravity and Shaw, the function g(s) is not
explicitly given in the table, and is instead computed by evaluating the inte-
gral (1.1) with Chebfun. In example Wing, the expression 1[ 13 ,

2
3 ]

denotes the
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indicator function, which is 1 for all points in [ 13 ,
2
3 ] and 0 otherwise. We com-

pare the regularize-first approach using Chebfun-based computations with the
discretize-first approach, where the discretizations are determined by MAT-
LAB functions in Regularization Tools [13].

For the discretize-first approach, these problems are discretized by a Nys-
tröm method or a Galerkin method with orthogonal test and trial functions to
give a linear system of equations Ãx = g, where Ã ∈ Rn×n is the discretized
integral operator, x ∈ Rn is a discretization of the exact solution xexact, and
g ∈ Rn is the corresponding error-free right-hand side vector. We generate the
error-contaminated vector gδ ∈ Rn according to

gδ = g + α
‖g‖2
‖e‖2

e,

where e ∈ Rn is a random vector whose entries are from a normal distribution
with mean zero and variance one. The parameter α > 0 is the noise level.

For the regularize-first approach, we use the MATLAB package Cheb-
fun [6] to represent the kernel κ(s, t), the function g(s) that represents the
error-free right-hand side, and the desired solution x(t). We define the error-
contaminated function gδ(s) by

gδ(s) = g(s) + α
‖g‖Ω2

‖F‖Ω2

F (s),

where F (s) is a smooth Chebfun function, generated by the Chebfun command
randnfun(ϑ,Ω2), with maximum frequency about 2π/ϑ and standard normal
distribution N(0, 1) at each point, and α > 0 is the noise level. The noise level
is defined analogously as in the discretized problems to achieve comparability.
In the computed examples, we let ϑ = 10−2. This gives Chebfun’s analogue of
noise.

The discrepancy principle is used to determine the truncation parameter `
in (3.4) in the TSVE method, and the Tikhonov regularization parameter λ
in (4.3). The discrepancy principle prescribes that the truncation index ` be
chosen as small as possible so that the solution x` of (3.4) satisfies∥∥∥∫Ω1

κ(s, t)x`(t) dt− gδ(s)
∥∥∥
Ω2

≤ ηδ,

where η ≥ 1 is a user-supplied constant independent of δ. We let η = 1 in the
examples. The discrepancy principle, when used with Tikhonov regularization,
prescribes that the regularization parameter λ > 0 be chosen so that the
solution xλ of (4.1) satisfies∥∥∥∫Ω1

κ(s, t)xλ(t) dt− gδ(s)
∥∥∥
Ω2

= ηδ.

We use the MATLAB function fminbnd to find the λ-value.
3In Regularization Tools this example is called foxgood. We chose to name it by the full

name of both authors.
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Table 5.2: Comparison of TSVE with Chebfun and for the discretized problem.

Noise
level

Exam-
ple

discretized with Chebfun
n error time error time

10−3

Baart 554 1.19 · 10−1 4.79 · 10−2 1.19 · 10−1 2.74 · 10−1

Fox-Goodwin 892 1.44 · 10−2 8.97 · 10−2 1.43 · 10−2 1.40 · 10−1

Gravity 372 1.97 · 10−2 2.00 · 10−2 1.97 · 10−2 3.26 · 10−1

Shaw 1694 4.71 · 10−2 3.53 · 10−1 4.70 · 10−2 7.63 · 10−2

Wing 318 6.03 · 10−1 1.36 · 10−2 6.03 · 10−1 2.28 · 10−1

10−2

Baart 226 1.68 · 10−1 1.31 · 10−2 1.68 · 10−1 1.70 · 10−2

Fox-Goodwin 1184 3.15 · 10−2 1.34 · 10−1 3.15 · 10−2 5.40 · 10−2

Gravity 94 6.11 · 10−2 1.39 · 10−3 6.11 · 10−2 3.36 · 10−2

Shaw 998 5.01 · 10−2 1.31 · 10−1 5.01 · 10−2 4.60 · 10−2

Wing 1938 6.03 · 10−1 4.40 · 10−1 6.03 · 10−1 1.06 · 10−2

10−1

Baart 438 3.45 · 10−1 5.05 · 10−2 3.45 · 10−1 3.63 · 10−1

Fox-Goodwin 1344 5.54 · 10−2 3.69 · 10−1 5.53 · 10−2 2.94 · 10−1

Gravity 1670 1.05 · 10−1 3.36 · 10−1 1.05 · 10−1 3.76 · 10−1

Shaw 1714 1.37 · 10−1 3.53 · 10−1 1.35 · 10−1 7.01 · 10−2

Wing 330 6.08 · 10−1 1.60 · 10−2 6.08 · 10−1 3.47 · 10−1

One of the five test problems that we are interested in solving is Baart. This
example is a Fredholm integral equation of the first kind (1.1) with κ(s, t) =
exp(s cos(t)), g(s) = 2 sinh(s)/s, and solution x(t) = sin(t), where Ω1 = [0, π]
and Ω2 = [0, π/2]. We compute approximate solutions by applying the TSVE
and Tikhonov regularization with Chebfun. The approximate solutions, x`(t)
and xλ(t), respectively, can be determined by using the formulas (3.4) and
(4.3). Fig. 5.1(a) displays the kernel κ of the Baart example. The right-hand
side function g(s) and the corresponding error-contaminated function gδ(s) are
illustrated in Fig. 5.1(b), where the noise level is 10−2. Fig. 5.1(c) depicts the
exact solution and the computed approximate solutions determined by TSVE
and Tikhonov regularization with Chebfun. The latter figure shows that our
methods give fairly accurate approximations of the exact solution.

Next, we apply the methods to several different examples and compare
them to standard TSVD and Tikhonov regularization in a discretized setting.
The quality of the computed approximate solutions is measured by the relative
error norm

RE :=
‖xmethod − x‖∗

‖x‖∗
,

where ‖·‖∗ denotes the scaled Euclidean vector norm ( 1n
∑n

i=1 x
2
i )

1/2 if x ∈ Rn

is a vector, or the L2-norm if x is a function. Tables 5.2 and 5.3 compare
the TSVE and Tikhonov regularization methods when used with Chebfun to
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Fig. 5.1: Example–“Baart”: (a) Kernel , (b) Right-hand side, (c) Solutions.
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Table 5.3: Comparison of Tikhonov with Chebfun and for the discretized prob-
lem.

Noise
level

Exam-
ple

discretized with Chebfun
n error time error time

10−3

Baart 98 1.46 · 10−1 2.12 · 10−3 1.47 · 10−1 1.15 · 10−1

Fox-Goodwin 1484 1.08 · 10−2 2.41 · 10−1 1.08 · 10−2 4.97 · 10−1

Gravity 214 1.33 · 10−2 6.97 · 10−3 1.33 · 10−2 1.29 · 10−1

Shaw 562 4.80 · 10−2 5.40 · 10−2 4.80 · 10−2 1.36 · 10−1

Wing 1672 5.85 · 10−1 3.07 · 10−1 5.84 · 10−1 1.18 · 10−1

10−2

Baart 132 1.82 · 10−1 4.72 · 10−3 1.82 · 10−1 6.48 · 10−1

Fox-Goodwin 54 2.85 · 10−2 1.96 · 10−3 2.85 · 10−2 5.69 · 10−1

Gravity 394 4.00 · 10−2 3.03 · 10−2 4.01 · 10−2 1.87 · 10−1

Shaw 1626 6.25 · 10−2 3.11 · 10−1 6.25 · 10−2 1.66 · 10−1

Wing 1952 6.03 · 10−1 4.59 · 10−1 6.03 · 10−1 1.42 · 10−1

10−1

Baart 270 3.39 · 10−1 2.15 · 10−2 3.39 · 10−1 5.86 · 10−1

Fox-Goodwin 1206 5.34 · 10−2 1.66 · 10−1 5.34 · 10−2 5.04 · 10−1

Gravity 56 1.17 · 10−1 1.39 · 10−3 1.17 · 10−1 1.47 · 10−1

Shaw 440 1.49 · 10−1 2.73 · 10−2 1.49 · 10−1 1.52 · 10−1

Wing 908 6.03 · 10−1 1.11 · 10−1 6.03 · 10−1 1.18 · 10−1

standard methods for the test problems Baart, Fox-Goodwin, Gravity, Shaw,
and Wing. These problems are discretized integral equations of the first kind
and are described in [13].

Three noise levels α are considered. The number of discretization points, n,
which is shown in the third column of the tables, is even and chosen between
2 and 2000, such that the smallest absolute difference between the relative
error of the solution for the discretized problem and the relative error of the
solution for the continuous problem is achieved. Thus, we choose the number
of discretization points n so that the discretized problem gives an approximate
solution of about the same accuracy as the approximate solution determined
with Chebfun. This choice makes a comparison of the CPU times required by
the methods meaningful. The computing time required for determining this
choice of n is not included in the CPU time. We remark that the determination
of a suitable value of n when solving a problem of the form (2.4) can be
difficult: a too large value results in unnecessarily large CPU time, while a
too small value gives a computed solution of unnecessarily poor resolution.
Fig. 5.2 shows the run time and accuracy for each n for the example Shaw.
In the figure, we also annotate the different problems with the choice of the
discretization. The regularize-first approach using Chebfun does not require a
user to explicitly choose the discretization. This is one of the main advantages
over the discretize-first approach.
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Fig. 5.2: Example—“Shaw”, α =1.00 e−2.
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Fig. 5.3: Example –“Baart”, α =1.00 e−3.

The relative errors obtained by applying TSVD and Tikhonov regulariza-
tion in the discretized setting are reported in the fourth column of Tables 5.2
and 5.3, respectively. The sixth column of the tables shows the relative errors
obtained when applying TSVE and Tikhonov regularization with Chebfun. We
also report the CPU times in seconds for each method in the fifth and seventh
columns of the tables. The tables show the computed approximate solutions
determined by the Chebfun-based regularize-first methods to give as accurate
approximations of the exact solutions as the approximate solutions determined
by discretize-first methods. Moreover, we observe that the methods based on
Chebfun are competitive with respect to run time for some problems, while
they are slower for most problems. The last column of Tables 5.2 and 5.3
shows that applying TSVE with Chebfun is faster than applying Tikhonov
regularization with Chebfun. This is reasonable since the TSVE method does
not require the use of a root-finder.

The accuracy and run time for the discretize-first methods depend on the
number of discretization points n; Chebfun-based regularize-first methods do
not require a user to choose a discretization level n. Thus, in Figures 5.2–5.6,
we show the relative accuracy on the vertical axis and the run time on the
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Fig. 5.5: Example –“Gravity”, α =1.00 e−3.
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Fig. 5.6: Example –“Wing”, α =1.00 e−2.

horizontal axis; being closer to the origin is better. The figures illustrate that
the accuracy and computing time of the implementations with Chebfun are
competitive.

6 Problems in two space-dimensions

Linear ill-posed problems based on integral equations in one space-dimension
are arguably less challenging than ill-posed problems in two space-dimensions.
We therefore also consider Fredholm integral equations of the first kind in two
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space-dimensions,∫
Ω1

κ(s1, s2, t1, t2)x(t1, t2) dt1dt2 = gδ(s1, s2), (s1, s2) ∈ Ω2. (6.1)

The obvious main difference from the situation discussed above is that κ is
now a function of four variables. This poses a main obstacle, since Chebfun
does not have a Chebfun4 version for the computation with functions of four
variables. We will discuss two different examples, Gaussian blur and inverse
diffusion, that illustrate how this limitation can be overcome. The solution
methods for these problems differ, since blur has a kernel that can be written
as a product and we will exploit this. Solving diffusion requires a more
general, but also more expensive, approach.

6.1 Gaussian blur

The problem blur models Gaussian blur with a kernel that is based on a
tensor product of 1D-blur kernels. It is given by

κ(s1, s2, t1, t2) = κ1(s1, t1)× κ2(s2, t2) (6.2)

with

κi(si, ti) =
1√
2πσ2

exp

(
− (ti − si)

2

2σ2

)
, i = 1, 2,

where σ is the standard deviation of the Gaussian distribution. The exact
solution x(t1, t2) is constructed as a continuous “image”4 that we blur and
contaminate by noise, and then try to reconstruct. In our example, we let
σ = 0.2 and construct the exact solution as

x(t1, t2) = {(t1, t2) ∈ Ω : −0.5 ≤ t1 ≤ 0.2 and − 0.6 ≤ t2 ≤ −0.2} ,

which is shown in Fig. 6.1(a).5 The error-free right-hand side function is de-
termined by

g(s1, s2) :=

∫
Ω

κ(s1, s2, t1, t2)x(t1, t2) dt1dt2

and the error-contaminated function gδ(s1, s2) in (6.1) is defined by

gδ(s1, s2) = g(s1, s2) + α
‖g‖Ω2

‖F‖Ω2

F (s1, s2),

4With a continuous “image” we mean a mapping from [0, 1] × [0, 1] to [0, 1], where the
function value represents a gray-scale value. Thus, a gray-scale value exists for all points
continuously and not just for discrete points on a grid. The mapping itself is not necessarily
continuous.

5Note that for the plot we, as it is customary, evaluated the function on a grid. The plot
shows linear interpolation of the function values at the grid points.
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where F (s1, s2) is a smooth Chebfun function in two space-dimensions with
maximum frequency about 2π/ϑ and standard normal distribution N(0, 1)
at each point; α is the noise level. In this problem, we let the noise level
and ϑ equal 10−2. The error-free right-hand side is shown in Fig. 6.1(c), and
Fig. 6.1(e) depicts the noise that we added to generate the error-contaminated
function gδ.

A kernel that can be separated into a product of two functions as in (6.2)
can be handled by Chebfun. We first compute the singular value expansions
of κ1 and κ2. They allow us to approximate κ as

κ(s1, s2, t1, t2) ≈
r1∑
i=1

σiφ
(1)
i (s1)ψ

(1)
i (t1)

r2∑
j=1

µjφ
(2)
j (s2)ψ

(2)
j (t2), (6.3)

where both the σi and µj denote singular values. We seek an approximate
solution in the form

x(t1, t2) =

r1∑
k=1

r2∑
`=1

βk`ψ
(1)
k (t1)ψ

(2)
` (t2). (6.4)

By substituting (6.3) and (6.4) into (6.1), and using the orthonormality of the
basis functions, we get

r1∑
i=1

r2∑
j=1

σiµjβijφ
(1)
i (s1)φ

(2)
j (s2) = gδ(s1, s2).

We probe this equation with φ
(1)
p (s1)φ

(2)
q (s2) for all p and q, and use the

orthonormality of the basis functions, to obtain

βij =

∫
Ω2
gδ(s1, s2)φ

(1)
i (s1)φ

(2)
j (s2) ds1ds2

σiµj
. (6.5)

This allows us to implement the solution algorithm using functions of at most
two variables and, thus, do not exceed the capabilities of Chebfun2. For the
solution of the forward problem, that is for blurring the exact solution in the
setup process of the example, we use Chebfun3 [14],

g(s1, s2) =

∫
Ω1

κ(s1, s2, t1, t2)x(t1, t2) dt1dt2

=

∫
Ω1,2

∫
Ω1,1

κ1(s1, t1)x(t1, t2) dt1 κ2(s2, t2) dt2.

The product κ1(s1, t1)x(t1, t2) is a function of three variables, s1, t1, and t2.
The result of the inner integral is a function of s1 and t2. Thus, the product
with κ2(s2, t2) is another function of three variables.
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Equation (6.3) provides a singular function expansion that also can be used
for Tikhonov regularization. Instead of solving (6.1) exactly, we solve

min
x∈L2(Ω1)

{∥∥∥∫Ω1
κ(·, ·, t1, t2)x(t1, t2) dt1 dt2 − gδ

∥∥∥2
Ω2

+ λ2‖x‖2Ω1

}
. (6.6)

Using the fact that the kernel is separable, substituting (6.3) and (6.4) into
(6.6), and using the orthonormality of the basis functions, we get

min
βij

r1∑
i=1

r2∑
j=1

(
β2
ijσ

2
i µ

2
j − 2βijσiµj

∫
Ω2

φ
(1)
i (s1)φ

(2)
j (s2) g

δ(s1, s2) ds1 ds2+

λ2β2
ij

)
+

∫
Ω2

|gδ(s1, s2)|
2
ds1 ds2

(6.7)

and obtain the solution

xλ(t1, t2) =

r1∑
k=1

r2∑
`=1

βk`ψ
(1)
k (t1)ψ

(2)
` (t2),

with βk` =
σkµ`

∫
Ω2
φ
(1)
k (s1)φ

(2)
` (s2) g

δ(s1, s2) ds1 ds2

σ2
kµ

2
` + λ2

.

(6.8)

This provides us with the tools to reconstruct the exact image x(t1, t2) from
its blurred version. Similarly as for the problems in one space-dimension, the
truncation parameter ` in (6.4) and the Tikhonov regularization parameter λ
in (6.8) are determined with the aid of the discrepancy principle, where we set
η to be 10 in our example. The reconstructed images obtained with Tikhonov
and TSVE regularization with Chebfun are shown in Figures 6.1(b) and (d),
respectively. The two reconstructed images are seen to be of roughly the same
quality, with the image determined by Tikhonov regularization being slightly
less oscillatory. The computing times for both methods differ significantly: the
TSVE with Chebfun required 411 seconds, while Tikhonov regularization with
Chebfun took 1206 seconds.

6.2 Inverse diffusion

We next consider an integral equation with a non-separable kernel κ(s1, s2, t1, t2).
In the following, we will first describe the example and then discuss a method
to solve the problem. This example is a continuous version of the PRdiffusion
example provided in IR Tools [10].

The partial differential equation

u̇ = ut1,t1 + ut2,t2 , for all (t1, t2) ∈ Ω1,

describes a diffusion process, where u(t1, t2, τ) is the concentration at the point
(t1, t2) in Ω1 at time τ . The time derivative of u is denoted by u̇, and uti,ti
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Fig. 6.1: Example –“Blur2D”, α =1.00 e−2.

stands for the second derivative in direction ti. We assume that u satisfies the
initial condition

u(t1, t2, 0) = u0(t1, t2),

for some given function u0, and Neumann boundary conditions for all time
τ ≥ 0,

ut1(t1, t2, τ) = 0, for all (t1, t2) ∈ ∂Ω1,

where ∂Ω1 denotes the boundary of Ω1. After T seconds, the solution of the
system is

uT (t1, t2) = u(t1, t2, T ).

We assume that uT or a noisy version of uT are given, and our task is to
recover u0. In this example, we have Ω1 = [0, 1] × [0, 1] and T = 0.01. The
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initial condition is

u0(t1, t2) = 0.7 exp
(
−
(
t1−0.4
0.12

)2− ( t2−0.5
0.15

)2)
+ exp

(
−
(
t1−0.7
0.1

)2− ( t2−0.4
0.08

)2)
.

The fundamental solution of this problem is given by

u(t1, t2, τ) =

∫ 1

0

∫ 1

0

(
Γ (t1 − s1, τ)Γ (t2 − s2, τ)+

Γ (t1 + s1, τ)Γ (t2 + s2, τ)
)
u0(s1, s2) ds1 ds2,

where

Γ (x, τ) =
1√
4πτ

exp

(
−τ2

4t

)
.

We have ∫ 1

0

∫ 1

0

κ(s1, s2, t1, t2)u0(s1, s2) ds1 ds2 = uT (t1, t2).

The right-hand side is computed by solving the forward problem. As in the
previous examples, we use Chebfun’s random function randnfun2 to generate
two-dimensional noise; see Fig. 6.2(e). The kernel κ can be written as

κ(s1, s2, t1, t2) = κ1(s1, t1)κ2(s2, t2) + κ3(s1, t1)κ4(s2, t2). (6.9)

This kernel has a special structure for which one could construct a specific
method. Instead, we opted for implementing a more general method. As in
the one-dimensional case, we use cross approximation followed by a singu-
lar value decomposition to compute the singular value expansion of κ. This
method follows the description in Subsection 2.1 with the difference that
s = (s1, s2) and t = (t1, t2) here. To find an approximation to the maximum
κ in Ω2 ×Ω1, we use the MATLAB function fminsearch. We choose as pivot
for the cross approximation the maximizer (ŝ1, ŝ2, t̂1, t̂2). After computing the
crosses C1(s) = κ(s1, s2, t̂1, t̂2) and R1(t) = κ(ŝ1, ŝ2, t1, t2), we update the re-
mainder κ − C1(s)M1R1(t)

T . We then repeat this process for the remainder
so-obtained until the maximum is below a preset tolerance. The columns of
C(s) and rows of R(t) determined by cross approximation are chebfun2 ob-
jects. Nevertheless, orthonormalization based on the Gram–Schmidt process
is straightforward using Chebfun2. Thereby, one also obtains upper triangular
matrices Rc and Rr, and the remaining computations are identical to those
described in Subsection 2.1.

We developed a proof-of-concept implementation of this method. Our im-
plementation lacks the run time optimization that a possible future Chebfun4
extension provided by the Chebfun developers would have.

Tikhonov regularization determines the solution fλ, which is shown in
Fig. 6.2(b); the exact solution is displayed in Fig. 6.2(a) for comparison. Since
our implementation of Tikhonov regularization uses the singular value expan-
sion, we can easily solve the problem using TSVE, too. The TSVE regularized
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solution is shown in Fig. 6.2(d) and is visually about the same as the solution
determined by Tikhonov regularization, despite having a slightly higher rela-
tive norm-wise error. Fig. 6.2(c) shows the exact right-hand side, Fig. 6.2(e)
depicts the added noise, and the difference between the right-hand side com-
puted from the TSVE regularized solution and the right-hand side with noise
gδ is shown in Fig. 6.2(f).

Our proof-of-concept implementation required about half an hour for the
computations including about 20 minutes for the singular value expansion and
about 10 minutes for determining λ using the discrepancy principle.

This method works for all kernel functions of four variables. However, the
fact that κ can be written as in (6.9) ensures that the columns of C(s) and the
rows of R(t) can each be represented by chebfun2 objects of rank 2. The ranks
are relevant for the run time of the method. When applying the Gram–Schmidt
process and when computing the singular functions, the ranks increase and are
automatically truncated by Chebfun’s arithmetic. Nevertheless, the fact that
the rank initially is 2 has a dampening effect on the computational complexity.

7 Conclusion

The computed results illustrate the feasibility of using Chebfun to solve linear
discrete ill-posed problems and in this way carry out computations in a fashion
that is close to the spirit of the analysis of ill-posed problems found, e.g.,
in [7]. The accuracy and timings of the implementations with Chebfun are
competitive.

In the future, further extensions to Chebfun including the treatment of
functions of four or six variables will allow the application of the Chebfun-
based approach discussed in this paper to the solution of linear ill-posed prob-
lems in two and three space-dimensions. In the meantime, the two methods
described in Section 6 can be used.
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Fig. 6.2: Example—“Diffusion”, α =1.00 e−2.
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