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Abstract

This paper discusses several transform-based methods for solving linear discrete ill-posed
problems for third order tensor equations based on a tensor-tensor product defined by an
invertible linear transform. Linear transform-based tensor-tensor products were first intro-
duced in [E. Kernfeld, M. Kilmer, and S. Aeron, Tensor-tensor products with invertible linear
transform, Linear Algebra and its Applications, 485 (2015), pp. 545–570]. These tensor-tensor
products are applied to derive Tikhonov regularization methods based on Golub-Kahan-type
bidiagonalization and Arnoldi-type processes. GMRES-type solution methods based on the
latter process also are described. By applying only a fairly small number of steps of these
processes, large-scale problems are reduced to problems of small size. The number of steps re-
quired by these processes and the regularization parameter are determined by the discrepancy
principle. The data tensor is a general third order tensor or a tensor defined by a laterally ori-
ented matrix. A quite general regularization tensor can be applied in Tikhonov regularization.
Applications to color image and video restorations illustrate the effectiveness of the proposed
methods.

Key words: discrepancy principle, invertible linear transform, linear discrete ill-posed problem,
tensor Arnoldi process, tensor bidiagonalization process, tensor Tikhonov regularization.

1 Introduction

We are concerned with the solution of large-scale least squares problem of the form

min
X∈Rm×p×n

‖A ∗L X − B‖F , A ∈ R`×m×n, B ∈ R`×p×n, p > 1, (1.1)

with a third order tensor A, whose singular tubes decay rapidly in the Frobenius norm with
increasing index. In particular, A has ill-determined tubal rank. Many of its singular tubes, which
are analogues of the singular values of a matrix, are nonvanishing with tiny Frobenius norm of
different orders of magnitude. This makes (1.1) a linear discrete ill-posed problem; cf. Definition
2.2 below, in which the tensor A specifies the model, the tensor B represents available data, e.g.,
a degraded color image, and the operator ∗L is a tensor-tensor product defined in a transformed
domain for an invertible linear operator L. The ∗L product betweenA and X is computed by moving
both tensors into the transform domain, evaluating n matrix-matrix products in the transform
domain, and computing the inverse transform of the result; cf. Definition 2.1 below. This kind of
tensor-tensor product was first described by Kernfeld et al. [16] and has found applications in data
compression [18], tensor neural networks [25], image deblurring [16], as well as image recovery by
low-rank completion [22]. An extension of the ∗L product to k-order tensors for k > 3 is described
by Han [11]. Further details on the operator ∗L will be provided in Section 2. Throughout this

paper, ‖ · ‖F denotes the Frobenius norm. For A = [aijk]`,m,ni,j,k=1, we have

‖A‖F =

√√√√∑̀
i=1

m∑
j=1

n∑
k=1

a2ijk.
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In applications of interest to us, such as image and video processing, the data tensor B represents
measured data that are contaminated by a measurement error E ∈ R`×p×n, i.e.,

B = Btrue + E ,

where Btrue ∈ R`×p×n denotes the unknown error-free data tensor. We will assume that the un-
available system of equations

A ∗L X = Btrue (1.2)

is consistent and let Xtrue ∈ Rm×p×n denote its solution of minimal Frobenius norm. Our aim is
to determine an accurate approximation of Xtrue given A and B in (1.1). The consistency of (1.2)
makes it possible to apply the discrepancy principle for this purpose; see below.

Straightforward solution of (1.1) generally does not yield a meaningful approximation of Xtrue

due to propagation and severe amplification of the error E in B into the solution of (1.1). We
introduce Tikhonov regularization to reduce this difficulty, i.e., instead of solving (1.1), we solve
the penalized least squares problem

min
X∈Rm×p×n

{
‖A ∗L X − B‖2F + µ−1‖L ∗L X‖2F

}
. (1.3)

The tensor L ∈ Rs×m×n is a regularization operator and µ > 0 is a regularization parameter. Let
N (M) denote the null space of the tensor M under ∗L, and assume that L is such that

N (A) ∩N (L) = {O},

where O ∈ Rm×p×n denotes the null tensor. Then (1.3) has a unique solution, Xµ, for any µ > 0.
We will use the discrepancy principle to determine the regularization parameter. Its application

requires that a bound
‖E‖F ≤ δ (1.4)

is known. The discrepancy principle prescribes that µ > 0 be determined so that the solution Xµ
of (1.3) satisfies the equation

‖A ∗L Xµ − B‖F = ηδ, (1.5)

where η > 1 is a user-specified constant that is independent of δ > 0; see Engl et al. [8] for
discussions on this approach to determine the regularization parameter µ. We remark that other
techniques, such as generalized cross validation [9, 10] and the L-curve criterion [13, 20, 26], also
may be used to determine the regularization parameter, in particular, when a bound (1.4) for the
error tensor is not known.

We also will discuss the approximate solution of (1.1) by GMRES-type iterative methods when
A ∈ Rm×m×n and B ∈ Rm×p×n. Regularization is achieved by truncating the iterations sufficiently
early. The discrepancy principle is used to decide how many iterations to carry out. The GMRES
method for the solution of linear discrete ill-posed problems (1.1), when A is a square matrix and
B a vector, was first described in [4] and is more recently investigated by Neubauer [23]. A variant
of the GMRES solution method is discussed in [24].

This paper focuses on tensor-tensor products defined with an invertible linear transform L.
These products were introduced by Kernfeld et al. [16] and are denoted by ∗L. The tensor t-
product defined in the seminal work by Kilmer and Martin [19] is a special case of the ∗L product.
A disadvantage of the t-product is that its efficient evaluation requires the use of the discrete
Fourier transform (DFT), whose implementation demands complex arithmetic. The ∗L product
can be chosen so that no complex arithmetic is required, which may speed up the computations.
Moreover, we can use linear transformations that satisfy reflective or periodic boundary conditions
when this is appropriate for the problem being solved.

It is the purpose of the present paper to generalize the Arnoldi-type and bidiagonalization-type
solution methods for (1.3), that are based on the t-product and are described in [7, 27, 28], to
solution methods that use the ∗L tensor product defined by an invertible linear transform L. This
generalization allows us to consider applications of the ∗L product in several contexts, e.g., in image
and video processing, and to gain useful insights into the performance of these methods. Iterative
Krylov subspace methods defined by the ∗L product for image and video processing have so far
not received much attention in the literature. The discussion of the current paper builds on the
image deblurring model considered by Kernfeld et al. [16].

The methods of this paper differ from the ones described in [7, 27, 28] in two ways:
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i) We modify the generalized global t-product Golub-Kahan bidiagonalization (GG-tGKB) pro-
cess described in [27] to generate an orthogonal tensor basis for the tensor Krylov (t-Krylov)
subspace

Kk(AT ∗LA,AT ∗L B) = span{AT ∗L B, (AT ∗LA) ∗LAT ∗L B, . . . , (AT ∗LA)k−1 ∗LAT ∗L B}

using the ∗L tensor product, where the superscript T denotes transposition. We refer to the
method for generating an orthogonal tensor basis for this t-Krylov subspace as the GG-LtGKB
process. This process reduces A in (1.3) to a small lower bidiagonal matrix by computing a few,
say 1 ≤ k � min{`,m}, steps of the GG-LtGKB process. Each step requires the evaluation
of two tensor-tensor products, one with A and one with AT . We refer to the solution method
for (1.3) based on the GG-LtGKB process as the generalized global ∗L tensor Golub-Kahan-
Tikhonov (GG-LtGKT) method.

ii) We adjust the T-global Arnoldi process described by El Guide et al. [7] to generate a t-Krylov
subspace under the ∗L tensor product. Generically, ` − 1 steps of this process determine an
orthogonal tensor basis for the t-Krylov subspace

K`(A,B) = span{B,A ∗L B, . . . ,A`−1 ∗L B}. (1.6)

Here A ∈ Rm×m×n. The method for determining this tensor basis will be referred to as
the generalized global ∗L tensor Arnoldi (GG-LtA) process. We assume that ` � m. Then,
generically, this process reduces the tensor A in (1.3) to a small (`+ 1)× ` upper Hessenberg
matrix. Each step requires one tensor-tensor product evaluation (with A). The subspace (1.6)
will be applied both in a Tikhonov-type regularization method, which will be referred to as
a generalized global ∗L tensor Arnoldi-Tikhonov (GG-LtAT) method and in a GMRES-type
method. The latter method extends the generalized global t-product GMRES (GG-tGMRES)
method recently described in [28] to the ∗L tensor product, and will be referred to as the GG-
LtGMRES method. Generically, the `th iterate determined by this method, X` ∈ K`(A,B),
satisfies

‖A ∗L X` − B‖F = min
X∈K`(A,B)

‖A ∗L X − B‖F , ` = 1, 2, . . . , (1.7)

where we assume that X0 = O, and O denotes the null tensor. The iterations are terminated
by the discrepancy principle, i.e., as soon as the left-hand side of (1.7) is bounded by ηδ; cf.
(1.5).

We also discuss the approximate solution of linear discrete ill-posed problems of the form

min
~X∈Rm×1×n

{
‖A ∗L ~X − ~B‖2F + µ−1‖L ∗L ~X‖2F

}
, (1.8)

which are obtained when p = 1 in (1.1). In this situation, the tensors ~X ∈ Rm×1×n and ~B ∈ R`×1×n

are laterally oriented matrices. Here the data tensor ~B may represent a degraded laterally oriented
gray-scale image. The problem (1.8) has recently been considered in [17, 27, 28] in the special case
when ∗L is the t-product.

Kernfeld et al. [16] described a solution method for the minimization problem (1.8) with L the
identity tensor, using the discrete cosine transform product, denoted by ∗c. This product can be
computed by the MATLAB function dct along the third dimension. The product ∗c is a special
case of the ∗L tensor product. Kernfeld et al. [16] also discuss the tensor product ∗L, but its
performance in the context of solving (1.8) is not considered. Our solution methods for (1.8) differ
from the one described by Kernfeld et al. [16] in the following ways: i) We use the global ∗L tensor
Golub-Kahan bidiagonalization (G-LtGKB) process, ii) we use the global ∗L tensor Arnoldi (G-
LtA) process, iii) we allow a general regularization operator L in (1.8), and iv) we determine the
regularization parameter with the aid of the discrepancy principle. Further discussions on these
topics are provided in Subsections 3.2 and 4.2. Solution methods for (1.8) that are based on the
G-LtGKB and G-LtA processes will be referred to as the global ∗L tensor Golub-Kahan-Tikhonov
(G-LtGKT) and global ∗L tensor Arnoldi-Tikhonov (G-LtAT) methods, respectively.

Replacing the data tensor B in (1.7) by a lateral tensor slice ~B yields the minimization problems

‖A ∗L ~X` − ~B‖F = min
~X∈K`(A, ~B)

‖A ∗L ~X − ~B‖F , ` = 1, 2, . . . , (1.9)
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where ~X` ∈ K`(A, ~B) and ~X0 = ~O ∈ Rm×1×n. We solve (1.9) by a GMRES-type method, which we

refer to as the global ∗L tensor GMRES (G-LtGMRES) method. Here, ~O is a tensor determined
by an m× n zero matrix oriented laterally.

We remark that several tensor-based methods, that do not apply the transform-based methods
discussed in [7, 16, 17, 27, 28], recently have been described in literature; see, e.g., [2, 3, 6]. The
solution schemes of the current paper belong the GKT BTF and AT BTF families of methods
described by Beik et al. [2, 3]. They involve flattening since they transform the equations (1.3),
(1.7), (1.8), and (1.9) to equivalent equations involving matrices and vectors, and they require
additional product definitions to the ∗L product.

This paper is organized as follows. Section 2 introduces notation and preliminaries associated
with the ∗L product formalism, and Section 3 describes the GG-LtGKT and G-LtGKT methods.
Both methods use a bidiagonalization process to reduce A ∈ R`×m×n to a small bidiagonal matrix.
Section 4 describes the GG-LtAT, G-LtAT, GG-LtGMRES, and G-LtGMRES methods. They are
based on reducing A ∈ Rm×m×n to a small upper Hessenberg matrix by carrying out a few steps of
an Arnoldi-type process. The solution methods for (1.3) discussed in Section 3 and 4 can be divided

into two groups: those that work with lateral slices ~Bj , j = 1, 2, . . . , p, of the data tensor B indepen-
dently, and those that work with these slices simultaneously. When applied to image restoration
problems, computed examples in [27, 28] showed the latter approach to require less CPU time
than the former, but often gave less accurate restorations. Section 5 presents computed examples
that illustrate the performance of the methods described in this paper. Concluding remarks can
be found in Section 6.

2 Notation and preliminaries

The tensors in this paper are multidimensional arrays of real scalars of order three. We use notation
described in [7, 16, 21]. Thus, third order tensors are denoted by calligraphic script letters, say
A, capital letter, say A, stand for matrices, and boldface lower case letters, say a, denote tubal
scalars (tube fibers). A tube fiber of a third order tensor is a 1D section obtained by fixing two of
the indices of A [21]. Using MATLAB notation, A(:, j, k), A(i, :, k), and A(i, j, :) denote mode-1,
mode-2, and mode-3 tube fibers, respectively. A slice of a tensor A is a 2D section obtained by
fixing one of the indices [21]. Using MATLAB notation, A(i, :, :), A(:, j, :), and A(:, :, k) stand for
the ith horizontal, jth lateral, and kth frontal slices, respectively. The jth lateral slice, also denoted
by ~Aj , is a tensor, that sometimes is referred to as a tensor column, whereas the kth frontal slice,
oftentimes denoted by A(k), is a matrix. The tensor-tensor product based on an invertible linear
transform L is defined as follows:

Definition 2.1. (∗L product [16]) Let L : R`×m×n → R`×m×n be an invertible linear operator,
and let B ∈ R`×p×n and C ∈ Rp×m×n. Then the ∗L product of the tensors B and C is the tensor
A ∈ R`×m×n given by

A := B ∗L C = L−1
(
L(B)4L(C)

)
, (2.1)

where the face-product 4 is defined by

(A4B)(i) = A(i)B(i).

The product ∗L is associative since (A∗LB)∗LC = A∗L (B∗LC), and the expression L(B)4L(C)
in (2.1) is equivalent to a matrix-matrix product in the transform domain. If we consider a third
order tensor A in (2.1) as a matrix of tubes oriented in the third dimension, then its (i, j)th tube
is given by

[A]ij =

p∑
k=1

B(i, k, :) ∗L C(k, j, :).

This results in a circular convolution between tubes if ∗L is the t-product [19]. When instead ∗L is
the cosine transform product, the resulting multiplication between tubes is the dot-product [16].

Following Kernfeld et al. [16], we denote the transform-domain version of A by Â, where Â is
a tensor whose tube fibers â are computed as

âij = [Â]ij := L(aij), i = 1, 2, . . . , `, j = 1, 2, . . . ,m.
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Kernfeld et al. [16] also describe a more efficient way of computing Â = L(A) than looping over
the row and column indices of A. It is based on computing the mode-3 matrix product, see [21],
between A ∈ R`×m×n and the invertible matrix M ∈ Rn×n associated with the linear transform L
according to

L(A) = A×3 M and L−1(A) = A×3 M
−1, (2.2)

and folding the resulting matrix. Note that

A×3 M = MA(3) ∈ Rn×`m,

where A(3) ∈ Rn×`m is the mode-3 unfolding of A, which can be obtained by using the squeeze

operator defined in [17], i.e.,

A(3) =

[(
squeeze( ~A1)

)T
,
(
squeeze( ~A2)

)T
, . . . ,

(
squeeze( ~Am)

)T]
,

where ~Aj , j = 1, 2, . . . ,m, are the lateral slices of A, and the squeeze operator applied to ~X is
identical to the MATLAB squeeze function

X = squeeze( ~X ) =⇒ X(i, k) = ~X (i, 1, k) ∀i, k.

In particular, squeeze( ~Aj) ∈ R`×n for j = 1, 2, . . . ,m.
The transformation matrix M acts along the tube fibers of A, even though it is written as

MA(3). Using (2.2), an equivalent definition of (2.1) is given by

B ∗L C = L−1(L(B)4L(C)) = [(B ×3 M)4(C ×3 M)]×3 M
−1. (2.3)

This definition is described by Kernfeld et al. [16] and used in the computed examples of Section
5.

When M is used as the defining matrix for L in (2.3), the resulting product sometimes is referred
to as the M-product and denoted by ∗M ; see [18, 25]. Choosing M as the normalized DFT matrix
gives the t-product, whereas the DCT matrix yields the cosine transform product; see Kernfeld et
al. [16] for a detailed discussion of the cosine transform product, and [1] for an extension to higher
order tensors by using the mode-m tensor transform.

For any invertible linear operator L, the ∗L product between a pair of tensors can be computed
by working only in the transform domain using Algorithm 1.

Algorithm 1: ∗L product [16]

Input: B ∈ R`×p×n, C ∈ Rp×m×n
1 B̂ = L(B)

2 Ĉ = L(C)
3 for i = 1 to n do

4 Â(i) ← B̂(i)Ĉ(i)
5 end

6 A ← L−1(Â)

The following properties of the tensor product ∗L have been shown by Kernfeld et al. [16].
Given an invertible linear transform L and a tensor A ∈ R`×m×n, the tensor transpose under ∗L,
AT ∈ Rm×`×n, satisfies

[L(AT )](i) = [L(A)(i)]T , i = 1, 2, . . . , n.

This tensor transpose has similar properties as the matrix transpose. For instance, suppose the
tensors A and B are such that A∗LB and BT ∗LAT are well defined. Then (A∗LB)T = BT ∗LAT ; see
[16]. We remark that the tensor transpose is computed by transforming to and from the transform
domain using an invertible linear transform matrix, and taking the transpose of each of the frontal
slices Â(i), i = 1, 2, . . . , n, of Â in the transform domain. When the DFT matrix is used to define
the ∗L product, a conjugate transpose is required to transform back to the spatial domain.

The identity tensor I ∈ Rm×m×n under L is a tensor such that I = L−1(Î), where Î is an
m × m × n tensor, whose frontal slices are the m × m identity matrix for i = 1, 2, . . . , n. The
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diagonal tubes of I are given by e1 := L−1(e), where e is a 1 × 1 × n tube fiber of ones and the
off-diagonal entries of I vanish; see [16]. An m × m × n tensor A has an inverse A−1 under ∗L
provided that A ∗L A−1 = I and A−1 ∗L A = I; see [16].

A tensor Q ∈ Rm×m×n is orthogonal if QT ∗L Q = Q ∗L QT = I; see [16]. We remark that the
lateral slices of Q are orthonormal and satisfy

QT (:, i, :) ∗L Q(:, j, :) =

{
e1 i = j,
0 i 6= j.

The tensor Q ∈ R`×m×n with ` > m is said to be partially orthogonal if QT ∗L Q is well defined
and equal to the identity tensor I ∈ Rm×m×n.

The tensor singular value decomposition (SVD) ∗L factorization of A ∈ R`×m×n introduced by
Kernfeld et al. [16] is given by

A = U ∗L S ∗L VT ,

where U ∈ R`×`×n and V ∈ Rm×m×n are orthogonal tensors, and the tensor

S = diag[s1, s2, . . . , smin{`,m}] ∈ R`×m×n

is f-diagonal with singular tubes sj ∈ R1×1×n, j = 1, 2, . . . ,min{`,m}, ordered according to

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖smin{`,m}‖F .

Note that a tensor is said to be f-diagonal if each frontal slice of the tensor is a diagonal matrix;
see [19].

The number of nonzero singular tubes of A is referred to as the tubal rank of A; see Kilmer et
al. [17]. The singular tubes of A are analogues of the singular values of a matrix A. A linear discrete
ill-posed problem with a matrix A has many singular values of different orders of magnitude close
to zero. Definition 2.2 describes linear discrete ill-posed tensor problems induced by the ∗L product.

Definition 2.2. The tensor least squares problem (1.1) is said to be a linear discrete ill-posed
problem for third order tensors under ∗L if A has ill-determined tubal rank, i.e., the Frobenius
norm of the singular tubes of A decays rapidly to zero without a significant gap with increasing
index, and there are many nonvanishing singular tubes of tiny Frobenius norm of different orders
of magnitude.

We remark that this definition describes a property of the whole tensor A, i.e., the singular
tubes of A which are computed by finding the SVD of each frontal slice Â(i), i = 1, 2, . . . , n, of Â
in the transform domain; see [16] for details.

We conclude this section by introducing notation from El Guide et al. [7]. Let

Vk := [V1,V2, . . . ,Vk] ∈ Rm×kp×n and Vk := [~V1, ~V2, . . . , ~Vk] ∈ Rm×k×n

with Vj ∈ Rm×p×n and ~Vj ∈ Rm×1×n for j = 1, 2, . . . , p. Let y = [y1, y2, . . . , yk]T ∈ Rk. Then El
Guide el al. [7] defined the product ~ as

Vk ~ y =

k∑
j=1

yjVj , Vk ~ y =

k∑
j=1

yj~Vj .

It is readily shown that for any orthogonal tensors V ∈ R`×kp×n and V ∈ R`×k×n,

‖V~ y‖F = ‖y‖2, ‖V ~ y‖F = ‖y‖2, (2.4)

where ‖ · ‖2 denotes the Euclidean vector norm; see [7] for details.

Consider the tensors C = [cijk],D = [dijk] ∈ Rm×p×n and their lateral slices ~C = [ci1k], ~D =
[di1k] ∈ Rm×1×n, and define the scalar products

〈C,D〉 =

m∑
i=1

p∑
j=1

n∑
k=1

cijkdijk, 〈~C, ~D〉 =
m∑
i=1

n∑
k=1

ci1kdi1k.
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Suppose

A := [A1,A2, . . . ,Am] ∈ R`×sm×n and B := [B1,B2, . . . ,Bp] ∈ R`×sp×n,

A := [ ~A1, ~A2, . . . , ~Am] ∈ R`×m×n and B := [ ~B1, ~B2, . . . , ~Bp] ∈ R`×p×n,

where Ai ∈ R`×s×n, ~Ai ∈ R`×1×n, i = 1, 2, . . . ,m, and Bj ∈ R`×s×n, ~Bj ∈ R`×1×n, j = 1, 2, . . . , p.
Then the T-diamond products [7] denoted by AT♦B and AT♦B result in m × p matrices with
entries

[AT♦B]ij = 〈Ai, Bj〉, [AT♦B]ij = 〈 ~Ai, ~Bj〉, i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

The naming scheme for the solution methods for (1.3), (1.7), (1.8), and (1.9), that are described
in Sections 3 and 4, is summarized in Table 1.

3 Solution methods for (1.3) and (1.8) based on bidiagonal-
ization processes

Abbreviation Method Described in Section
GG-LtGKT generalized global ∗L tensor Golub-Kahan-Tikhonov 3.1
GG-LtGKB generalized global ∗L tensor Golub-Kahan bidiagonalization 3.1

GG-tQR generalized global tensor QR 3.1, 4.1
G-LtGKT global ∗L tensor Golub-Kahan-Tikhonov 3.2
G-LtGKB global ∗L tensor Golub-Kahan bidiagonalization 3.2

G-tQR global tensor QR 3.2, 4.2
GG-LtAT generalized global ∗L tensor Arnoldi-Tikhonov 4.1
GG-LtA generalized global ∗L tensor Arnoldi 4.1

GG-LtGMRES generalized global ∗L tensor GMRES 4.1
G-LtAT global ∗L tensor Arnoldi-Tikhonov 4.2
G-LtA global ∗L tensor Arnoldi 4.2

G-LtGMRES global ∗L tensor GMRES 4.2
G-LtGKTp G-LtGKT applied p times to solve (1.3) 3.2
G-LtATp G-LtAT applied p times to solve (1.3) 4.2

G-LtGMRESp G-LtGMRES applied p times to solve (1.7) 4.2

Table 1: The prefix GG indicates that the method for the solution of tensor least squares problems (1.3)
and (1.7) with a general data tensor B ∈ R`×p×n, p > 1, works with the whole tensor B at a time, while the
prefix G indicates that the method is designed for the solution of tensor least squares problems (1.8) and
(1.9) with a data tensor slice ~B ∈ R`×1×n that is a laterally oriented matrix of size ` × n. The last three
methods with subscript p work with the lateral slices ~Bj , j = 1, 2, . . . , p, of the data tensor B independently.

This section describes the generalized global ∗L tensor Golub-Kahan-Tikhonov (GG-LtGKT)
method and the global ∗L tensor Golub-Kahan-Tikhonov (G-LtGKT) method. The G-LtGKT

method applied to the solution of (1.3) works with the lateral slices ~Bj , j = 1, 2, . . . , p, of B
independently; when applied to the solution of (1.8), there is only one data tensor slice ~B. The
GG-LtGKT method for the solution of (1.3) works with all lateral slices of B simultaneously.

3.1 The GG-LtGKT method for the solution of (1.3)

This subsection extends the generalized global t-product Golub-Kahan-Tikhonov (GG-tGKT)
method for the solution of (1.3) described in [27] to the ∗L product. The latter method will
be referred to as the GG-LtGKT method. A variant of the GG-tGKT method has recently been
presented in [7].

Algorithm 2 extends the generalized global t-product Golub-Kahan bidiagonalization (GG-
tGKB) process described in [27] to the ∗L product. This algorithm will be referred to as the
generalized global ∗L tensor Golub-Kahan bidiagonalization (GG-LtGKB) process. We assume that
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the number of steps, k, is chosen small enough to avoid breakdown. Then Algorithm 2 produces
the partial GG-LtGKB decompositions

A ∗L Wk = Vk+1 ~ P̄k, AT ∗L Vk = Wk ~ P
T
k , (3.1)

where

Wk := [W1,W2, . . . ,Wk] ∈ Rm×kp×n, Vj := [V1,V2, . . . ,Vj ] ∈ R`×jp×n, j ∈ {k, k + 1}

and

A ∗L Wk := [A ∗LW1,A ∗LW2, . . . ,A ∗LWk] ∈ R`×kp×n,
Vk+1 ~ P̄k := [Vk+1 ~ P̄k(:, 1),Vk+1 ~ P̄k(:, 2), . . . ,Vk+1 ~ P̄k(:, k)] ∈ R`×kp×n. (3.2)

The tensors AT ∗L Vk and Wk ~ PTk are similarly defined to (3.2). The matrix

P̄k =


α1

β2 α2

. . .
. . .

βk αk
βk+1

 ∈ R(k+1)×k (3.3)

is lower bidiagonal, where Pk is the leading k × k submatrix of P̄k. The tensors Vj ∈ R`×p×n and
Wj ∈ Rm×p×n, for j = 1, 2, . . . , k, generated by Algorithm 2 form orthogonal tensor bases for the
t-Krylov subspaces Kk(A ∗L AT ,B) and Kk(AT ∗L A,AT ∗L B), respectively. The relations

B = V1‖B‖F = Vk+1 ~ e1‖B‖F = Vk+1 ~ e1β1, e1 = [1, 0, . . . , 0]T , (3.4)

follow from Algorithm 2.

Algorithm 2: The partial generalized global ∗L tensor Golub-Kahan bidiagonalization
(GG-LtGKB) process

Input: A ∈ R`×m×n, B ∈ R`×p×n, such that AT ∗L B 6= O
1 Set β1 ← ‖B‖F ,V1 ← 1

β1
B, W0 ← O

2 for j = 1, 2, . . . , k do
3 W ← AT ∗L Vj − βjWj−1
4 αj ← ‖W‖F , If αj = 0, stop else

5 Wj ←W/αj
6 V ← A ∗LWj − αjVj
7 βj+1 ← ‖V‖F , If βj+1 = 0, stop else

8 Vj+1 ← V/βj+1

9 end

Let X = Wk ~ y, substitute the left-hand side of (3.1) into (1.3), and use (3.4) to obtain the
reduced minimization problem

min
y∈Rk
{‖Vk+1 ~ P̄k ~ y − Vk+1 ~ e1β1‖2F + µ−1‖L ∗L Wk ~ y‖2F }. (3.5)

Following an approach that is analogous to the one described in [15], we use Algorithm 3 to compute
the generalized global tensor QR (GG-tQR) factorization

L ∗L Wk = VL,k ~RL,k, (3.6)

where RL,k ∈ Rk×k is an upper triangular matrix, and VL,k ∈ Rs×kp×n has k orthogonal tensor
columns. The factorization (3.6) can be evaluated by updating the available GG-tQR factorization
of L ∗L Wk−1. The regularization operators L used in the computed examples are described in
Section 5.
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Algorithm 3: Generalized global tensor QR (GG-tQR) factorization [27]

Input: A := [A1,A2, . . . ,Ak] ∈ R`×km×n,Aj ∈ R`×m×n, j = 1, . . . , k, ` ≥ m.
Output: V := [V1,V2, . . . ,Vk] ∈ R`×km×n,Vj ∈ R`×m×n, j = 1, . . . , k, R = [rij ] ∈ Rk×k

such that A = V~R, and VT♦V = Ik
1 Set r11 ← 〈A1,A1〉1/2, V1 ← 1

r11
A1

2 for j = 1, 2 . . . , k do
3 W ← Aj
4 for i = 1, 2, . . . , j − 1 do
5 rij ← 〈Vi,W〉
6 W ←W − rijVi
7 end

8 rjj ← 〈W,W〉1/2
9 Vj ←W/rjj

10 end

Substitute (3.6) into (3.5), and use the left-hand side of (2.4) to obtain

min
y∈Rk
{‖P̄ky − e1β1‖22 + µ−1‖RL,ky‖22}. (3.7)

We would like to transform (3.7) into a Tikhonov minimization problem in standard form. With
this aim, define the quantities

z := RL,ky, P̃k := P̄kR
−1
L,k, (3.8)

where we assume the matrix RL,k to be invertible and not very ill-conditioned. This holds for
many regularization operators L, and in particular for the ones used in the computed examples of
Section 5. Then the transformation (3.8) is attractive to apply. Substitution into (3.7) yields the
Tikhonov minimization problem in standard form,

min
z∈Rk
{‖P̃kz − e1β1‖22 + µ−1‖z‖22}. (3.9)

The normal equations associated with (3.9) are given by

(P̃Tk P̃k + µ−1I)z = P̃Tk e1β1, (3.10)

and their solution, for any µ > 0, can be written as

zµ,k = (P̃Tk P̃k + µ−1I)−1P̃Tk e1β1. (3.11)

It follows that the computed approximate solution to the Tikhonov minimization problem (1.3)
can be expressed as

Xµ,k = Wk ~R
−1
L,k(P̃Tk P̃k + µ−1I)−1P̃Tk e1β1.

We remark that we compute the vector zµ,k in (3.11) by solving the least squares problem

min
z∈Rk

∥∥∥∥ [ P̃k
µ−1/2I

]
z −

[
e1β1

0

] ∥∥∥∥
2

,

because the condition number of the matrix in this problem is the square root of the condition
number of the matrix P̃Tk P̃k + µ−1I in (3.10).

The regularization parameter and the required number of steps k by the GG-LtGKB process
are determined by the discrepancy principle (1.5), which prescribes that µ > 0 be chosen so that
the solution (3.11) satisfies

‖P̃kzµ,k − e1β1‖2 = ηδ; (3.12)

see Proposition 3.1 below. We choose k as small as possible so that the above equality can be
satisfied. Define the function

φk(µ) := ‖P̃kzµ,k − e1β1‖22, (3.13)
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substitute (3.11) into (3.13), and use the identity

I − P̃k(P̃Tk P̃k + µ−1I)−1P̃Tk = (µP̃kP̃
T
k + I)−1

to obtain
φk(µ) = β2

1e
T
1 (µP̄kP̄

T
k + I)−2e1.

It is readily shown that φk(µ) is decreasing and convex with φk(0) = β2
1 ; see [27] for details. A zero

finder such as bisection or Newton’s method can be used to determine the solution µk of

φk(µ)− η2δ2 = 0. (3.14)

We will use the bisection method in the computed examples of Section 5.
The following result shows that we can apply the discrepancy principle (1.5) to the reduced

problem (3.9) to determine µ > 0 that satisfy (3.12); see [27] for a proof of a related result.

Proposition 3.1. Let µ = µk solve (3.14) and suppose zµ,k is the solution of the normal equations
(3.10). Let yµ,k and zµ,k be related by (3.8). Then the associated approximate solution Xµ,k =
Wk ~ yµ,k of (1.3) satisfies

‖A ∗L Xµ,k − B‖2F = β2
1e
T
1 (µP̃kP̃

T
k + I)−2e1.

We refer to the above solution method as the GG-LtGKT method. It is implemented by using
[27, Algorithm 10] with the t-product replaced by the ∗L product.

3.2 The G-LtGKT method for the solution of (1.8) and (1.3)

This subsection extends the global t-product Golub-Kahan-Tikhonov (G-tGKT) method described
in [27] for the approximate solution of (1.8) and (1.3) to the ∗L product. The methods obtained
will be referred to as the G-LtGKT and G-LtGKTp methods, respectively. Algorithm 4 extends
the global t-product Golub-Kahan bidiagonalization (G-tGKB) process described in [27] to the ∗L
product. The latter method is referred to as the G-LtGKB process.

Assume that the number of steps, k, with the G-LtGKB process is small enough to avoid
breakdown. This is the generic situation. Then Algorithm 4 yields the G-LtGKB decompositions

A ∗LWk = Qk+1 ~ B̄k, AT ∗L Qk =Wk ~B
T
k , (3.15)

where

Wk := [ ~W1, ~W2, . . . , ~Wk] ∈ Rm×k×n, Qj := [ ~Q1, ~Q2, . . . , ~Qj ] ∈ R`×j×n, j ∈ {k, k + 1}.

The expressions A ∗L Wk, Qk+1 ~ B̄k, AT ∗L Qk, and Wk ~ BTk are analogous to those in (3.2)
and the lower bidiagonal matrix B̄k ∈ R(k+1)×k is of the form (3.3), where Bk is the leading k× k
submatrix of B̄k. The tensor columns ~Qj ∈ R`×1×n and ~Wj ∈ Rm×1×n, j = 1, 2, . . . , k, generated

by Algorithm 4 make up orthonormal tensor bases for the t-Krylov subspaces Kk(A∗LAT , ~B) and

Kk(AT ∗L A,AT ∗L ~B), respectively. It can easily be deduced from Algorithm 4 that

~B = Qk+1 ~ e1β1. (3.16)

Algorithm 4: The partial global ∗L tensor Golub-Kahan bidiagonalization (G-LtGKB)
process

Input: A ∈ R`×m×n, ~B ∈ R`×1×n, AT ∗L ~B 6= ~O
1 Set β1 ← ‖ ~B‖F , ~Q1 ← 1

β1

~B, ~W0 ← ~O
2 for j = 1, 2, . . . , k do

3 ~W ← AT ∗L ~Qj − βj ~Wj−1

4 αj ← ‖ ~W‖F . If αj = 0, stop else

5 ~Wj ← ~W/αj

6 ~Q ← A ∗L ~Wj − αj ~Qj
7 βj+1 ← ‖ ~Q‖F . If βj+1 = 0, stop else

8 ~Qj+1 ← ~Q/βj+1

9 end
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Let ~X =Wk~y. We follow a similar approach as in Subsection 3.1 to reduce (1.8) to a problem
of small size. Thus, substitute the left-side of (3.15) as well as (3.16) into (1.8). Then compute the
G-tQR factorization

L ∗LWk = QL,k ~ R̄L,k
by Algorithm 5, and use the right-hand side of (2.4) to obtain the minimization problem

min
y∈Rk
{‖P̆kz − e1β1‖22 + µ−1‖z‖22}, (3.17)

where
z := R̄L,ky, P̆k := B̄kR̄

−1
L,k. (3.18)

Here we assume the matrix RL,k to be invertible and not very ill-conditioned. This holds for the
regularization operator L used in the computed examples in Section 5. The solution method for
(3.17) is analogous to the method in Subsection 3.1, and is referred to as the G-LtGKT method.
It can be implemented by [27, Algorithm 13] with p = 1.

Algorithm 5: Global tensor QR (G-tQR) factorization [27]

Input: A = [ ~A1, ~A2, . . . , ~Am] ∈ R`×m×n, ` ≥ m
Output: Q = [ ~Q1, ~Q2, . . . , ~Qm] ∈ R`×m×n, R = [rij ] ∈ Rm×m such that A = Q~ R̄ and

QT♦Q = Im
1 r11 ← 〈 ~A1, ~A1〉1/2, ~Q1 ← 1

r11
~A1

2 for j = 1, 2, . . . ,m do

3 ~W ← ~Aj
4 for i = 1, 2, . . . , j − 1 do

5 rij ← 〈 ~Qi, ~W〉
6 ~W ← ~W − rij ~Qi
7 end

8 rjj ← 〈 ~W, ~W〉1/2

9 ~Qj ← ~W/rjj
10 end

We determine the regularization parameter µ > 0 and the number of steps of the G-LtGKB
process similarly as in Subsection 3.1. Thus, let a bound for the error ~E in ~B be known, i.e.,

‖~E‖F ≤ δ.

The discrepancy principle prescribes that µ > 0 be determined so that the solution zµ,k of (3.17)
satisfies

‖P̆kzµ,k − e1β1‖2 = ηδ

for some constant η > 1 that is independent of δ. Define

ψk(µ) := ‖P̆kzµ,k − e1β1‖22.

We obtain similarly as in Subsection 3.1 that

ψk(µ) = β2
1e
T
1 (µP̆kP̆

T
k + I)−2e1.

The following result is analogous to Proposition 3.1 and can be shown in a similar fashion.

Proposition 3.2. Let µ = µk solve ψk(µ) = η2δ2 and suppose that zµ,k is the solution of the
normal equations of (3.17), i.e., of

(P̆Tk P̆k + µ−1I)z = P̆Tk e1β1.

Let yµ,k and zµ,k be related by (3.18). Then the associated approximate solution ~Xµ,k =Wk~yµ,k
of (1.8) satisfies

‖A ∗L ~Xµ,k − ~B‖2F = β2
1e
T
1 (µP̆kP̆

T
k + I)−2e1.
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Finally, we discuss the solution of (1.3) by applying the G-LtGKB process and the G-LtGKT
method to each one of the p Tikhonov minimization problems

min
~Xj∈Rm×1×n

{
‖A ∗L ~Xj − ~Bj‖2F + µ−1‖L ∗L ~Xj‖2F

}
, j = 1, 2, . . . , p, p > 1, (3.19)

separately. We will refer to this solution approach as the G-LtGKTp method. It is implemented by
replacing the t-product in [27, Algorithm 13] by the ∗L product. The solution method for (3.19)
obtained in this manner provides an alternative to the GG-LtGKT method of Subsection 3.1. Its
performance is illustrated in Section 5.

4 Solution methods for (1.3) and (1.8) based on Arnoldi pro-
cesses

This section describes the generalized global ∗L tensor Arnoldi-Tikhonov (GG-LtAT) method,
which works with all lateral slices of B simultaneously. We also present the global ∗L tensor
Arnoldi-Tikhonov (G-LtAT) method for the approximate solution of (1.3). The latter method is

also applied to determine the solution of (1.8) by working with the lateral slices ~Bj , j = 1, 2, . . . , p,
of B independently.

4.1 The GG-LtAT method for the approximate solution of (1.3)

This subsection extends the generalized global t-product Arnoldi-Tikhonov (GG-tAT) method
described in [28] to the ∗L product. We refer to this solution scheme as the GG-LtAT method.
It works with the whole data tensor B at a time. This method applies an extension of the T-
global Arnoldi process described by El Guide et al. [7] to the ∗L product. The resulting process is
described by Algorithm 6 below and will be referred to as the generalized global ∗L tensor Arnoldi
(GG-LtA) process.

Let A ∈ Rm×m×n and assume that the number of steps, `, is small enough to avoid breakdown.
This is the generic situation. Algorithm 6 yields the GG-LtA decomposition

A ∗L V` = V`+1 ~ H̄`, (4.1)

where
Vj := [V1,V2, . . . ,Vj ] ∈ Rm×jp×n, j ∈ {`, `+ 1},

and

H̄` =



h11 . . . h1`
h21 h22

h32 h33
...

. . .
. . .

h`,`−1 h`,`
O h`+1,`


∈ R(`+1)×`

is an upper Hessenberg matrix. The tensors Vj ∈ Rm×p×n, j = 1, 2, . . . , `, generated by Algorithm 6
form an orthogonal tensor basis for the t-Krylov subspace (1.6). The tensors A∗LV` and V`+1~H̄`

are defined similarly as in (3.2). The relation

B = V`+1 ~ e1β (4.2)

follows from Algorithm 6.

12



Algorithm 6: The generalized global ∗L tensor Arnoldi (GG-LtA) process

Input: A ∈ Rm×m×n, B ∈ Rm×p×n 6= O
1 Set β ← ‖B‖F ,V1 ← 1

βB
2 for j = 1, 2, . . . , ` do
3 W ← A ∗L Vj
4 for i = 1, 2, . . . , j do
5 hij ← 〈Vi,W〉
6 W ←W − hijVi
7 end
8 hj+1,j ← ‖W‖F , If hj+1,j = 0, stop; else
9 Vj+1 ←W/hj+1,j

10 end

We proceed in the same manner as in Section 3.1. Let X = V` ~ y and substitute (4.1) and
(4.2) into (1.3) to obtain an analogue of (3.5). Compute a GG-tQR factorization of L∗LQ`, which
is analogous to (3.6), by Algorithm 3. Then using the left-hand side of (2.4), we obtain

min
y∈R`
{‖H̄`y − e1β‖22 + µ−1‖RL,`y‖22}. (4.3)

When the matrix RL,` is invertible and not very ill-conditioned, we introduce the quantities

z := RL,`y, H̃` := H̄`R
−1
L,`,

which allow us to transform the problem (4.3) to a Tikhonov minimization problem in standard
form,

min
y∈R`
{‖H̃`z − e1β‖22 + µ−1‖z‖22}.

This problem can be solved similarly as the method described in Section 3.1. We refer to this
solution method as the GG-LtAT method. It can be implemented in the same manner as [28,
Algorithm 11], which uses the t-product.

We remark that when µ = ∞ in (4.3), we obtain the minimization problem that is solved in
step ` of the generalized global ∗L tensor GMRES (GG-LtGMRES) method for the approximate
solution of (1.7). The special case of this method when the matrix that defines the linear transform
L is the normalized DFT matrix has been described in [28]; its implementation is given by [28,
Algorithm 12]. The GG-LtGMRES method can be implemented in the same fashion.

4.2 The G-tLAT method for the solution of (1.3) and (1.8)

We extend the global t-product Arnoldi-Tikhonov (G-tAT) regularization method described in [28]
to the ∗L product. The method so obtained will be referred to as the G-LtAT method.

The G-LtAT method for the solution of (1.3) provides an alternative approach to the GG-LtAT

method described in Subsection 4.1. It is applied to each lateral slice ~Bj , j = 1, 2, . . . , p, of B in
(1.3) independently. We will refer to this approach of solving (3.19) as the G-LtATp method. This
method has been described in [28] when using the t-product, i.e., when the defining matrix for
the linear transform L in (3.19) is the normalized DFT matrix. The implementation of the G-
LtATp method is similar to [28, Algorithm 14] with the main difference that the global t-Arnoldi
process is replaced by the global ∗L Arnoldi (G-LtA) process described by Algorithm 7. As already

mentioned, our interest in solution methods that work with the tensor slices ~Bj independently is
that they were found in [27, 28] to yield approximate solutions of (1.3) of higher quality than when
working with these lateral slices simultaneously.

We first consider the G-LtAT method for the solution of (1.8). As usual, we assume that the
number of steps, `, is small enough to avoid breakdown. Algorithm 7 yields the G-LtA decompo-
sition

A ∗L Q` = Q`+1 ~ ¯̄H`, (4.4)

where
Qj := [ ~Q1, ~Q2, . . . , ~Qj ] ∈ Rm×j×n, j ∈ {`, `+ 1}.
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The tensor columns ~Qj ∈ Rm×1×n, j = 1, 2, . . . , `, form an orthonormal tensor basis for the

t-Krylov subspace K`(A, ~B). The tensors A ∗L Q` ∈ Rm×k×n and Q`+1 ~ H̄` ∈ Rm×(`+1)×n are

defined similarly as (3.2) and the matrix ¯̄H ∈ R(`+1)×` is of upper Hessenberg form. We can deduce
from Algorithm 7 that

~B = Q`+1 ~ e1β.

Algorithm 7: The global ∗L tensor Arnoldi (G-LtA) process

Input: A ∈ Rm×m×n, ~B ∈ Rm×1×n 6= ~O
1 Set β ← ‖ ~B‖F , ~Q1 ← 1

β
~B

2 for j = 1, 2, . . . , ` do

3 ~W ← A ∗L ~Qj
4 for i = 1, 2, . . . , j do

5 hij ← 〈 ~Qi, ~W〉
6 ~W ← ~W − hij ~Qi
7 end

8 hj+1,j ← ‖ ~W‖F , If hj+1,j = 0, stop; else

9 ~Qj+1 ← ~W/hj+1,j

10 end

Suppose that ~X = Q` ~ y and assume, as usual, that ` is chosen small enough so that the
factorization (4.4) with the stated properties exists. Then, similarly as in Section 3.2, we reduce
(1.8) to the minimization problem

min
y∈R`
{‖ ¯̄H`y − e1β‖22 + µ−1‖R̄L,`y‖22}. (4.5)

Compute the G-tQR factorization of L ∗L Q` analogously to (3.6) by Algorithm 5, and introduce
the quantities

z := R̄L,`y, H̆` := ¯̄H`R̄
−1
L,`,

which we assume exist. Then similarly as in Section 3, we obtain the Tikhonov minimization
problem in standard form

min
y∈R`
{‖H̆`z − e1β‖22 + µ−1‖z‖22},

which we solve for z. We refer to this solution scheme as the G-LtAT method. It can be implemented
similarly as [28, Algorithm 14] with p = 1 and the t-product replaced by the ∗L product.

Similarly as above, we note that setting µ = ∞ in (4.5) results in the minimization problem
that is solved at step ` of the global ∗L tensor GMRES (G-LtGMRES) method for the approxi-
mate solution of (1.9). An implementation of this method with the t-product is described by [28,
Algorithm 15] with p = 1. The G-LtGMRES method can be implemented similarly.

We also apply the G-LtGMRES method to the solution of the minimization problem (1.7) using

one lateral slice ~Bj , j = 1, 2, . . . , p, of B at a time, i.e., we solve separately the p minimization
problems

‖A ∗L ~Xj,` − ~Bj‖F = min
~X∈K`(A, ~B)

‖A ∗L ~Xj − ~Bj‖F , j = 1, 2, . . . , p, p > 1, (4.6)

for ~Xj,` ∈ K`(A, ~B). This solution method is referred to as the G-LtGMRESp method. Analogues
of the G-LtGMRES and G-LtGMRESp methods, that use the t-product, have been described in
[28].

5 Numerical examples

This section compares and illustrates the effectiveness of the methods described in Sections 3 and
4. Applications to color image and video restoration are considered. All computations were carried
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in MATLAB 2019b on a Lenovo computer with an Intel Core i3 processor and 4 GB RAM running
Windows 10.

We use three different regularization operators in the computed examples with Tikhonov reg-
ularization: the identity operator L = I, the operator L1 ∈ R(m−2)×m×n with a tridiagonal first
frontal slice

L(1)
1 =

1

4

−1 2 −1
. . .

. . .
. . .

−1 2 −1

 ∈ R(m−2)×m (5.1)

and the remaining frontal slices L(i)
1 ∈ R(m−2)×m, i = 2, 3, . . . , n, equal to the zero matrix, as well

as the regularization operator L2 ∈ R(m−1)×m×n with a bidiagonal first frontal slice

L(1)
2 =

1

2


1 −1

1 −1
. . .

. . .

1 −1

 ∈ R(m−1)×m (5.2)

and the remaining frontal slices L(i)
2 ∈ R(m−1)×m, i = 2, 3, . . . , n, equal to the zero matrix. The

results for GMRES-type methods are independent of the regularization operator L; cf. (1.7) and
(1.9). The construction of the blurring operator A follows a similar approach as described by
Kernfeld et al. [16].

We apply the twist and squeeze operators defined by Kilmer et al. [17] to associate an image
stored as an m×n matrix to a tensor column of size m×1×n. Additionally, we use the multi twist

and multi squeeze operators described in [27, 28] to relate an m× p×n image to a tensor of size
m× n× p for p > 1.

Example 5.1. This example uses an orthogonal DCT matrix from MATLAB as the defining
matrix for the linear transform L to define the ∗L-product. This gives the ∗c-product introduced by
Kernfeld [16]. We apply the regularization operator L1 defined above, and consider the restoration
of the peppers image shown in Figure 1 (left). This image is stored as a tensor B ∈ R300×3×300

by using the multi twist operator and is blurred by the operator A ∈ R300×300×300, which is
generated by applying the function blur in [12]. Specifically, we use the MATLAB commands
below, and the operator ten described in [16] to generate A:

z = [exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N− band)], N = 300, σ = 3, band = 12,

y = zeros(length(z), 1), y(1 : length(z)− 1) = z(2 : end),

A1 = toeplitz(z), A2 = flip(flip(hankel(y))′) + hankel(y),

A = A1 +A2, A =
1√
2πσ

ten(A⊗A, 300, 300, 300),

(5.3)

where A1 ∈ R300×300 is a Toeplitz matrix and A2 ∈ R300×300 is a Hankel matrix. Reflective
boundary conditions are employed; see [14, Chapter 4] for discussions.

The condition number with regard to the spectral matrix norm of the frontal slices A(i) is
1.2 · 106 for i = 1, 2, . . . , 12, and the condition number of the remaining slices A(i), 13 ≤ i ≤ 300, is
infinite. Here and below, we use the MATLAB command cond to compute the condition number
of the frontal slices of A.

Let Xtrue ∈ R300×3×300 represent the blur- and noise-free image that we would like to determine
from the available contaminated image that is represented by B; we assume that Xtrue is not
available. The blur-contaminated but noise-free image associated with Xtrue is generated by Btrue =
A ∗L Xtrue. This image will be contaminated by noise that is represented by the tensor E ∈
R300×3×300 given by

E := δ̃
E0
‖E0‖F

‖Btrue‖F , (5.4)

where the entries of E0 are N(0, 1). Hence, the entries of E are normally distributed with zero

mean and are scaled to have the specific noise level δ̃ > 0. The available blurred and noisy image is
represented by B = Btrue + E . This image is displayed in Figure 1 (right) using the multi squeeze

operator. We would like to determine an accurate approximation of Xtrue from B.
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Figure 1: True peppers image (left), and blurred and noisy peppers image (right) for δ̃ = 10−3.

Figure 2: Reconstructed peppers images for δ̃ = 10−3 by the G-LtATp method (left) and the GG-
LtGMRES method (right) after 17 iterations.

In all computed examples, the regularization parameter and the number of iterations (iter)
required by each method are determined with the aid of the discrepancy principle. In this example,
we determine the regularization parameter(s) by the bisection method over the interval [10−4, 105]
with η = 1.2 in (1.5). The reconstructed images determined by the G-LtATp and GG-LtGMRES
methods are displayed in Figure 2. Here and below, the effectiveness of each chosen method is
measured by the relative error

Emethod =
‖Xmethod −Xtrue‖F

‖Xtrue‖F
,

where Xmethod denotes the computed approximate solution of (1.1) determined by a given method.
Throughout this section, the table entry ‘-’ indicates that a chosen method uses three different

numbers of t-Arnoldi/bidiagonalization steps or computes three different values of the regulariza-
tion parameter, or no regularization parameter or no invertible linear transform is required. Table
2 shows the relative errors in the computed reconstructions, the CPU times required, as well as
the regularization parameters and the number of iterations. The GG-LtGMRES method, which
works with the whole data tensor B at a time, can be seen to yield the reconstruction of highest
quality when δ̃ = 10−3 and to require the least CPU time for both noise levels. The Golub-Kahan-
Tikhonov-type methods require the most CPU time for both noise levels and determine restorations
of the worst quality for δ̃ = 10−3. The G-LtGKTp method, which works with the lateral slices of
the data tensor independently, requires the most CPU time, and determines for both noise levels
restorations of higher quality than the GG-LtGKT method, which works with all lateral slices
simultaneously. The GG-LtGKT method requires more iterations than the GG-LtAT method for
both noise levels.

Example 5.2. We consider the restoration of the papav256 image shown in Figure 3 (left) using
the regularization operator L = I. The solution methods of Example 5.1 are compared. We use
the DSC matrix to define the linear transformation L. This matrix is not orthogonal; it is the sum
of the DCT and the Discrete Sine Transform1 (DST) matrices from MATLAB. The frontal slices

1https://www.mathworks.com/matlabcentral/fileexchange/26040-dct-and-dst-inverse-in-arbitrary-dimension
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δ̃ Method iter µiter Emethod CPU time (secs)

10−3

GG-LtAT 17 1.57 · 100 6.8580 · 10−2 4.55 · 102

GG-LtGKT 51 6.34 · 100 7.0629 · 10−2 9.75 · 103

GG-LtGMRES 17 - 6.7091 · 10−2 2.29 · 102

G-LtATp - - 6.8706 · 10−2 6.46 · 102

G-LtGKTp - - 7.0194 · 10−2 2.23 · 104

G-LtGMRESp - - 6.9608 · 10−2 5.67 · 102

10−2

GG-LtAT 4 1.22 · 10−1 1.0451 · 10−1 2.78 · 101

GG-LtGKT 9 3.57 · 10−3 1.0232 · 10−1 3.14 · 102

GG-LtGMRES 4 - 1.0631 · 10−1 1.33 · 101

G-LtATp - - 1.0407 · 10−1 5.18 · 101

G-LtGKTp - - 1.0184 · 10−1 6.81 · 102

G-LtGMRESp - - 1.0635 · 10−1 3.82 · 101

Table 2: Results for Example 5.1.

of the blurring operator A are defined by (5.3) with

A(i) =
1√
2πσ

A1(i, 1)A1, i = 1, 2, . . . , 256, N = 256, σ = 2.5, band = 12.

Then cond(A(i)) = 1.94 ·108 for i = 1, 2, . . . 12, and the condition number of each frontal slice of A
is infinite for i ≥ 13. We use the discrepancy principle to determine the regularization parameter(s)
by the bisection method over the interval [10−2, 107] with η = 1.1.

Figure 3: True papav256 image (left), and blurred and noisy papav256 image (right) for δ̃ = 10−3.

Figure 4: Reconstructed images by the GG-LtGKT method (left) and the G-LtGMRESp method (right)

for δ̃ = 10−3.

The true papav256 image is of size 256× 256× 3 and is stored as a tensor Xtrue ∈ R256×3×256

using the multi twist operator. This image is blurred by the tensor A defined above. Let Btrue ∈
R256×3×256 store the blurred image so obtained. The blurred and noisy image is determined by
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B = Btrue+E , where the “noise tensor” E ∈ R256×3×256 is generated by (5.4). The image represented
by B is shown in Figure 3 (right) using the multi squeeze operator. The images reconstructed by

the GG-LtGKT and G-LtGMRESp methods for δ̃ = 10−3 are displayed similarly in Figure 4.

δ̃ Method iter µiter Emethod CPU time (secs)

10−3

GG-LtAT 10 1.56 · 104 5.0166 · 10−2 1.34 · 102

GG-LtGKT 45 4.15 · 104 5.0495 · 10−2 5.57 · 103

GG-LtGMRES 10 - 5.0179 · 10−2 5.11 · 101

G-LtATp - - 5.0124 · 10−2 1.60 · 102

G-LtGKTp - - 5.0471 · 10−2 1.29 · 104

G-LtGMRESp - - 5.0079 · 10−2 1.35 · 102

10−2

GG-LtAT 4 1.42 · 103 7.3333 · 10−2 2.40 · 101

GG-LtGKT 10 2.27 · 103 6.6785 · 10−2 3.62 · 102

GG-LtGMRES 4 - 7.3842 · 10−2 8.43 · 100

G-LtATp - - 7.2670 · 10−2 5.14 · 101

G-LtGKTp - - 6.6788 · 10−2 6.79 · 102

G-LtGMRESp - - 7.4270 · 10−2 2.40 · 101

Table 3: Results for Example 5.2.

Relative errors as well as CPU times are shown in Table 3. The GG-LtGKT method yields
a restoration of the worst quality for δ̃ = 10−3, while the G-LtGKTp method requires the most
CPU time for both noise levels. Moreover, the former method requires more iterations than the
GG-LtAT method for both noise levels. The solution methods that work with all lateral slices of
the data tensor B simultaneously, i.e., the GG-LtAT, GG-LtGKT, and GG-LtGMRES methods,
can be seen to give restorations of worse quality for δ̃ = 10−3 than methods that work with the
lateral slices of B independently, but the GG-LtGMRES method requires the least CPU time for
both noise levels. We will comment more on the relative performance of the methods below.

Example 5.3. This example considers the restoration of the sixth frame of the Xylophone video

from MATLAB with the regularization tensor L2. The defining matrix for L is the unnormal-
ized DFT matrix from MATLAB. The regularization parameter is determined by the discrepancy
principle and computed by the bisection method over the interval [10−5, 106] with η = 1.2 in (1.5).

Figure 5: True sixth frame (left), and blurred and noisy sixth frame (right) for δ̃ = 10−3.

The true sixth frame, which is of size 240×240×3, is shown in Figure 5 (left). This frame is stored
as the tensor Xtrue ∈ R240×3×240 using the multi twist operator and blurred by A ∈ R240×240×240,
which is generated by (5.3) and

zz = [z(1) fliplr(z(end− length(z) + 2 : end))], A3 = toeplitz(z, zz),

A(i) =
1

2πσ2
A3(i, 1)A1, i = 1, 2, . . . , 240, N = 240, σ = 3, band = 12,

where A3 is a circulant matrix with cond(A(i)) = 1.41 · 106, i = 1, 2, . . . , 12. The remaining frontal
slices have infinite condition number. The blurred and noise-contaminated sixth frame is obtained
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Figure 6: Reconstructed images by the G-LtGKTp (left) and G-LtGMRESp (right) methods for δ̃ = 10−3.

by B = A ∗L Xtrue + E ∈ R240×3×240 and is shown in Figure 5 (right) using the multi squeeze

operator, where the “noise tensor” E ∈ R240×3×240 is generated by (5.4).

δ̃ Method iter µiter Emethod CPU time (secs)

10−3

GG-LtAT 25 3.78 · 103 5.1773 · 10−2 9.46 · 102

GG-LtGKT 29 5.14 · 102 4.8805 · 10−2 3.39 · 103

GG-LtGMRES 25 - 5.2055 · 10−2 4.93 · 102

G-LtATp - - 5.1766 · 10−2 1.37 · 103

G-LtGKTp - - 4.8806 · 10−2 8.15 · 103

G-LtGMRESp - - 5.2060 · 10−2 1.17 · 103

10−2

GG-LtAT 9 1.11 · 102 9.8577 · 10−2 1.15 · 102

GG-LtGKT 7 4.17 · 100 7.3944 · 10−2 2.14 · 102

GG-LtGMRES 9 - 1.0711 · 10−1 6.08 · 101

G-LtATp - - 9.8867 · 10−2 1.72 · 102

G-LtGKTp - - 7.3932 · 10−2 5.20 · 102

G-LtGMRESp - - 1.0495 · 10−1 1.42 · 102

Table 4: Results for Example 5.3.

The relative errors and CPU times for each method are displayed in Table 4 for two noise levels.
Restored images obtained with the G-LtGKTp and G-LtGMRESp methods are shown in Figure 6

for δ̃ = 10−3 using the multi squeeze operator. The GG-LtGKT and G-LtGKTp methods yield
the best restorations and of almost the same quality, but the latter method requires the most CPU
time for both noise levels. The G-LtGMRESp method determines restorations of the worst quality

for δ̃ = 10−3, and the GG-LtGMRES method is the fastest for both noise levels.

Example 5.4. We consider the restoration of the gray-scale analogue of the sixth frame of the
Xylophone video in Example 5.3. The regularization tensors L1 and L2 are used. The quality
of the restorations determined by the G-LtAT, G-LtGKT, and G-LtGMRES methods for the so-
lution of (1.8) when the defining matrices for the transform L are the DFT, DCT, and DSC
matrices are compared to those determined by the generalized Arnoldi-Tikhonov (GAT) and gen-
eralized Golub-Kahan-Tikhonov (G-GKT) regularization methods for the approximate solution of
the minimization problem

min
x∈R2402

{
‖(A1 ⊗A1)x− b‖22 + µ−1‖L̂x‖22

}
, (5.5)

with the regularization matrices L̂ = L(1)
1 ∈ R(2402−2)×2402 defined by (5.1) or L̂ = L(1)

2 ∈
R(2402−1)×2402 given by (5.2). The vectors x = vec( ~X ) and b = vec( ~B) are defined by stack-

ing the faces of the tensor columns ~X and ~B ∈ R240×1×240 in order, respectively. The solution of
(5.5) for µ =∞ is determined by the standard GMRES method. The G-GKT and GAT methods
are implemented similarly as described in Sections 3 and 4, respectively.
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The blurring operator A ∈ R240×240×240 is defined by using (5.3) with frontal slices

A(i) =
1

2πσ2
A1(i, 1)A1, i = 1, 2, . . . , 240, N = 240, σ = 2.5, band = 12,

where cond(A(i)) = 1.35 · 107 for i = 1, 2, . . . , 12. The condition number of the remaining frontal
slices is infinite. The regularization parameter µ is determined by the bisection method over the
interval [10−5, 107] using the discrepancy principle with η = 1.01.

The true sixth frame of the Xylophone video, shown in Figure 7, is stored as the tensor column
~Xtrue ∈ R240×1×240 and blurred byA. Blurred and noisy images corresponding to different ∗L tensor
products are shown in Figures 7 and 8 using the squeeze operator. These images are generated
according to ~B = A∗L ~Xtrue + ~E , where the noise tensor ~E is determined analogously to (5.4). The

blurred and noisy image for (5.5) is generated by b = (A1 ⊗A1)vec( ~Xtrue) + vec(~E) and is shown
in Figure 7 (middle) by using the MATLAB reshape operator.

The intensity of the blur is different for (5.5), and also for each tensor product ∗L. Specifically,
the blur- and noise-contaminated image produced for (5.5), and also for (1.8) when the tensor
product ∗L is defined by the DCT matrix, is more blurred than when the DFT and DSC matrices are
used to define the ∗L product. The reconstructed video frames determined by the G-LtGKT method
for L = L2 and shown in Figure 9 using the squeeze operator correspond to the ∗L products defined

by the DFT, DCT, and DSC matrices, and the noise level δ̃ = 10−3. The reconstructed video frame
by the G-GKT method is displayed on the right-hand side of Figure 8 using the MATLAB command
reshape.

Figure 7: True sixth Xylophone video frame (left), blurred and noisy sixth frames generated for (5.5)

(middle), and when L is defined by DCT matrix (right) for δ̃ = 10−3.

Figure 8: Blurred and noisy sixth frames generated when L is defined by DFT matrix (left), DSC matrix

(middle), and reconstructed video frame by the G-GKT method after 69 iterations for δ̃ = 10−3.

Table 5 shows the number of iterations required by each method to satisfy the discrepancy
principle, the computed regularization parameters, as well as the relative errors and the CPU
times. The table shows that the performance of the methods depends on the invertible linear
transform used. In particular, the G-LtGKT method yields restoration of the highest quality for
both noise levels when the defining matrices for L are the DFT or DSC matrices, and always gives
near-best restorations. This method requires the most CPU time for both noise levels, all invertible
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Figure 9: Reconstructed sixth frame by the G-LtGKT method for δ̃ = 10−3 when the defining matrix for
L is DFT matrix (left) after 35 iterations, the DCT matrix (middle) after 116 iterations, and the DSC
matrix (right) after 53 iterations.

linear transforms and regularization operators considered. Moreover, for δ̃ = 10−3 and for any of
the invertible linear transforms considered, the G-LtGKT method with L = L2 yields restorations
of the higher quality than when L = L1 is used. The relative performance is reversed for δ̃ = 10−2.
The GMRES method is the fastest for both noise levels but gives the worst quality restoration for
δ̃ = 10−3. Independently of the invertible linear transform L, the regularization operator, and the
noise level, the G-LtGKT method is the slowest and yields restorations of the best or near-best
quality, while the GMRES method is the fastest and yields restorations of worst or near-worst
quality. In general, the “classical” approaches, e.g., the GAT, G-GKT and GMRES methods, yield
the worst quality restorations. Their performance may depend on the intensity of the blur.

Example 5.5. This example discusses the restoration of the flower image2 with the regularization
tensor L1. We compare the quality of restorations determined by the GG-LtAT, G-LtATp, GG-
LtGMRES, and G-LtGMRESp methods with the transform L defined by the DFT, DCT, or DSC
matrices. Examples 5.1-5.4 show the GG-LtGKT and G-LtGKTp methods to be slow, and therefore
are not considered here. We use the normalized DFT matrix for L in this example. Numerical
experiments suggest that we can save some computing time by using this matrix instead of the
unnormalized DFT matrix of Examples 5.3 and 5.4. The blurring operator A ∈ R300×300×300 is
generated similarly as in Example 5.2 with σ = 3 and band = 12. The condition number of the
first 12 frontal slices A(i) is 7.58 · 108; the remaining frontal slices have infinite condition numbers.
Using the discrepancy principle (1.5) with η = 1.2, we determine the regularization parameter(s)
by the bisection method over the interval [10−2, 105]. The true flower image, shown in Figure 10,
is stored as the tensor Xtrue ∈ R300×3×300 using the multi twist operator and is blurred by A
similarly as described above.

Figure 10: True flower image.

The blurred and noisy images B ∈ R300×3×300 associated with the DFT, DCT, and DSC
matrices are shown in Figure 11 for δ̃ = 10−3. These images are generated by B = A ∗L Xtrue + E ,
where E ∈ R300×3×300 is a “noise tensor” determined by (5.4). The images restored by the G-LtATp

2http://www.hlevkin.com/TestImages
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δ̃ L Transform Method iter µiter Emethod CPU time (secs)

10−3

L1

DFT
G-LtAT 25 3.66 · 103 4.6321 · 10−2 4.30 · 102

G-LtGKT 35 1.83 · 102 4.1062 · 10−2 3.75 · 103

DCT
G-LtAT 30 8.49 · 102 6.5542 · 10−2 3.14 · 102

G-LtGKT 116 1.75 · 103 6.5530 · 10−2 1.78 · 104

DSC
G-LtAT 11 2.25 · 103 4.0409 · 10−2 4.78 · 101

G-LtGKT 53 5.38 · 103 3.9429 · 10−2 3.59 · 103

L2

DFT
G-LtAT 25 5.18 · 103 4.6322 · 10−2 4.49 · 102

G-LtGKT 35 1.16 · 103 4.1036 · 10−2 3.94 · 103

DCT
G-LtAT 30 3.58 · 103 6.5510 · 10−2 3.27 · 102

G-LtGKT 116 8.16 · 103 6.5515 · 10−2 1.78 · 104

DSC
G-LtAT 11 3.57 · 103 4.0418 · 10−2 4.92 · 101

G-LtGKT 53 3.29 · 103 3.9409 · 10−2 3.74 · 103

L(1)
1

-
GAT 12 5.48 · 104 7.9158 · 10−2 6.82 · 101

G-GKT 69 5.86 · 103 7.2786 · 10−2 2.60 · 102

L(1)
2

-
AT 12 1.88 · 104 7.9162 · 10−2 6.47 · 101

GKT 69 4.84 · 103 7.2778 · 10−2 2.39 · 102

DFT G-LtGMRES 25 - 4.7058 · 10−2 3.89 · 102

DCT G-LtGMRES 30 - 6.5131 · 10−2 3.03 · 102

DSC G-LtGMRES 11 - 4.0871 · 10−2 4.22 · 101

- GMRES 12 - 8.1534 · 10−2 4.17 · 100

10−2

L1

DFT
G-LtAT 9 1.55 · 103 1.0185 · 10−1 6.32 · 101

G-LtGKT 16 1.09 · 100 5.9297 · 10−2 3.04 · 102

DCT
G-LtAT 6 5.06 · 102 1.1994 · 10−1 1.59 · 101

G-LtGKT 16 5.38 · 100 9.6204 · 10−2 3.63 · 102

DSC
G-LtAT 5 1.69 · 102 6.8818 · 10−2 1.21 · 101

G-LtGKT 14 2.17 · 100 5.6424 · 10−2 2.78 · 102

L2

DFT
G-LtAT 9 2.06 · 103 1.0185 · 10−1 7.04 · 101

G-LtGKT 9 1.13 · 101 5.9110 · 10−2 3.06 · 102

DCT
G-LtAT 6 6.81 · 102 1.1995 · 10−1 1.65 · 101

G-LtGKT 16 4.33 · 101 9.6128 · 10−2 3.60 · 102

DSC
G-LtAT 5 2.33 · 102 6.8827 · 10−2 1.50 · 101

G-LtGKT 14 2.32 · 101 5.6317 · 10−2 2.79 · 102

L(1)
1

-
GAT 5 2.06 · 103 1.1193 · 10−1 6.97 · 100

G-GKT 13 1.12 · 102 9.2457 · 10−2 8.93 · 100

L(1)
2

-
GAT 5 6.91 · 102 1.1193 · 10−1 6.54 · 100

G-GKT 13 9.78 · 101 9.2424 · 10−2 8.95 · 100

DFT G-LtGMRES 9 - 1.0287 · 10−1 5.47 · 101

DCT G-LtGMRES 6 - 1.3644 · 10−1 1.31 · 101

DSC G-LtGMRES 5 - 7.3642 · 10−2 9.32 · 100

- GMRES 5 - 1.2654 · 10−1 0.81 · 100

Table 5: Results for Example 5.4.

method, that correspond to the above transforms, are displayed in Figure 12 for δ̃ = 10−3 using
the multi squeeze operator.

Table 6 shows the relative errors and CPU times for each method. Among the GMRES-type
methods, the G-LtGMRESp method, which works with the lateral slices of B independently, is
seen to yield restorations of near-best quality for both noise levels and for all transforms con-
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Figure 11: Blurred and noisy flower image generated when L is defined by the DFT matrix (left), the

DCT matrix (middle), and the DSC matrix (right) for δ̃ = 10−3.

Figure 12: Reconstructed images by the G-LtATp method for δ̃ = 10−3 when the defining matrix for L
is the DFT matrix (left) after 29 iterations, the DCT matrix (middle) after 16 iterations, and the DSC
matrix (right) after 10 iterations.

sidered. Moreover, the GG-LtGMRES method is faster than the G-LtGMRESp, GG-LtAT, and
G-LtATp methods. A similar behavior also can be noted for the Arnoldi-Tikhonov-type methods.
These observations are consistent with our findings in [27, 28]. The G-LtATp method, which works
independently with the lateral slices of the data tensor, is seen to yield restorations of near-best
quality, but is the slowest method for both noise levels and for all transforms considered. The
GG-LtGMRES method yields restorations of near-worst quality.

6 Conclusions

This paper discusses several transform-based methods for solving linear discrete ill-posed tensor
problems and extends available global tensor Krylov subspace methods defined by a t-product to
global tensor Krylov subspace methods defined by an invertible linear transform tensor product ∗L
introduced by Kernfeld et al. [16]. The latter tensor product and its performance in tensor Krylov
subspace iterative methods has not received much attention in the literature.

Both orthogonal and non-orthogonal invertible linear transform matrices are considered. The
blurring effects and the performance of the described methods depend on the transformation used.

We found Golub-Kahan-type bidiagonalization methods, i.e., the G-LtGKT, GG-LtGKT, and
G-LtGKT methods, in general to be slow. Their performance is sensitive to the noise levels used.
Independently of the regularization operator, the G-LtGKTp and GG-LtGKT methods yield the
worst quality restorations for 0.1% noise when the DCT and DSC matrices are used to define the
∗L product. Moreover, they are the best methods when the DFT is used to define ∗L product.
Additionally, irrespective of the choice of regularization operator and invertible linear transform,
both methods give restorations of the best quality for 1% noise. The GG-LtGKT method, which
works with the lateral slices of the data tensor simultaneously, yields worse or nearly worse quality
restorations for both noise levels than the G-LtGKTp method, which works with the lateral slices
independently. The latter method is slower than the GG-LtGKT method.
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δ̃ Transform Method iter µiter Emethod CPU time (secs)

10−3

DFT

GG-LtAT 29 1.33 · 101 6.5252 · 10−2 3.09 · 103

GG-LtGMRES 29 - 6.6161 · 10−2 1.55 · 103

G-LtATp - - 6.5239 · 10−2 4.25 · 103

G-LtGMRESp - - 6.5836 · 10−2 3.69 · 103

DCT

GG-LtAT 16 2.58 · 102 8.8341 · 10−2 4.13 · 102

GG-LtGMRES 16 - 9.0044 · 10−2 2.02 · 102

G-LtATp - - 8.4814 · 10−2 5.40 · 102

G-LtGMRESp - - 8.6098 · 10−2 4.74 · 102

DSC

GG-LtAT 10 8.74 · 100 5.8140 · 10−2 1.62 · 102

GG-LtGMRES 10 - 5.7754 · 10−2 8.00 · 101

G-LtATp - - 5.8071 · 10−2 2.88 · 102

G-LtGMRESp - - 5.7581 · 10−2 2.40 · 102

10−2

DFT

GG-LtAT 8 4.10 · 10−1 1.0306 · 10−1 2.22 · 102

GG-LtGMRES 8 - 1.1034 · 10−1 1.09 · 102

G-LtATp - - 1.0324 · 10−1 3.25 · 102

G-LtGMRESp - - 1.0653 · 10−1 2.55 · 102

DCT

GG-LtAT 4 1.30 · 10−1 1.0527 · 10−1 2.95 · 101

GG-LtGMRES 4 - 1.0669 · 10−1 1.37 · 101

G-LtATp - - 1.0511 · 10−1 5.29 · 101

G-LtGMRESp - - 1.0670 · 10−1 3.87 · 101

DSC

GG-LtAT 4 2.55 · 10−1 8.3032 · 10−2 2.70 · 101

GG-LtGMRES 4 - 8.3178 · 10−2 1.32 · 101

G-LtATp - - 8.2905 · 10−2 5.07 · 101

G-LtGMRESp - - 8.3190 · 10−2 3.75 · 101

Table 6: Results for Example 5.5.

The G-LtGKT method is seen to give restorations of higher quality than the G-LtAT and
G-LtGMRES methods. Its performance depends on the invertible linear transform, regularization
operator, and noise level used. It is often the case that the quality of the restoration improves with
Tikhonov regularization. However, this behavior is different when the DCT matrix is used to define
the ∗L product, since for 0.1% noise and independently of the choice of regularization operator for
the G-LtAT method, the G-LtGMRES method gives higher quality restoration.

The performances of the G-LtGMRES, G-LtGMRESp, and GG-LtGMRES methods are almost
independent of the transform used and the noise levels. The G-LtGMRES and GG-LtGMRES
methods are the fastest but often yield restorations of the worst or near-worst quality.

Among the Arnoldi-type methods applied to color and video image processing, i.e., G-LtATp,
GG-LtAT, G-LtGMRESp, and GG-LtGMRES methods, the G-LtATp method, which works with
the lateral slices of the data tensor independently, is the best or near-best method when the DCT
and DFT matrices are used to define the ∗L product. Similarly, the G-LtGMRESp method gives
the best or near-best quality restoration when the DSC matrix is used to define the ∗L product.

The performance of the Golub-Kahan bidiagonalization-type and GMRES-type methods leads
us to recommend the use of Tikhonov regularization methods together with Arnoldi-type methods
for the reduction of a large problem to a problem of fairly small dimension. Though, we have to
add that Arnoldi-type reduction methods may perform poorly for pronounced motion blur. The
latter has been illustrated for matrix problems in [5].
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