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Abstract

This paper is concerned with the approximation of integrals of a real-valued
integrand over the interval [—1,1] by Gauss quadrature. The averaged and
optimal averaged quadrature rules ([13, 21]) provide a convenient method
for approximating the error in the Gauss quadrature. However, they are
applicable to all integrands that are continuous on the interval [—1, 1] only
if their nodes are internal, i.e. if they belong to this interval.

We discuss two approaches to determine averaged quadrature rules with
nodes in [—1, 1]: (i) truncating the Jacobi matrix associated with the optimal
averaged rule, and (ii) weighting the optimal averaged quadrature rule. We
consider Chebyshev measures of the first, second, and third kinds that are
modified by a linear over linear rational factor, and discuss the internality
of averaged, optimal averaged, and truncated optimal averaged quadrature
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rules. Moreover, we show that the weighting yields internal averaged rules
if a weighting parameter is properly chosen, and we provide bounds for this
parameter that guarantee internality. Finally, we illustrate that the weighted
averaged rules give more accurate estimates of the quadrature error than the
truncated optimal averaged rules.

Keywords: Gauss quadrature rule, averaged Gauss rules, generalized
averaged Gauss rule, internality of quadrature rule, modified Chebyshev
measure
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1. Introduction

Let d\ be a nonnegative measure with infinitely many points of support
on the interval [a, b] with —oco < a < b < 00, and assume that the measure is
such that all moments are well defined. We let {P};}72, denote the sequence
of monic orthogonal polynomials with respect to this measure. In particular,
deg(Py) = k. The polynomials Py satisfy a three-term recurrence relation
of the form

Piiq(z) = (x — ag) Pp(z) — BpPr—1(x), k=1,2,..., (1)

where P_1(z) = 0, Po(x) = 1, By is an arbitrary constant, and S > 0 for
all k > 1.

The n-node Gauss quadrature rule
Ga(f) = Y w f(l) (2)
i=1

is the interpolatory quadrature rule with maximum degree of exactness,
2n — 1, among all rules with n nodes for approximating the integral

b
an/ﬂ@ww. (3)

Thus, I(f) = G,(f) for all polynomials f of degree at most 2n — 1. Gauss
rules are by far the most common quadrature rules used to approximate
integrals (3) with a general integrand f.

The nodes azgn) (1=1,2,...,n) of the rule (2) are the zeros of the monic
orthogonal polynomial P, and lie in the convex hull H of the support of the
(n)
i

measure d); the weights w; ’ (i = 1,2,...,n) are positive; see, e.g., [9].



It is important to be able to estimate the quadrature error when applying
the quadrature rule (2) to ensure that the rule determines an approximation
of the integral with desired accuracy, and to avoid the evaluation of the
integrand at needlessly many nodes. A popular approach to estimate the
magnitude of the quadrature error,

En(f):|(1_gn)(f>‘7 (4)

is to use another quadrature rule, Ay, with £ > n nodes and of degree of
exactness larger than 2n — 1. One then can use

[(Ae = Gn) ()] (5)
as an estimate of (4).

A classical choice of the rule A, is the Gauss-Kronrod quadrature rule
associated with the Gauss rule (2). It has 2n 4 1 nodes, n of which are the
nodes of G,, and its degree of exactness is at least 3n + 1. However, the
n + 1 non-Gauss nodes are not necessarily real; see Notaris [15] for a nice
fairly recent discussion on Gauss-Kronrod rules, as well as Peherstorfer and
Petras [16].

Alternative choices for the rule Ay, that recently have gained some at-
tention, are the so-called averaged rules; see [8, 17, 18, 19, 20, 21, 22]. The
first such rule was introduce by Laurie [13],

Q§n+1 = % (gn + §n+1> )

where §n+1 denotes the anti-Gauss rule associated with G,,. It is determined
by the requirement

(,c?n+1 - I) (@)=~ (Gn— 1) (&)  (k=0,1,....20+1).
The nodes of the anti-Gauss rule are the zeros of the polynomial

Tpn+l = Pn+1 - /BnPn—lv

where [, is a recursion coefficient for the sequence of monic orthogonal
polynomials Py; see (1). The averaged rule Q% 41 has degree of exactness
at least 2n + 1. We remark that anti-Gauss and associated averaged rules
also can be used to estimate the error in the computed solution of Fredholm
integral equations of the second kind defined on an interval; see Diaz de
Alba et al. [2] for details.

Erich [8] defined for 0 < § < 1 the weighted averaged formula

(06, +6%). (©

1% —
QQTH—I - 1+6
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where the quadrature rule Qz 4118 determined by the conditions

(gz+1 —I) @)= —0(G—1)(z*) (k=0,1,....20+1).
The nodes of the rule gz 41 are the zeros of the polynomial

7724_1 = Poy1 — 08, Py1. (7)

Obviously, the anti-Gauss formula §n+1 corresponds to = 1. Weighted
averaged formulas also were introduced in [1].

The degree of exactness of the rule (6) is at least 2n 4 1 for any fixed
0 < 0 < 1. Erich [8] found for Gauss-Laguerre and Gauss-Hermite measures
values of 6 that makes the quadrature formula (6) have degree of exactness
at least 2n + 2. This is the maximum degree of exactness for any 0 < 6 < 1.
We refer to the rule (6) with this value of 8 as an optimal averaged rule.

Spalevié [20] extended the result by Ehrich [8] to more general measures.
He observed that it follows from results in [8] that the choice

Bn
yields a weighted averaged rule (6) with degree of exactness at least 2n + 2
for quite general measures. For this value of #, the nodes of the quadrature
rule G | are the zeros of the polynomial

Fn+1 = Pn+1 - 6n+1Pn—1-

From now on we will use the notation an 41 for the weighted averaged
rule (6), where 5 = 03,. In the special case when 6 is defined by (8), we
will refer to the quadrature formula an 41 as Q3 i1

The weighted averaged quadrature rules an 41 (as well as their special
cases QF , and Q5 ) are associated with Jacobi matrices of order 2n +
1. These matrices are determined by recursion coeflicients of the monic
orthogonal polynomials (1); see [5, 18] for details. The eigenvalues of these
matrices are the nodes of the weighted averaged rule, and the square of
the first components of suitably normalized eigenvectors yields the weights.
This property is used by the Golub-Welsch [10] algorithm for computing the
nodes and weights of Gauss-type quadrature rules in an efficient manner.

The quadrature formulas Q%n 41 and an 41 have real nodes, positive
weights, and they are easy to compute. However, they are not guaranteed
to be internal, i.e., they may have the outermost nodes outside of the set H.



This means that they may yield poor accuracy, or may not be applicable,
when the integrand has a singularity close to or at a boundary point of H.

It is the purpose of this paper to discuss modifications of the rule an 11
to make it internal, i.e., to have all nodes in H, when Qj 41 does mnot.
One approach to achieve this is to truncate the Jacobi matrix associated
with the quadrature rule Q3 +1- The truncated optimal averaged rules were
introduced in [5]. The simplest one of them is obtained by removing the
last n — 1 rows and columns from the Jacobi matrices of order 2n + 1 for
the quadrature rule Q3 ;. This determines the truncated optimal averaged
rule Q7 , with n 4 2 nodes. This rule has the same degree of exactness as
the optimal averaged rule an +1- The nodes of QZ 4o are the zeros of the
polynomial

tny2(®) = (2 — an—1)Po1(2) = g1 Pu(z), (9)
where a,,—1 and (,41 are recursion coefficients for the sequence of monic
orthogonal polynomials (1). The fact that the quadrature rule QF Lo may
be internal when Q3 41 is not, follows from the Cauchy interlacing theorem
for eigenvalues when applied to the Jacobi matrices associated with the rules
Q*an 41 and or 4o see, e.g., [11]. Here one exploits that the eigenvalues of
a Jacobi matrix are the nodes of the corresponding quadrature rule. A
more detailed analysis of how the eigenvalues of these Jacobi matrices relate
is provided by Hill and Parlett [12, Theorem 1]. For simplicity, we will
henceforth refer to the rule Q7 , as a truncated averaged rule.

However, there are some drawbacks of the quadrature rule Q7 ,. The
main one is that the quadrature error achieved with the rule Q3 41 may be
significantly smaller than the quadrature error of the rule QI , when both
rules can be applied. Therefore, the error estimate (5) is more accurate when
Ay in (5) is chosen to be the rule Q3 ., than the rule QT , when both rules
can be used. This depends on that for many measures and integrands, the
quadrature error achieved with an 4118 smaller than what might be antici-
pated from the degree of exactness of these rules; see [18] for discussions and
numerous computed examples. A minor drawback of the rule QZ 4o is that
the evaluation of the pair of quadrature rules {G,(f), QL +2(f)} typically
requires one more evaluation of the integrand f than the evaluation of the

pair of rules {G,(f), Q‘anﬂ(f)}'

Another method for determining internal averaged rules is to choose a
suitable parameter 6 in the weighted averaged rule (6) that ensures that
all quadrature nodes are in H. This approach was first described in [18].
Weighted averaged rules determined in this manner typically yield a smaller
quadrature error than truncated averaged rules. We will discuss this ap-



proach in detail and, in particular, derive bounds for the parameter 5 = 63,
that ensure internality.

Recently, internality of averaged rules, optimal averaged rules, and the
truncated version of the latter rules for Chebyshev measures modified by a
linear divisor or a certain linear rational function was considered in [3, 4, 7].
The averaged and optimal averaged rules were found not to be internal in
some situations. The internality of these quadrature rules for the Bernstein-
Szegé weight function was analyzed in [6]. We also should mention the recent
paper by Milovanovié¢ [14], where the author finds explicit expressions for
the coefficients in the three-term recurrence relation for monic orthogonal
polynomials with respect to this weight function.

This paper considers modifications of the Chebyshev measure by a gen-
eral linear rational function, and we demonstrate how to obtain internal
averaged rules by simple weighting, i.e., by choosing a suitable value of
B. In the situation when neither the averaged nor the optimal averaged
rules are internal, weighted averaged rules an 41 generally achieve higher
accuracy than the truncated averaged rules QZ 49- Our interest in the mod-
ification of Chebyshev measures stems from the attention that modification
methods and their applications, e.g., to computing the Hilbert transform,
have received in the literature; see Gautschi [9, Section 2.4] for a thorough
discussion of modification algorithms and some applications.

This paper is organized as follows. Section 2 introduces the modification
of Chebyshev measures to be considered and reviews available results. The
discussions in Sections 3, 4, and 5 are concerned with modifications in the
cases when the original measures are Chebyshev measures of the first, sec-
ond, and third kinds, respectively. Section 6 presents applications to error
estimation of the quadrature rules and illustrates the accuracy of the error
estimates obtained. Concluding remarks can be found in Section 7.

2. Modification of the measure by a linear over linear rational
factor

Consider the measure

A (z) = (2 + ) di(z) = % dA(z) (10)

for -1 <z < 1and~,d € R\[-1,1], where dA\ is one of the four Chebyshev

measures,
dX(z) = (14 2)FV2(1 — 2)*/2 dz.

We will represent the parameters v and ¢ in (10) as



1 1 1
2(U+v ) and 5—§(u+u ) (11)
for some u,v € (—1,1). Clearly, v # 0 implies u # v. Given monic or-
thogonal polynomials Pj, and their recurrence coefficients a and Sy for the
measure dA, Gautschi [9, Section2.4] describes algorithms for computing
monic orthogonal polynomials P, and their recurrence coefficients ay, and
ﬁk for the measure dA, as well as monic orthogonal polynomials Pk and
their recurrence coefficients &y, and ﬁk for the measure d\.

=

For the measure d/\, the averaged rules QQn 11 and optimal averaged rules
o5 11 coincide with the Gauss-Kronrod rule for n > 3 and are internal; see
[3, 4, 7]. From now on, we th/grefore will consider optimal averaged rules
associated with the measure dA.

3. Modification of the Chebyshev measure of the first kind

Let us consider the measure

~ T+ dx
dX(z) = . for —1l<z<l,
() T+ /1 —22
where 7,6 € R\ [~1,1]. This is the measure (10) when d\(z) = —3&

V1—z?
is the Chebyshev measure of the first kind. The monic orthogonal poly-

nomials with respect to dX are the monic Chebyshev polynomials of the
first kind, 2,} T (x), and the polynomial T;, of degree n is characterized by
T, (cos(§)) = cos(n); consequently, T),(£1) = (£1)".

Since switching the signs of v, and x yields the same measure, we may
assume that § > 1. Then w and v given by (11) satisfy 0 < u < 1 and
-l<v<l.

For the measure dX(m) — @)

o7s we obtain

Py(z) = le 7 (Tk(2) +uTypa(x)) for k=2,

with Py(z) = 1 and Py(z) = z + u; see, e.g., [3, 9. The corresponding
recursion coefficients are
Qg = —u, ap = —u, a,=0 for k=2,

~ 2mu

~ 1
— 2 o
bo= 12 B = (l—u), B=7 for k>2

Further, for the measure d)\, the orthogonal polynomials are



5 _ ﬁk+1($) - Tkﬁk(x)

Py() - _ Pyy1 (=)

Pi(=7)
under the assumption that ﬁk(—v) =% 0 for all k. The quotients r, can be
computed by the relations

,  Where 7

_ _ B 1
rTo=—7—Qy, T1=-—7Y—0Q1——, Tp=—)— (k > 2),
70 Arp_q

and the recursion coeflicients are

Qg = Qpy1 +Tpp1 — 1 for k>0,
Bo=—70B0, B = Brr/ri1 for k>1. (12)
The above relations yield
1 . 1 U2k+1 A

TOZU—§(U+U ), Tkz—%'m (k21)a (13)

where 1 — wo
A= . (14)

U — v

Note that |A| > 1 and sgn(A) = sgn(u — v). Moreover, v > u is equivalent
tod >~ > 1, and v(v —u) > 0 is equivalent to § > .

3.1. Internality of averaged rules

The weighted averaged quadrature rule an 41 1s internal if and only if

~

P
Pun(@) B for z==+l. (15)
Pn_l(l')
For x =1 and = = —1 these inequalities reduce to
1 1—2r41 1 14241
< = d <P == —
bsbri=g g, md Ash =19

respectively. Using (13), we obtain

1 Av?n=3(1—v)(1—0?)
4 (A—v2n-2)(A—y2ntl)’

11 Av?"3(14v)(1-0?)
4 4 (A+un=2)(A—p2ntl)’

(16)
Since |A| > 1, we have sgn(A £ v') = sgn(A) = sgn(u — v). This leads to
the following result.

B =

1
ﬁ+_1_



Theorem 3.1. To ensure that the quadrature rule an 41 18 internal, it us
sufficient for B to satisfy 8 < By when § > v > 1, and 8 < S in all other
cases, where 4, 5_ are given by (16).

Note that for v(v —u) > 0, i.e. for v < ¢, one can take § = 1/4 to secure
internality.

If 8 = f,,, then the rule an 1 becomes the averaged rule Q% ;. Using
results from [3], the relations (15) reduce to

(1+v)(1 = v)*(A+v*)(A = v*"7%) 0 (17)

2n—2
Av (A — v2n—1)2(A — 2n-2)(A _ p2nt1) =

for x =1, and to

P O 5
U (A0 )2(A 4 o2n2) (A g2ntl) S (18)
for x = —1.

Now we have that condition (17) is satisfied if and only if A > 0, i.e., if
and only if © > v, and condition (18) holds if and only if A < 0, i.e., if and
only if u < v. We have shown the following result.

Theorem 3.2. The quadrature rule QF, 11 associated with the measure dX
has an external node: for § > v > 1 the largest node is external, and in all
other cases the smallest node is external.

We turn to the situation when g = B\n+1. Then one obtains the optimal
averaged rule Q3 ., introduced in [21], and the inequalities (15) reduce to

(1 —v)(1 —v?)(1 —v3)(A+v2")

Av?n? (A — 02n=2)(A _ y2nt1)2 <0
for x = 1, and to
P B [ (R [
(A 4 U2”_2)(A _ U2n+1)2 =
for x = —1. Consequently, we have the following theorem.

Theorem 3.3. The quadrature rule Q3, | associated with the measure )
is internal if and only if 6 > ~.

All computation in the paper are carried out using Matlab and high-
precision arithmetic. In this and the following numerical examples, we use
the notation ng 41 for the weighted averaged rule with the maximum allow-
able 3, which is 8 = min{f, f_}. Thus, g is determined by the parameters
~,6 and n.



Example 3.4. The values of the outermost nodes of the quadrature rules
Q%H for some values of the parameters v, §, and n, and of the rule Q;/;il
for some values of n are shown in Table 1. Analogous results for the rules
of .1 and o} 11 are displayed in Table 2.

1/4 1/4
(v, ) n B— % 1+ a2} 1—all 1Jr*”‘”1/ 17121/L+1

5 | 2.5006 x 1072 | 1.5971 x 102 0 1.6712 x 102 4.8080 x 10~ %
10 | 7.7125 x 10~% | 1.8131 x 103 0 1.9320 x 1073 7.5643 x 10~ °

(1.01,1.25) | 15 | 1.9979 x 10~% | 2.6563 x 10~ 0 2.8494 x 10~% 1.3174 x 105
20 | 4.9389 x 10~° | 4.4562 x 10~° 0 4.7902 x 10~° 2.4516 x 106
30 | 2.9399 x 10~% | 1.5854 x 109 0 1.7056 x 10~ 9.7562 x 108
5 | 8.6982 x 10~% 0 4.8897 x 10~% | 7.2470 x 10~° 7.3028 x 10~ %
10 | 8.5299 x 10~7 0 1.9987 x 107 | 5.0406 x 108 2.9981 x 107

(—1.25,1.01)| 15 | 8.3300 x 10~ 10 0 1.2309 x 10710 3.7998 x 1071 | 1.8463 x 1010
20 | 8.1348 x 10~ 13 0 8.7776 x 10~ 4| 3.0216 x 10~ 1% | 1.3166 x 10713
30 | 7.7579 x 10~ 19 0 5.4374 x 10720 | 2.1012 x 10720 | 8.1562 x 10—2°
5 | —2.9043 x 108 0 1.1598 x 1072 | —3.8672 x 107 10| —5.1603 x 10~°
10 | —3.2146 x 10~ 18 0 6.1478 x 10720 | —4.0133 x 10720 | —2.7354 x 10~ 1°

(5,1.0001) | 15 | —3.5582 x 1028 0 4.4736 x 10730 | —4.1812 x 10739 | —1.9905 x 10729
20 | —3.9384 x 10738 0 3.6882 x 10~ %0 | —4.3712 x 10740 | —1.6411 x 10~39
30 | —4.8252 x 10~ °8 0 2.9918 x 1070 | —4.8204 x 1076%| —1.3312 x 10~ °°

TABLE 1: The value of 8 and the outermost nodes of the weighted averaged rules Q%H and

Q;/EH for the measure dX(w) = % . \/1‘11”7 for some values of v, §, and n.

(v,9) n 1+z{‘ 1—z§‘n+1 1-‘,—1‘1s 1—zzsn+1

5 1.5935 x 1072 [ —2.3547 x 107° | 1.6080 x 102 7.0320 x 1072

10 | 1.8058 x 1073 | —4.6239 x 107% | 1.8349 x 1073 1.3906 x 10~°

(1.01,1.25) | 15 | 2.6439 x 10~% | —8.4663 x 10~7 | 2.6937 x 10~% | 2.5536 x 10~©
20 | 4.4345 x 107% |—1.5938 x 10~ 7 | 4.5218 x 10~ ° 4.8114 x 1077

30 | 1.5776 x 10°% | —-6.3633 x 107 | 1.6091 x 106 1.9217 x 10~8

5 |—1.4600 x 107° | 4.4053 x 10~% 5.0716 x 10~ ° 6.5768 x 10~

10 |—1.0081 x 10~8 1.7989 x 10~ 7 3.5285 x 108 2.6983 x 107

(—1.25,1.01)| 15 |—7.5997 x 10~ *2| 1.1078 x 10710 | 2.6599 x 10~ | 1.6617 x 1010
20 |—6.0432 x 10~ 15| 7.8999 x 10~ 1% | 2.1151 x 10~ % | 1.1850 x 10~ 3

30 | —4.2023 x 10721 | 4.8937 x 10720 | 1.4708 x 1072° | 7.3405 x 10~2°

5 |—4.2578 x 10~ | 4.6390 x 10710 | —3.8321 x 10710 | —5.1029 x 10~°
10 | —4.4187 x 10721 | 2.4591 x 10720 | —3.9768 x 10720 | —2.7050 x 10~ 19
(5,1.0001) | 15 |—4.6035 x 10731 | 1.7894 x 10730 | —4.1432 x 10730 | —1.9684 x 10~2°
20 |—4.8127 x 10~ 41| 1.4753 x 10740 | —4.3315 x 10740 | —1.6228 x 103
30 |—5.3073 x 10°%1| 1.1967 x 1070 | —4.7766 x 10750 | —1.3164 x 10—5°

TABLE 2: The outermost nodes of the averaged rule Q%n+l and the optimal averaged rule

anﬂ for the measure d\(x) = %g . \/% for some values of v, §, and n.

4. Modification of the Chebyshev measure of the second kind

This section considers the measure

dX(:U):%\/l—:ﬂdzr for —1l<ax<l1,

10



where v, € R\ [—1,1]. This is the measure (10) when dA(z) =1 — z2dz
is the Chebyshev measure of the second kind. The monic orthogonal poly-
nomials with respect to d\ are the monic Chebyshev polynomials of the
second kind, 2n#_1Un(:1:), and the polynomial U,, of degree n is characterized

by Uy, (cosé) = %, consequently, Uy, (+1) = (£1)"(n + 1).

Similarly as in Section 3, v and J are determined by the parameters v and
v and, due to symmetry, we may assume that 0 <u <1 and —1 < v < 1.

For the measure dA(z) = dx)ig)

the orthogonal polynomials are
~ 1
Pi(x) = o (Uk(z) + uUg—1(x)) for k=>1,

with ]50(;1:) = 1; see [7, 9]. The recursion coefficients of the polynomials P,
are given by u

&0:—5, ap=0for k>1,

~ -1

Bo = u, ﬂkzzfork>1;

see [7, 9]. Moreover, for the measure dX, the orthogonal polynomials are

-~ P — i B Py (—
Pulx) = k1 () = Tk k(x), where 7 = i1 ( ’7)7
T+ Pi(=7)
under the assumption that ]Bk(—v) = 0 for all k. The quotients rj satisfy
the relations ~ 1
ro ==y =00, Th=-7- (k>1),
Tk—1

and the recursion coefficients are given by (12). We obtain

1 1 o234 4

_ -1 _
=g (u-v—vT), =g g

where A is defined by (14).

(k=1), (19)

4.1. Internality of the averaged rules

The weighted averaged quadrature formula an 41 1s internal if and only
if conditions (15) hold. It follows from (19) that for x = 1 and = = —1,
these conditions reduce to

2n+5
P Wl U G ) (141 5t4)
X + -— (1 + % . U2"+1+A>

4 14u+(1+0+uw)(n—-1) ot

1 (1+u)(14v) (20" T+ A)  nt+(n—1)u Av*"2(v2—1)?(v?+1)
4 v(v2n 3+ A) My 4My (vl A) (vt A)

(20)

11



2n+5
s a1+ A—we ) (14 )
NPTy 2n+1
P acusr (4 0 -wm-1) (1- 1 55 (21)
1 N (1—u)(1—v) (20274 A) ~ n—=(n—1)u Av?=2(v2—1)%(v2+1)
T4 ’U(’U2n+3+A)M2 AM, (v2n*1+A) (1)2”+3—{—A) ’
respectively, where
1 vl
M =1 ) (14>
1 +u+ (n+(n )u)( +v 02”—1+A>’
1 02n+1+A
My=1-— —(n-1u) (1-= — 12
2 u+ (n— (n—1)u) ( v p2n—1 +A>
Note that, as n — oo,
— 1 1 — 1—u)(1—
M, — v—u + n(14+u)(1+v) co(l), —My = u—v 4+ n(l—u)(1-v) +o(1).
v v
Thus,

1 2 1 2
TR T SR P
4 TH—W-FO(I) 4 n—i—m—ko(l)

as n — oQ.

Theorem 4.1. To ensure that the quadrature rule an 41 s internal when
n is large enough, it is sufficient for B to satisfy (20) when 6 >~ > 1, and
(21) in all other cases.

Proof. Indeed, for n large enough, we have 5y > i(l + %) > B if u > v,
and By < 2(1+42) < B_ifu <w. O

In particular, letting 5 = Bn and 8 = B\n+1 gives the averaged rules
Qf .1 and Q5 4, respectively. Since

5 1 Av (2 —1)%\ 1 1
/%—4Q+ @%H+M2)—4<HwQ))

we obtain the following result.

Theorem 4.2. The quadrature rules Q% ., and Q3. | associated with the
measure d\ are internal if n is large enough.

Typically, small values of n already produce internal quadrature rules.
This is illustrated by the following examples. Again, 8 = min{fS4, 5_}.

12



Example 4.3. The values of 3 and the outermost nodes of the rules QY

and Q;{fu for some values of v, 0 and n are shown in Table 3.

(7.6) n -1 1+ o} 1-all 14a7/? 1-aylt,
5 9.321 x 1072 | 2.6482 x 102 0 6.1602 x 10~2 | 3.1636 x 102
10 | 4.859 x 1072 | 7.8666 x 103 0 1.9316 x 1072 | 9.8233 x 103
(1.01,1.25) | 15 | 3.287 x 1072 | 3.0383 x 103 0 8.5966 x 1073 | 4.7182 x 1073
20 | 2.480 x 1072 | 1.3750 x 1073 0 4.6048 x 10~3 | 2.7580 x 103
30 | 1.659 x 10~2 | 3.9876 x 10~ % 0 1.8503 x 1073 | 1.2725 x 103
5 | 4.169 x 1072 0 4.0034 x 1072 | 9.3261 x 1073 | 5.6598 x 10~ 2

7.0309 x 1073 | 4.2053 x 1073 | 1.3464 x 102
2.4179 x 1073 | 2.4545 x 1073 | 5.8244 x 103
1.1132 x 1073 | 1.6224 x 1073 | 3.2289 x 103
3.6412 x 10~ % | 8.6663 x 10~% | 1.4137 x 10~°

10 | 2.955 x 1072
(—1.25,1.01)| 15 | 2.281 x 102
20 | 1.857 x 1072

0
0
0
30 | 1.354 x 10~2 0

TABLE 3: The value of B and the outermost nodes of the weighted averaged rules Q%H and
QQﬁH for the measure d)\(T) I'M V1 — 22 dz for some values of v, § and n.

Example 4.4. The values of the outermost nodes of the rules Q% , and
Q*anﬂ for some values of v, 0 and n are shown in Table 4.

(v, 6) n 1+zf 17z§‘n+1 1+zf lfz§n+1

5 | 6.2949 x 1072 | 3.2825 x 1072 | 6.2543 x 1072 | 3.2467 x 102
10 | 1.9471 x 1072 | 9.9519 x 1073 | 1.9431 x 1072 | 9.9186 x 103
(1.01,1.25) | 15 | 8.6216 x 1073 | 4.7387 x 1072 | 8.6154 x 10~3 | 4.7336 x 103
20 | 4.6094 x 1073 | 2.7618 x 1073 | 4.6083 x 1073 | 2.7609 x 103
30 | 1.8505 x 1073 | 1.2727 x 10~3 | 1.8504 x 10~3 | 1.2727 x 103
5 9.3809 x 1073 | 5.6701 x 1072 | 9.3398 x 1073 | 5.6623 x 102
10 | 4.2054 x 1073 | 1.3464 x 1072 | 4.2053 x 10~3 | 1.3464 x 102
(—1.25,1.01)| 15 | 2.4545 x 1073 | 5.8244 x 1073 | 2.4545 x 1073 | 5.8244 x 1073
20 | 1.6224 x 1073 | 3.2289 x 1073 | 1.6224 x 103 | 3.2289 x 10~2
30 | 8.6663 x 1074 | 1.4137 x 1073 | 8.6663 x 10~% | 1.4137 x 103

TABLE4 The outermost nodes of the averaged rule QQ!+1 and the optimal averaged rule
Q2n+1 for the measure d)\(T) if’ V1 — a2 dx for some values of v, § and n.

5. Modification of the Chebyshev measure of the third kind
We finally consider the measure

~ r+v [1+=x
d)\(x):a:—HS 1—x

de for —-1<z<l,

1—
the Chebyshev measure of the third kind. The monic orthogonal polynomlals

with respect to d\ are the monic Chebyshev polynomials of the third kind,

%%Vn(a:), and the polynomial V;, of degree n is characterized by V,,(cos§) =
1

M; consequently, V,,(1) =1 and V,,(—1) = (—=1)"(2n + 1).

cos(%)

where 7,6 € R\ [~1,1]. This is the measure (10) when d\(z) = (/1 dz is

13



This time, we allow u,v in (11) from the entire range: —1 < u,v < 1.
Switching the signs of 7,0 and z yields a modification of the Chebyshev

measure of the fourth kind.
dA(x)
z+0

For the measure dA(z) = we obtain

Pu(z) = 271,6 (Vi(z) + uVi1(z) for k> 0;

see [4, 9]. The recursion coefficients of the polynomials P are given by

~ 1— ~
Qg = 2u7 ap,=0 for k=1,
~ 21U ~ 14+u ~ 1
= = =- f k> 2.
BO 1+ ’U/’ Bl 4 3 Bk‘ 4 or
Moreover, for the measure d/):, the orthogonal polynomials are
. p —riB Py (—
Pi(x) = k41(2) = 7 k(x), where 7 = 7]i+1( 7),
T+ Pi(=7)

under the assumption that ]Bk(—'y) # 0 for all k. The quotients ry satisfy
the relations

~ - 1
ro=—y—d&, T1=—y—a1——, rp=—7 (k> 2),

70  drpy
and the recursion coefficients are given by (12); see [4, 9]. We obtain

1 o2kt24 4

% ora k2D (33

roz—%(l—u+v+v*1), Tk = —

where A is defined by (14).

5.1. Internality of the averaged rules

The weighted averaged quadrature formula an 41 is internal if and only

if conditions (15) are satisfied. For z = 1 and x = —1 these inequalities
reduce to . 11— 2,
ST 1= 2,
and
5o o1 20-0+ (1= 0@+ D)1+ 2)

T4 20w+ 2+ (1 —w(2n—3)1+2r,1)
respectively. Using formula (23), we obtain

11 Av?"2(1 —v)(1 —o?)
Br=5+7 2n—1 2n+2
4(A+v )(A + v t2)

T4

14



and

! 2(1—u)+(2+(1—U)(2n+1))(1—%'%> (25)
1 . 25
L 2(1l—w)+ 2+ (1-u)(2n-3)) (1 3 vgji;fA)
Defining
1 2n A

M =2(1-u) + (24 (2n—3)(1-u)) <1 - U;)n—;:_A> )
we obtain

R

p- = i VM (022 1 A)
2+ (20 -3)1—w)(v—1) Av*""2(1—v')(1+ )
+ ol T4 AT+ A)

Moreover,

2n(l —u)(v —1)

M = +o(n) as n— oo.

Therefore, 1 < S—, which leads us to the following result.

Theorem 5.1. To ensure that the quadrature rule an 41 08 internal when
n is large, it is sufficient to have 5 < B4, with B4 given by (24).

When 3 = f,, the rule an .1 becomes the averaged rule Q% . ,; see [13].
Using results from [4], the inequalities (15) reduce to

(1 —v)3(1 +v)(A + 02" 2)(A — vt

A,Uanl
(A + UQn)Q(A + U2n—1)(A + U2n+2)

<0 (26)

for x = 1, and to
1 Av2n—2(1 _ '1)2)2

1t A ey S @7)

for x = —1.

When n is large enough, inequality (26) holds if and only if Av < 0,
which is equivalent to §(6 — ) > 0, and inequality (27) always holds. Thus,
we have shown the following

Theorem 5.2. The quadrature rule QF, ., associated with the measure )
is internal for n sufficiently large if and only if §(6 — ) > 0.

If instead 5 = Bn+1, then one obtains the optimal averaged rule an Y1
The inequalities (15) then reduce to

(1 —v)(1—2%)(1 —v3)(A -2t

2n—2
Av (A1 v2n—1)(A + p2n+2)2

>0

15



for x = 1, and to
1 Av?(1 —0?)?
1T 1A gy SP-
4 4(A+ v t2)

for x = —1. This leads to the following result.

Theorem 5.3. The quadrature rule Q5 11 associated with the measure )
1s internal when n s sufficiently large if and only if u > v, i.e. if and only

if vo(y —9) > 0.

Example 5.4. Table 5 displays the value of 8 = B4 and the outermost nodes

of the quadrature rules Q% .| and Q;ﬁu for some values of the parameters
v, 0 and n. Table 6 displays the outermost nodes of the quadrature rules

L S
Qany1 and Qo iy

1/4 1/4
(7, 9) n B— 3% 14 a1’ 1-al¥ 1*””1/ 1*“327/1+1
5 [—2.9339 x 1079 | 4.7164 x 10—2 0 4.7164 x 10~2 | —3.8808 x 10~ !
10 |—3.2474 x 10~ 19| 1.2081 x 10~ 2 0 1.2081 x 1072 | —4.0291 x 10~ 21
(—5,—-1.0001) | 15 |—3.5945 x 10729 | 5.4093 x 10~3 0 5.4093 x 1073 | —4.1992 x 10~ 3!
20 |—3.9786 x 10739 | 3.0535 x 10~3 0 3.0535 x 1073 | —4.3914 x 10— %!
30 | —4.8744 x 10759 1.3618 x 10~ 3 0 1.3618 x 103 | —4.8453 x 10~ 61
5 2.3955 x 1079 1.4133 x 1073 0 1.4133 x 1073 | 4.7014 x 1010
10 | 2.6515 x 10719 | 6.8285 x 10~* 0 6.8285 x 10~% | 2.6265 x 1020
(5,1.0001) 15 | 2.9349 x 10729 | 4.4335 x 10~ 0 4.4335 x 10~% | 1.9442 x 10730
20 | 3.2485 x 10739 | 3.2455 x 10~* 0 3.2455 x 10~ % 1.6166 x 1040
30 | 3.9800 x 107%9 | 2.0670 x 10~* 0 2.0670 x 10~ 1.3224 x 1060
. w 1/4
TABLE 5: The value of 8 aAnd the outermost nodes of averaged rules Qg 1 and Qy "
for the measure d\(x) = %L} if—; dx for some values of v, §, and n.
(v,9) n 1+11L 1—z£’n+1 1+zf 1—z§n+1

1072 | —3.8456 x 10711
1072 | —3.9925 x 10721
1073 | —4.1610 x 10731
1073 | —4.3515 x 10~ 41
1073 | —4.8013 x 1041
1073 | 4.6491 x 10~ 10
104 | 2.5973 x 10720
1074 | 1.9226 x 10730
1074 | 1.5986 x 10~40
10=% | 1.3077 x 10790

5 4.7164 x 10~2 | —4.2729 x 10~ 12| 4.7164
10 | 1.2081 x 10~2 |—4.4361 x 10~22| 1.2081
(=5,—1.0001) | 15 | 5.4093 x 10~3 |—4.6234 x 10732 | 5.4093
20 | 3.0535 x 1073 | —4.8350 x 10742 | 3.0535
30 | 1.3618 x 1073 | —5.3348 x 107 %2 | 1.3618
5 1.4133 x 1073 | —4.2265 x 10~ | 1.4133

X

X

X

X

X

10 | 6.8285 x 10~% |—2.3612 x 10~ 21| 6.8285
(5,1.0001) 15 | 4.4335 x 10~% | —1.7478 x 10731 | 4.4335
20 | 3.2455 x 104 |—1.4533 x 10~41| 3.2455
30 | 2.0670 x 10~% | —1.1889 x 10~ %' | 2.0670

X X X X X |X X X X

TABLE 6: The outermost nodes of averaged rules Q2Ln+1 and optimal averaged rules

Q‘anH for the measure dX(x) =7 J1E2 dr for some values of 7y, 6, and n.

z+0 1-z
5.2. Internality of truncated optimal averaged rule

This subsection considers truncated averaged rules Q7 ,, whose nodes
are the zeros of the polynomials (9). These quadrature rules are internal if
and only if (see, e.g., [3])
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~

@ = @n-)Pn(@) g

6n+1 n «T)

T =41,

which is equivalent to

Tn 1+2r,1

21+ 7y —rp—1) >1 for z=1,

Tnt1 1427,
1-2
2(1 = 1 +7po1) - L S for g= 1.
Tne1 1 —2r,
From (13), (19), and (23) one can notice that 7, — — when n — oc.

Hence, for all Chebyshev weights, the previous inequalities are satisfied for
n sufficiently large. We obtain the following theorem.

Theorem 5.5. The truncated averaged rule QY ,, is internal for the measure
(10), where dX\ is one of four Chebyshev measures, when n is large enough.

The following example illustrates that n does not have to be very large
in order for the rule Q7 , to be internal.

Example 5.6. Consider the measure
~ T+ y dx
d\(x) = . .
(@) T+ 1—2?
Table 7 shows the outermost nodes of truncated averaged rules Q£+2 for
some values of the parameters «y, 6, and n.

(v, 6) n Cl)lT IZ+2

5
10
(1.2,1.01) 15
20
30

—0.989617650796475
—0.995527156361191
—0.997431051900731
—0.998317300421766
—0.999110214098954

0.974131930155257
0.991277828763488
0.995675625680682
0.997425153658672
0.998786714682353

5
10
(1.0001,1.25)| 15
20
30

—0.930746165060798
—0.973037919917524
—0.985768154010461
—0.991257699163812
—0.995791471964076

0.976077006397617
0.991676686601152
0.995816156554298
0.997490025315858
0.998807789973846

TaBLE 7: The outermost nodes of the truncated rule QZ+2
for the measure d\(x)

_zty | dx e P . 9
o T for some values of v, § and n.

6. Numerical examples of error estimation

The examples of this section illustrate the application of the quadrature

rules Q% 1, 95 .,, Q% .. Q;{:ﬁrl, and QT , to estimating the quadrature
error in the Gauss quadrature rule G,. We will approximate the integral

17



1 o~
— / @) di()

for a few integrands and tabulate the error estimates
Br = 19%,41(f)=Ga(f)l, ES = 195,11 () =Gn(f)],

Eja = Qi (N)=Gn(f)], =195 1 (N=Ga(),  (28)
Er = Q0 (f ) gn(f)\,
for some values of 7, d, and n. The actual errors in the tables are determined

by letting the rule Ay in (5) be a Gauss quadrature rule G, with ¢ large. The
exact value I = I(f) of the integral is approximated by Gy.

Example 6.1. Let

x4+ 1.05 dx

x4+ 1.01 m ’

Table 8 depicts the mazimum admissible 8 and the error estimates (28).
The true value of the integral is I = 2.4074780100748213295881078012. ...
All error estimates can be seen to be very accurate. Note that although the
formula Q. . is not internal, the integrand is well defined at all nodes.

f(:Jc):e_gc2 and  d\(z) =

n B — i Ep, Eg Ew Eq/y Er Actual Error

5 |—1.2676 x 1072 3.72x 107°% [3.72x107°% |3.73x107°% [3.72x107°% |3.72x107°% | 3.72 x 10~°
10 |—5.5308 x 1074 | 1.19 x 1072 | 1.19 x 1072 | 1.19 x 1072 | 1.19 x 1072 | 1.19 x 10712 | 1.19 x 1012
15 |—2.3736 x 107°| 3.23 x 10721 | 3.23 x 10721 | 3.23 x 1072 | 3.23 x 10~ 2! | 3.23 x 1072 | 3.23 x 10~ 2!
20 |—1.0180 x 1076 1.69 x 1073%| 1.69 x 1073% | 1.69 x 1073%| 1.69 x 1073° | 1.69 x 1073% | 1.69 x 1073°
30 |—1.8721 x 1079 1.48 x 10750 | 1.48 x 10750 | 1.48 x 10750 | 1.48 x 10750 | 1.48 x 10750 | 1.48 x 10~5°

TABLE 8: Error estimates and the magnitude of true error for Example 6.1.

Example 6.2. Let

x4+ 1.01 dr
x+1.0001 /1 — 22
The true value of the integral is I = 7.89896370580432612558457017927 .. ..

In this example, the rules Q% .., O3 .., and Q;{il have a node smaller
than —1, which makes them unusable. Table 9 shows the error estimates
(28) determined with the rules QY and QL ,,.

f(z) = 999.1°800042)  gpg  dX(z) =

n B — i Ew Er Actual Error
5 |—5.8655 x 1072 | 4.47x 1078 | 4.45x 1078 | 4.93x 108

10 |—1.4642 x 1072 | 3.76 x 10~ 1% 2.90 x 10710 4.13 x 10~1°
15 | —3.6145 x 1072 | 2.69 x 10~ 1| 1.58 x 10~ 11| 2.86 x 10~
20 |—8.8325 x 10~% | 4.39 x 10712 | 2.06 x 10~ 12| 4.57 x 10~ 12
30 |—5.2392 x 1075 | 3.62x 1013 | 1.20 x 10~'3| 3.69 x 1013

TABLE 9: Error estimates and the magnitude of the true error for Example 6.2.
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Example 6.3. Consider
_r+1.01

f(z) = e and d\(z) = V1—a?dx.

r+1.1
All error estimates (28) can be computed and are listed in Table 10. The true
value of the integral is I = 0.0717940484396860072724252528159299116. ...

1/4 .
The quadrature rules Q% 1, Q5, ., and QQZLJFI can be seen to determine
the most accurate error estimates.

n B Ep, Eg Ew Eq /4 Er Actual Error

5 | 0.34543 | 4.70 x 1073 | 4.70 x 1073 | 4.17x 1073 | 469 x 1072 | 5.12x 1073 | 4.77 x 1073
10 | 0.29904 | 9.81 x 107% | 9.81 x 1075 | 1.00 x 10=* | 9.81 x 107° | 1.94 x 10~* | 9.97 x 10~°
15 | 0.28304 | 4.80 x 10~% | 4.80 x 1076 | 4.04 x 107% | 480 x 107% | 6.45 x 1076 | 4.78 x 10~6
20 | 0.27488 | 1.13x 107 % | 1.13x107% | 1.05 x 1076 | 1.13x 1076 | 4.15 x 107 | 1.13 x 10~6
30 | 0.26662 | 4.48 x 1079 | 4.48x 1079 | 513 x 1072 | 4.48 x 10~ 9 | 4.40 x 10~% | 4.48 x 109

TABLE 10: Error estimates and the magnitude of the true error for Example 6.35.

Example 6.4. Let

f@)=0 -2l —z) and d\(z)= ;:.525\/301@

The true value of the integral is I = 1.45403744386827092525202769. ...
The rules Q%, 1, Q5,.1, and Q;r/:il cannot be evaluated, so Table 11 shows
only the error estimates induced by Q%H and QZH, of which the former
yields a more accurate error estimate than the latter.

n B — % Ew Er Actual Error
5 [—1.2544x 1072 | 6.14 x10~% | 5.41 x 10~ | 6.11 x 10~*
10 | —1.3884 x 1079 | 7.02x 1076 | 4.85 x107% | 6.98 x 107°
15 | —1.5368 x 10729 | 4.95 x 1077 | 2.77 x 10~7 | 4.92 x 107
20 |—1.7010 x 10739 | 7.36 x 10~% | 3.44 x 1078 | 7.31 x 1078
30 | —2.0840 x 10759 | 4.86 x 107° | 1.70 x 1072 | 4.82 x 10~°

TABLE 11: Error estimates and the magnitude of the true error for Example 6.4.

7. Conclusion

This paper discusses the estimation of the quadrature error in n-node
Gauss rules G, (f) associated with modifications of Chebyshev measures of
the first, second, and third kinds for some integrand f. Our default approach
to estimate the quadrature error is to evaluate averaged rules Q% . (f) or
optimal averaged rules Q3 4+1(f) with 2n 4 1 nodes. However, the rules
Q% .1(f) and Q3 ,(f) might not be internal, i.e., these rules might have
nodes outside of the interval [—1, 1], and this makes their application impos-
sible when the integrand only is defined in the open interval (—1,1) or its

19



closure. We therefore investigate whether the truncated rules Q1 (f) and

the weighted averaged rules an 4+1(f) can be applied, where the parameter
B determines the weighting. Computed examples show the latter rules to
give more accurate estimates than the former. Moreover, we show inequali-
ties for the parameter 3, such that if 3 satisfies these inequalities, then the
weighted averaged quadrature rules are guaranteed to be internal. These
inequalities make it easy to determine a suitable weighting. The proper-
ties and performance of the quadrature rules considered are illustrated by
numerous numerical examples.
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