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Abstract

This paper is concerned with the approximation of integrals of a real-valued
integrand over the interval [−1, 1] by Gauss quadrature. The averaged and
optimal averaged quadrature rules ([13, 21]) provide a convenient method
for approximating the error in the Gauss quadrature. However, they are
applicable to all integrands that are continuous on the interval [−1, 1] only
if their nodes are internal, i.e. if they belong to this interval.

We discuss two approaches to determine averaged quadrature rules with
nodes in [−1, 1]: (i) truncating the Jacobi matrix associated with the optimal
averaged rule, and (ii) weighting the optimal averaged quadrature rule. We
consider Chebyshev measures of the first, second, and third kinds that are
modified by a linear over linear rational factor, and discuss the internality
of averaged, optimal averaged, and truncated optimal averaged quadrature
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rules. Moreover, we show that the weighting yields internal averaged rules
if a weighting parameter is properly chosen, and we provide bounds for this
parameter that guarantee internality. Finally, we illustrate that the weighted
averaged rules give more accurate estimates of the quadrature error than the
truncated optimal averaged rules.

Keywords: Gauss quadrature rule, averaged Gauss rules, generalized
averaged Gauss rule, internality of quadrature rule, modified Chebyshev
measure
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1. Introduction

Let dλ be a nonnegative measure with infinitely many points of support
on the interval [a, b] with −∞ ≤ a < b ≤ ∞, and assume that the measure is
such that all moments are well defined. We let {Pk}∞k=0 denote the sequence
of monic orthogonal polynomials with respect to this measure. In particular,
deg(Pk) = k. The polynomials Pk satisfy a three-term recurrence relation
of the form

Pk+1(x) = (x− αk)Pk(x)− βkPk−1(x), k = 1, 2, . . . , (1)

where P−1(x) ≡ 0, P0(x) ≡ 1, β0 is an arbitrary constant, and βk > 0 for
all k > 1.

The n-node Gauss quadrature rule

Gn(f) =
n∑
i=1

w
(n)
i f(x

(n)
i ) (2)

is the interpolatory quadrature rule with maximum degree of exactness,
2n− 1, among all rules with n nodes for approximating the integral

I(f) =

∫ b

a
f(x) dλ(x). (3)

Thus, I(f) = Gn(f) for all polynomials f of degree at most 2n − 1. Gauss
rules are by far the most common quadrature rules used to approximate
integrals (3) with a general integrand f .

The nodes x
(n)
i (i = 1, 2, . . . , n) of the rule (2) are the zeros of the monic

orthogonal polynomial Pn and lie in the convex hull H of the support of the

measure dλ; the weights w
(n)
i (i = 1, 2, . . . , n) are positive; see, e.g., [9].
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It is important to be able to estimate the quadrature error when applying
the quadrature rule (2) to ensure that the rule determines an approximation
of the integral with desired accuracy, and to avoid the evaluation of the
integrand at needlessly many nodes. A popular approach to estimate the
magnitude of the quadrature error,

En(f) = |(I − Gn)(f)|, (4)

is to use another quadrature rule, A`, with ` > n nodes and of degree of
exactness larger than 2n− 1. One then can use

|(A` − Gn)(f)| (5)

as an estimate of (4).

A classical choice of the rule A` is the Gauss-Kronrod quadrature rule
associated with the Gauss rule (2). It has 2n+ 1 nodes, n of which are the
nodes of Gn, and its degree of exactness is at least 3n + 1. However, the
n + 1 non-Gauss nodes are not necessarily real; see Notaris [15] for a nice
fairly recent discussion on Gauss-Kronrod rules, as well as Peherstorfer and
Petras [16].

Alternative choices for the rule A`, that recently have gained some at-
tention, are the so-called averaged rules; see [8, 17, 18, 19, 20, 21, 22]. The
first such rule was introduce by Laurie [13],

QL2n+1 =
1

2

(
Gn + Ĝn+1

)
,

where Ĝn+1 denotes the anti-Gauss rule associated with Gn. It is determined
by the requirement(

Ĝn+1 − I
)

(xk) = − (Gn − I) (xk) (k = 0, 1, . . . , 2n+ 1).

The nodes of the anti-Gauss rule are the zeros of the polynomial

πn+1 = Pn+1 − βnPn−1,

where βn is a recursion coefficient for the sequence of monic orthogonal
polynomials Pk; see (1). The averaged rule QL2n+1 has degree of exactness
at least 2n + 1. We remark that anti-Gauss and associated averaged rules
also can be used to estimate the error in the computed solution of Fredholm
integral equations of the second kind defined on an interval; see Dı́az de
Alba et al. [2] for details.

Erich [8] defined for 0 < θ < 1 the weighted averaged formula

Qθ2n+1 =
1

1 + θ

(
θGn + Gθn+1

)
, (6)
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where the quadrature rule Gθn+1 is determined by the conditions(
Gθn+1 − I

)
(xk) = −θ (Gn − I) (xk) (k = 0, 1, . . . , 2n+ 1).

The nodes of the rule Gθn+1 are the zeros of the polynomial

πθn+1 = Pn+1 − θβnPn−1. (7)

Obviously, the anti-Gauss formula Ĝn+1 corresponds to θ = 1. Weighted
averaged formulas also were introduced in [1].

The degree of exactness of the rule (6) is at least 2n + 1 for any fixed
0 < θ < 1. Erich [8] found for Gauss-Laguerre and Gauss-Hermite measures
values of θ that makes the quadrature formula (6) have degree of exactness
at least 2n+ 2. This is the maximum degree of exactness for any 0 < θ < 1.
We refer to the rule (6) with this value of θ as an optimal averaged rule.

Spalević [20] extended the result by Ehrich [8] to more general measures.
He observed that it follows from results in [8] that the choice

θ =
βn+1

βn
(8)

yields a weighted averaged rule (6) with degree of exactness at least 2n+ 2
for quite general measures. For this value of θ, the nodes of the quadrature
rule Gθn+1 are the zeros of the polynomial

Fn+1 = Pn+1 − βn+1Pn−1.

From now on we will use the notation Qβ2n+1 for the weighted averaged
rule (6), where β = θβn. In the special case when θ is defined by (8), we

will refer to the quadrature formula Qβ2n+1 as QS2n+1.

The weighted averaged quadrature rules Qβ2n+1 (as well as their special
cases QL2n+1 and QS2n+1) are associated with Jacobi matrices of order 2n +
1. These matrices are determined by recursion coefficients of the monic
orthogonal polynomials (1); see [5, 18] for details. The eigenvalues of these
matrices are the nodes of the weighted averaged rule, and the square of
the first components of suitably normalized eigenvectors yields the weights.
This property is used by the Golub-Welsch [10] algorithm for computing the
nodes and weights of Gauss-type quadrature rules in an efficient manner.

The quadrature formulas QL2n+1 and QS2n+1 have real nodes, positive
weights, and they are easy to compute. However, they are not guaranteed
to be internal, i.e., they may have the outermost nodes outside of the set H.
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This means that they may yield poor accuracy, or may not be applicable,
when the integrand has a singularity close to or at a boundary point of H.

It is the purpose of this paper to discuss modifications of the rule QS2n+1

to make it internal, i.e., to have all nodes in H, when QS2n+1 does not.
One approach to achieve this is to truncate the Jacobi matrix associated
with the quadrature rule QS2n+1. The truncated optimal averaged rules were
introduced in [5]. The simplest one of them is obtained by removing the
last n − 1 rows and columns from the Jacobi matrices of order 2n + 1 for
the quadrature rule QS2n+1. This determines the truncated optimal averaged
rule QTn+2 with n+ 2 nodes. This rule has the same degree of exactness as
the optimal averaged rule QS2n+1. The nodes of QTn+2 are the zeros of the
polynomial

tn+2(x) = (x− αn−1)Pn+1(x)− βn+1Pn(x), (9)

where αn−1 and βn+1 are recursion coefficients for the sequence of monic
orthogonal polynomials (1). The fact that the quadrature rule QTn+2 may
be internal when QS2n+1 is not, follows from the Cauchy interlacing theorem
for eigenvalues when applied to the Jacobi matrices associated with the rules
QS2n+1 and QTn+2; see, e.g., [11]. Here one exploits that the eigenvalues of
a Jacobi matrix are the nodes of the corresponding quadrature rule. A
more detailed analysis of how the eigenvalues of these Jacobi matrices relate
is provided by Hill and Parlett [12, Theorem 1]. For simplicity, we will
henceforth refer to the rule QTn+2 as a truncated averaged rule.

However, there are some drawbacks of the quadrature rule QTn+2. The
main one is that the quadrature error achieved with the rule QS2n+1 may be
significantly smaller than the quadrature error of the rule QTn+2 when both
rules can be applied. Therefore, the error estimate (5) is more accurate when
A` in (5) is chosen to be the rule QS2n+1 than the rule QTn+2 when both rules
can be used. This depends on that for many measures and integrands, the
quadrature error achieved with QS2n+1 is smaller than what might be antici-
pated from the degree of exactness of these rules; see [18] for discussions and
numerous computed examples. A minor drawback of the rule QTn+2 is that
the evaluation of the pair of quadrature rules {Gn(f),QTn+2(f)} typically
requires one more evaluation of the integrand f than the evaluation of the
pair of rules {Gn(f),QS2n+1(f)}.

Another method for determining internal averaged rules is to choose a
suitable parameter θ in the weighted averaged rule (6) that ensures that
all quadrature nodes are in H. This approach was first described in [18].
Weighted averaged rules determined in this manner typically yield a smaller
quadrature error than truncated averaged rules. We will discuss this ap-
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proach in detail and, in particular, derive bounds for the parameter β = θβn
that ensure internality.

Recently, internality of averaged rules, optimal averaged rules, and the
truncated version of the latter rules for Chebyshev measures modified by a
linear divisor or a certain linear rational function was considered in [3, 4, 7].
The averaged and optimal averaged rules were found not to be internal in
some situations. The internality of these quadrature rules for the Bernstein-
Szegő weight function was analyzed in [6]. We also should mention the recent
paper by Milovanović [14], where the author finds explicit expressions for
the coefficients in the three-term recurrence relation for monic orthogonal
polynomials with respect to this weight function.

This paper considers modifications of the Chebyshev measure by a gen-
eral linear rational function, and we demonstrate how to obtain internal
averaged rules by simple weighting, i.e., by choosing a suitable value of
β. In the situation when neither the averaged nor the optimal averaged
rules are internal, weighted averaged rules Qβ2n+1 generally achieve higher
accuracy than the truncated averaged rules QTn+2. Our interest in the mod-
ification of Chebyshev measures stems from the attention that modification
methods and their applications, e.g., to computing the Hilbert transform,
have received in the literature; see Gautschi [9, Section 2.4] for a thorough
discussion of modification algorithms and some applications.

This paper is organized as follows. Section 2 introduces the modification
of Chebyshev measures to be considered and reviews available results. The
discussions in Sections 3, 4, and 5 are concerned with modifications in the
cases when the original measures are Chebyshev measures of the first, sec-
ond, and third kinds, respectively. Section 6 presents applications to error
estimation of the quadrature rules and illustrates the accuracy of the error
estimates obtained. Concluding remarks can be found in Section 7.

2. Modification of the measure by a linear over linear rational
factor

Consider the measure

dλ̂(x) = (x+ γ) dλ̃(x) =
x+ γ

x+ δ
dλ(x) (10)

for −1 < x < 1 and γ, δ ∈ R\ [−1, 1], where dλ is one of the four Chebyshev
measures,

dλ(x) = (1 + x)±1/2(1− x)±1/2 dx.

We will represent the parameters γ and δ in (10) as
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γ =
1

2

(
v + v−1

)
and δ =

1

2

(
u+ u−1

)
(11)

for some u, v ∈ (−1, 1). Clearly, γ 6= δ implies u 6= v. Given monic or-
thogonal polynomials Pk and their recurrence coefficients αk and βk for the
measure dλ, Gautschi [9, Section 2.4] describes algorithms for computing
monic orthogonal polynomials P̃k and their recurrence coefficients α̃k and
β̃k for the measure dλ̃, as well as monic orthogonal polynomials P̂k and
their recurrence coefficients α̂k and β̂k for the measure dλ̂.

For the measure dλ̃, the averaged rulesQL2n+1 and optimal averaged rules
QS2n+1 coincide with the Gauss-Kronrod rule for n > 3 and are internal; see
[3, 4, 7]. From now on, we therefore will consider optimal averaged rules
associated with the measure dλ̂.

3. Modification of the Chebyshev measure of the first kind

Let us consider the measure

dλ̂(x) =
x+ γ

x+ δ
· dx√

1− x2
for − 1 < x < 1,

where γ, δ ∈ R \ [−1, 1]. This is the measure (10) when dλ(x) = dx√
1−x2

is the Chebyshev measure of the first kind. The monic orthogonal poly-
nomials with respect to dλ are the monic Chebyshev polynomials of the
first kind, 1

2n−1Tn(x), and the polynomial Tn of degree n is characterized by
Tn(cos(ξ)) = cos(nξ); consequently, Tn(±1) = (±1)n.

Since switching the signs of γ, δ and x yields the same measure, we may
assume that δ > 1. Then u and v given by (11) satisfy 0 < u < 1 and
−1 < v < 1.

For the measure dλ̃(x) = dλ(x)
x+δ we obtain

P̃k(x) =
1

2k−1
(Tk(x) + uTk−1(x)) for k > 2,

with P̃0(x) ≡ 1 and P̃1(x) = x + u; see, e.g., [3, 9]. The corresponding
recursion coefficients are

α̃0 = −u, α̃1 =
1

2
u, α̃k = 0 for k > 2,

β̃0 =
2πu

1− u2
, β̃1 =

1

2
(1− u2), β̃k =

1

4
for k > 2.

Further, for the measure dλ̂, the orthogonal polynomials are
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P̂k(x) =
P̃k+1(x)− rkP̃k(x)

x+ γ
, where rk =

P̃k+1(−γ)

P̃k(−γ)
,

under the assumption that P̃k(−γ) 6= 0 for all k. The quotients rk can be
computed by the relations

r0 = −γ − α̃0, r1 = −γ − α̃1 −
β̃1
r0
, rk = −γ − 1

4rk−1
(k > 2),

and the recursion coefficients are

α̂k = α̃k+1 + rk+1 − rk for k > 0,

β̂0 = −r0β̃0, β̂k = β̃krk/rk−1 for k > 1. (12)

The above relations yield

r0 = u− 1

2

(
v + v−1

)
, rk = − 1

2v
· v

2k+1 −A
v2k−1 −A

(k > 1), (13)

where

A =
1− uv
u− v

. (14)

Note that |A| > 1 and sgn(A) = sgn(u − v). Moreover, v > u is equivalent
to δ > γ > 1, and v(v − u) > 0 is equivalent to δ > γ.

3.1. Internality of averaged rules

The weighted averaged quadrature rule Qβ2n+1 is internal if and only if

P̂n+1(x)

P̂n−1(x)
> β for x = ±1. (15)

For x = 1 and x = −1 these inequalities reduce to

β 6 β+ :=
1

4
· 1− 2rn+1

1− 2rn−1
and β 6 β− :=

1

4
· 1 + 2rn+1

1 + 2rn−1
,

respectively. Using (13), we obtain

β+ =
1

4
− 1

4

Av2n−3(1−v)(1−v4)
(A−v2n−2)(A−v2n+1)

, β− =
1

4
− 1

4

Av2n−3(1+v)(1−v4)
(A+v2n−2)(A−v2n+1)

.

(16)
Since |A| > 1, we have sgn(A ± vl) = sgn(A) = sgn(u − v). This leads to
the following result.
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Theorem 3.1. To ensure that the quadrature rule Qβ2n+1 is internal, it is
sufficient for β to satisfy β 6 β+ when δ > γ > 1, and β 6 β− in all other
cases, where β+, β− are given by (16).

Note that for v(v−u) > 0, i.e. for γ < δ, one can take β = 1/4 to secure
internality.

If β = β̂n, then the rule Qβ2n+1 becomes the averaged rule QL2n+1. Using
results from [3], the relations (15) reduce to

Av2n−2
(1 + v)(1− v)3(A+ v2n)(A− v2n−3)
(A− v2n−1)2(A− v2n−2)(A− v2n+1)

> 0 (17)

for x = 1, and to

Av2n−2
(1− v)(1 + v)3(A− v2n)(A− v2n−3)
(A− v2n−1)2(A+ v2n−2)(A− v2n+1)

6 0 (18)

for x = −1.

Now we have that condition (17) is satisfied if and only if A > 0, i.e., if
and only if u > v, and condition (18) holds if and only if A < 0, i.e., if and
only if u < v. We have shown the following result.

Theorem 3.2. The quadrature rule QL2n+1 associated with the measure dλ̂
has an external node: for δ > γ > 1 the largest node is external, and in all
other cases the smallest node is external.

We turn to the situation when β = β̂n+1. Then one obtains the optimal
averaged rule QS2n+1 introduced in [21], and the inequalities (15) reduce to

Av2n−3
(1− v)(1− v2)(1− v3)(A+ v2n)

(A− v2n−2)(A− v2n+1)2
6 0

for x = 1, and to

Av2n−3
(1 + v)(1− v2)(1 + v3)(A− v2n)

(A+ v2n−2)(A− v2n+1)2
6 0

for x = −1. Consequently, we have the following theorem.

Theorem 3.3. The quadrature rule QS2n+1 associated with the measure dλ̂
is internal if and only if δ > γ.

All computation in the paper are carried out using Matlab and high-
precision arithmetic. In this and the following numerical examples, we use
the notation QW2n+1 for the weighted averaged rule with the maximum allow-
able β, which is β = min{β+, β−}. Thus, β is determined by the parameters
γ, δ and n.
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Example 3.4. The values of the outermost nodes of the quadrature rules

QW2n+1 for some values of the parameters γ, δ, and n, and of the rule Q1/4
2n+1

for some values of n are shown in Table 1. Analogous results for the rules
QL2n+1 and QS2n+1 are displayed in Table 2.

(γ, δ) n β − 1
4

1 + xW1 1 − xW2n+1 1 + x
1/4
1 1 − x

1/4
2n+1

5 2.5006 × 10−3 1.5971 × 10−2 0 1.6712 × 10−2 4.8080 × 10−4

10 7.7125 × 10−4 1.8131 × 10−3 0 1.9320 × 10−3 7.5643 × 10−5

(1.01, 1.25) 15 1.9979 × 10−4 2.6563 × 10−4 0 2.8494 × 10−4 1.3174 × 10−5

20 4.9389 × 10−5 4.4562 × 10−5 0 4.7902 × 10−5 2.4516 × 10−6

30 2.9399 × 10−6 1.5854 × 10−6 0 1.7056 × 10−6 9.7562 × 10−8

5 8.6982 × 10−4 0 4.8897 × 10−4 7.2470 × 10−5 7.3028 × 10−4

10 8.5299 × 10−7 0 1.9987 × 10−7 5.0406 × 10−8 2.9981 × 10−7

(−1.25, 1.01) 15 8.3300 × 10−10 0 1.2309 × 10−10 3.7998 × 10−11 1.8463 × 10−10

20 8.1348 × 10−13 0 8.7776 × 10−14 3.0216 × 10−14 1.3166 × 10−13

30 7.7579 × 10−19 0 5.4374 × 10−20 2.1012 × 10−20 8.1562 × 10−20

5 −2.9043 × 10−8 0 1.1598 × 10−9 −3.8672 × 10−10 −5.1603 × 10−9

10 −3.2146 × 10−18 0 6.1478 × 10−20 −4.0133 × 10−20 −2.7354 × 10−19

(5, 1.0001) 15 −3.5582 × 10−28 0 4.4736 × 10−30 −4.1812 × 10−30 −1.9905 × 10−29

20 −3.9384 × 10−38 0 3.6882 × 10−40 −4.3712 × 10−40 −1.6411 × 10−39

30 −4.8252 × 10−58 0 2.9918 × 10−60 −4.8204 × 10−60 −1.3312 × 10−59

TABLE 1: The value of β and the outermost nodes of the weighted averaged rules QW2n+1 and
Q1/4

2n+1 for the measure dλ̂(x) = x+γ
x+δ ·

dx√
1−x2 for some values of γ, δ, and n.

(γ, δ) n 1 + xL1 1 − xL2n+1 1 + xS1 1 − xS2n+1

5 1.5935 × 10−2 −2.3547 × 10−5 1.6080 × 10−2 7.0320 × 10−5

10 1.8058 × 10−3 −4.6239 × 10−6 1.8349 × 10−3 1.3906 × 10−5

(1.01, 1.25) 15 2.6439 × 10−4 −8.4663 × 10−7 2.6937 × 10−4 2.5536 × 10−6

20 4.4345 × 10−5 −1.5938 × 10−7 4.5218 × 10−5 4.8114 × 10−7

30 1.5776 × 10−6 −6.3633 × 10−9 1.6091 × 10−6 1.9217 × 10−8

5 −1.4600 × 10−5 4.4053 × 10−4 5.0716 × 10−5 6.5768 × 10−4

10 −1.0081 × 10−8 1.7989 × 10−7 3.5285 × 10−8 2.6983 × 10−7

(−1.25, 1.01) 15 −7.5997 × 10−12 1.1078 × 10−10 2.6599 × 10−11 1.6617 × 10−10

20 −6.0432 × 10−15 7.8999 × 10−14 2.1151 × 10−14 1.1850 × 10−13

30 −4.2023 × 10−21 4.8937 × 10−20 1.4708 × 10−20 7.3405 × 10−20

5 −4.2578 × 10−11 4.6390 × 10−10 −3.8321 × 10−10 −5.1029 × 10−9

10 −4.4187 × 10−21 2.4591 × 10−20 −3.9768 × 10−20 −2.7050 × 10−19

(5, 1.0001) 15 −4.6035 × 10−31 1.7894 × 10−30 −4.1432 × 10−30 −1.9684 × 10−29

20 −4.8127 × 10−41 1.4753 × 10−40 −4.3315 × 10−40 −1.6228 × 10−39

30 −5.3073 × 10−61 1.1967 × 10−60 −4.7766 × 10−60 −1.3164 × 10−59

TABLE 2: The outermost nodes of the averaged rule QL2n+1 and the optimal averaged rule
QS2n+1 for the measure dλ̂(x) = x+γ

x+δ ·
dx√
1−x2 for some values of γ, δ, and n.

4. Modification of the Chebyshev measure of the second kind

This section considers the measure

dλ̂(x) =
x+ γ

x+ δ

√
1− x2 dx for − 1 < x < 1,
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where γ, δ ∈ R \ [−1, 1]. This is the measure (10) when dλ(x) =
√

1− x2 dx
is the Chebyshev measure of the second kind. The monic orthogonal poly-
nomials with respect to dλ are the monic Chebyshev polynomials of the
second kind, 1

2n−1Un(x), and the polynomial Un of degree n is characterized

by Un(cos ξ) = sin((n+1)ξ)
sin(ξ) ; consequently, Un(±1) = (±1)n(n+ 1).

Similarly as in Section 3, γ and δ are determined by the parameters u and
v and, due to symmetry, we may assume that 0 < u < 1 and −1 < v < 1.

For the measure dλ̃(x) = dλ(x)
x+δ the orthogonal polynomials are

P̃k(x) =
1

2k
(Uk(x) + uUk−1(x)) for k > 1,

with P̃0(x) ≡ 1; see [7, 9]. The recursion coefficients of the polynomials P̃k
are given by

α̃0 = −u
2
, α̃k = 0 for k > 1,

β̃0 = uπ, β̃k =
1

4
for k > 1;

see [7, 9]. Moreover, for the measure dλ̂, the orthogonal polynomials are

P̂k(x) =
P̃k+1(x)− rkP̃k(x)

x+ γ
, where rk =

P̃k+1(−γ)

P̃k(−γ)
,

under the assumption that P̃k(−γ) 6= 0 for all k. The quotients rk satisfy
the relations

r0 = −γ − α̃0, rk = −γ − 1

4rk−1
(k > 1),

and the recursion coefficients are given by (12). We obtain

r0 =
1

2

(
u− v − v−1

)
, rk = − 1

2v
· v

2k+3 +A

v2k+1 +A
(k > 1), (19)

where A is defined by (14).

4.1. Internality of the averaged rules

The weighted averaged quadrature formula Qβ2n+1 is internal if and only
if conditions (15) hold. It follows from (19) that for x = 1 and x = −1,
these conditions reduce to

β 6 β+ :=
1

4
·

1 + u+ (1 + (1 + u)(n+ 1))
(

1 + 1
v ·

v2n+5+A
v2n+3+A

)
1 + u+ (1 + (1 + u)(n− 1))

(
1 + 1

v ·
v2n+1+A
v2n−1+A

)
=

1

4
+

(1+u)(1+v)(2v2n+4+A)

v(v2n+3+A)M1
+
n+(n−1)u

4M1

Av2n−2(v2−1)2(v2+1)

(v2n−1+A)(v2n+3+A)

(20)

11



and

β 6 β− :=
1

4
·

1− u+ (1 + (1− u)(n+ 1))
(

1− 1
v ·

v2n+5+A
v2n+3+A

)
1− u+ (1 + (1− u)(n− 1))

(
1− 1

v ·
v2n+1+A
v2n−1+A

)
=

1

4
+

(1−u)(1−v)(2v2n+4−A)

v(v2n+3+A)M2
− n−(n−1)u

4M2

Av2n−2(v2−1)2(v2+1)

(v2n−1+A)(v2n+3+A)
,

(21)

respectively, where

M1 = 1 + u+
(
n+ (n−1)u

)(
1 +

1

v
· v

2n+1 +A

v2n−1 +A

)
,

M2 = 1− u+
(
n− (n−1)u

)(
1− 1

v
· v

2n+1 +A

v2n−1 +A

)
.

Note that, as n→∞,

M1 =
v−u+ n(1+u)(1+v)

v
+ o(1), −M2 =

u−v + n(1−u)(1−v)

v
+ o(1).

Thus,

β+=
1

4

(
1+

2

n+ v−u
(1+u)(1+v)+o(1)

)
, β−=

1

4

(
1+

2

n+ u−v
(1−u)(1−v)+o(1)

)
(22)

as n→∞.

Theorem 4.1. To ensure that the quadrature rule Qβ2n+1 is internal when
n is large enough, it is sufficient for β to satisfy (20) when δ > γ > 1, and
(21) in all other cases.

Proof. Indeed, for n large enough, we have β+ > 1
4(1 + 2

n) > β− if u > v,
and β+ < 1

4(1 + 2
n) < β− if u < v.

In particular, letting β = β̂n and β = β̂n+1 gives the averaged rules
QL2n+1 and QS2n+1, respectively. Since

β̂n =
1

4

(
1 +

Av2n−1(v2 − 1)2

(v2n+1 +A)2

)
=

1

4

(
1 + o

( 1

n

))
,

we obtain the following result.

Theorem 4.2. The quadrature rules QL2n+1 and QS2n+1 associated with the

measure dλ̂ are internal if n is large enough.

Typically, small values of n already produce internal quadrature rules.
This is illustrated by the following examples. Again, β = min{β+, β−}.

12



Example 4.3. The values of β and the outermost nodes of the rules QW2n+1

and Q1/4
2n+1 for some values of γ, δ and n are shown in Table 3.

(γ, δ) n β − 1
4

1 + xW1 1 − xW2n+1 1 + x
1/4
1 1 − x

1/4
2n+1

5 9.321 × 10−2 2.6482 × 10−2 0 6.1602 × 10−2 3.1636 × 10−2

10 4.859 × 10−2 7.8666 × 10−3 0 1.9316 × 10−2 9.8233 × 10−3

(1.01, 1.25) 15 3.287 × 10−2 3.0383 × 10−3 0 8.5966 × 10−3 4.7182 × 10−3

20 2.480 × 10−2 1.3750 × 10−3 0 4.6048 × 10−3 2.7580 × 10−3

30 1.659 × 10−2 3.9876 × 10−4 0 1.8503 × 10−3 1.2725 × 10−3

5 4.169 × 10−2 0 4.0034 × 10−2 9.3261 × 10−3 5.6598 × 10−2

10 2.955 × 10−2 0 7.0309 × 10−3 4.2053 × 10−3 1.3464 × 10−2

(−1.25, 1.01) 15 2.281 × 10−2 0 2.4179 × 10−3 2.4545 × 10−3 5.8244 × 10−3

20 1.857 × 10−2 0 1.1132 × 10−3 1.6224 × 10−3 3.2289 × 10−3

30 1.354 × 10−2 0 3.6412 × 10−4 8.6663 × 10−4 1.4137 × 10−3

TABLE 3: The value of β and the outermost nodes of the weighted averaged rules QW2n+1 and
Q1/4

2n+1 for the measure dλ̂(x) = x+γ
x+δ

√
1− x2 dx for some values of γ, δ and n.

Example 4.4. The values of the outermost nodes of the rules QL2n+1 and
QS2n+1 for some values of γ, δ and n are shown in Table 4.

(γ, δ) n 1 + xL1 1 − xL2n+1 1 + xS1 1 − xS2n+1

5 6.2949 × 10−2 3.2825 × 10−2 6.2543 × 10−2 3.2467 × 10−2

10 1.9471 × 10−2 9.9519 × 10−3 1.9431 × 10−2 9.9186 × 10−3

(1.01, 1.25) 15 8.6216 × 10−3 4.7387 × 10−3 8.6154 × 10−3 4.7336 × 10−3

20 4.6094 × 10−3 2.7618 × 10−3 4.6083 × 10−3 2.7609 × 10−3

30 1.8505 × 10−3 1.2727 × 10−3 1.8504 × 10−3 1.2727 × 10−3

5 9.3809 × 10−3 5.6701 × 10−2 9.3398 × 10−3 5.6623 × 10−2

10 4.2054 × 10−3 1.3464 × 10−2 4.2053 × 10−3 1.3464 × 10−2

(−1.25, 1.01) 15 2.4545 × 10−3 5.8244 × 10−3 2.4545 × 10−3 5.8244 × 10−3

20 1.6224 × 10−3 3.2289 × 10−3 1.6224 × 10−3 3.2289 × 10−3

30 8.6663 × 10−4 1.4137 × 10−3 8.6663 × 10−4 1.4137 × 10−3

TABLE 4: The outermost nodes of the averaged rule QL2n+1 and the optimal averaged rule
QS2n+1 for the measure dλ̂(x) = x+γ

x+δ

√
1− x2 dx for some values of γ, δ and n.

5. Modification of the Chebyshev measure of the third kind

We finally consider the measure

dλ̂(x) =
x+ γ

x+ δ

√
1 + x

1− x
dx for − 1 < x < 1,

where γ, δ ∈ R\ [−1, 1]. This is the measure (10) when dλ(x) =
√

1+x
1−x dx is

the Chebyshev measure of the third kind. The monic orthogonal polynomials
with respect to dλ are the monic Chebyshev polynomials of the third kind,

1
2n−1Vn(x), and the polynomial Vn of degree n is characterized by Vn(cos ξ) =
cos((n+ 1

2
)ξ)

cos( ξ
2
)

; consequently, Vn(1) = 1 and Vn(−1) = (−1)n(2n+ 1).
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This time, we allow u, v in (11) from the entire range: −1 < u, v < 1.
Switching the signs of γ, δ and x yields a modification of the Chebyshev
measure of the fourth kind.

For the measure dλ̃(x) = dλ(x)
x+δ we obtain

P̃k(x) =
1

2k
(Vk(x) + uVk−1(x)) for k > 0;

see [4, 9]. The recursion coefficients of the polynomials P̃k are given by

α̃0 =
1− u

2
, α̃k = 0 for k > 1,

β̃0 =
2πu

1 + u
, β̃1 =

1 + u

4
, β̃k =

1

4
for k > 2.

Moreover, for the measure dλ̂, the orthogonal polynomials are

P̂k(x) =
P̃k+1(x)− rkP̃k(x)

x+ γ
, where rk =

P̃k+1(−γ)

P̃k(−γ)
,

under the assumption that P̃k(−γ) 6= 0 for all k. The quotients rk satisfy
the relations

r0 = −γ − α̃0, r1 = −γ − α̃1 −
β̃1
r0
, rk = −γ − 1

4rk−1
(k > 2),

and the recursion coefficients are given by (12); see [4, 9]. We obtain

r0 = −1

2

(
1− u+ v + v−1

)
, rk = − 1

2v
· v

2k+2 +A

v2k +A
(k > 1), (23)

where A is defined by (14).

5.1. Internality of the averaged rules

The weighted averaged quadrature formula Qβ2n+1 is internal if and only
if conditions (15) are satisfied. For x = 1 and x = −1 these inequalities
reduce to

β 6 β+ :=
1

4
· 1− 2rn+1

1− 2rn−1
and

β 6 β− :=
1

4
· 2(1− u) + (2 + (1− u)(2n+ 1))(1 + 2rn+1)

2(1− u) + (2 + (1− u)(2n− 3))(1 + 2rn−1)
,

respectively. Using formula (23), we obtain

β+ =
1

4
+

1

4

Av2n−2(1− v)(1− v4)
(A+ v2n−1)(A+ v2n+2)

(24)
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and

β− =
1

4
·

2(1− u) + (2 + (1− u)(2n+ 1))
(

1− 1
v ·

v2n+4+A
v2n+2+A

)
2(1− u) + (2 + (1− u)(2n− 3))

(
1− 1

v ·
v2n+A
v2n−2+A

) . (25)

Defining

M = 2(1−u) + (2 + (2n−3)(1−u))

(
1− 1

v
· v2n+A

v2n−2+A

)
,

we obtain

β− =
1

4
+

(1− u)(1− v)(v2n+3 −A)

vM(v2n+2 +A)

+
(2 + (2n− 3)(1− u))(v − 1)

vM

Av2n−2(1− v4)(1 + v)

4(v2n+2 +A)(v2n−2 +A)
.

Moreover,

M =
2n(1− u)(v − 1)

v
+ o(n) as n→∞.

Therefore, β+ 6 β−, which leads us to the following result.

Theorem 5.1. To ensure that the quadrature rule Qβ2n+1 is internal when
n is large, it is sufficient to have β 6 β+, with β+ given by (24).

When β = β̂n, the rule Qβ2n+1 becomes the averaged rule QL2n+1; see [13].
Using results from [4], the inequalities (15) reduce to

Av2n−1
(1− v)3(1 + v)(A+ v2n−2)(A− v2n+1)

(A+ v2n)2(A+ v2n−1)(A+ v2n+2)
6 0 (26)

for x = 1, and to
1

4
+
Av2n−2(1− v2)2

4(A+ v2n)2
6 β− (27)

for x = −1.

When n is large enough, inequality (26) holds if and only if Av < 0,
which is equivalent to δ(δ− γ) > 0, and inequality (27) always holds. Thus,
we have shown the following

Theorem 5.2. The quadrature rule QL2n+1 associated with the measure dλ̂
is internal for n sufficiently large if and only if δ(δ − γ) > 0.

If instead β = β̂n+1, then one obtains the optimal averaged rule QS2n+1.
The inequalities (15) then reduce to

Av2n−2
(1− v)(1− v2)(1− v3)(A− v2n+1)

(A+ v2n−1)(A+ v2n+2)2
> 0
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for x = 1, and to
1

4
+
Av2n(1− v2)2

4(A+ v2n+2)2
6 β−

for x = −1. This leads to the following result.

Theorem 5.3. The quadrature rule QS2n+1 associated with the measure dλ̂
is internal when n is sufficiently large if and only if u > v, i.e. if and only
if γδ(γ − δ) > 0.

Example 5.4. Table 5 displays the value of β = β+ and the outermost nodes

of the quadrature rules QW2n+1 and Q1/4
2n+1 for some values of the parameters

γ, δ and n. Table 6 displays the outermost nodes of the quadrature rules
QL2n+1 and QS2n+1.

(γ, δ) n β − 1
4

1 + xW1 1 − xW2n+1 1 + x
1/4
1 1 − x

1/4
2n+1

5 −2.9339 × 10−9 4.7164 × 10−2 0 4.7164 × 10−2 −3.8808 × 10−11

10 −3.2474 × 10−19 1.2081 × 10−2 0 1.2081 × 10−2 −4.0291 × 10−21

(−5,−1.0001) 15 −3.5945 × 10−29 5.4093 × 10−3 0 5.4093 × 10−3 −4.1992 × 10−31

20 −3.9786 × 10−39 3.0535 × 10−3 0 3.0535 × 10−3 −4.3914 × 10−41

30 −4.8744 × 10−59 1.3618 × 10−3 0 1.3618 × 10−3 −4.8453 × 10−61

5 2.3955 × 10−9 1.4133 × 10−3 0 1.4133 × 10−3 4.7014 × 10−10

10 2.6515 × 10−19 6.8285 × 10−4 0 6.8285 × 10−4 2.6265 × 10−20

(5, 1.0001) 15 2.9349 × 10−29 4.4335 × 10−4 0 4.4335 × 10−4 1.9442 × 10−30

20 3.2485 × 10−39 3.2455 × 10−4 0 3.2455 × 10−4 1.6166 × 10−40

30 3.9800 × 10−59 2.0670 × 10−4 0 2.0670 × 10−4 1.3224 × 10−60

TABLE 5: The value of β and the outermost nodes of averaged rules QW2n+1 and Q1/4
2n+1

for the measure dλ̂(x) = x+γ
x+δ

√
1+x
1−x dx for some values of γ, δ, and n.

(γ, δ) n 1 + xL1 1 − xL2n+1 1 + xS1 1 − xS2n+1

5 4.7164 × 10−2 −4.2729 × 10−12 4.7164 × 10−2 −3.8456 × 10−11

10 1.2081 × 10−2 −4.4361 × 10−22 1.2081 × 10−2 −3.9925 × 10−21

(−5,−1.0001) 15 5.4093 × 10−3 −4.6234 × 10−32 5.4093 × 10−3 −4.1610 × 10−31

20 3.0535 × 10−3 −4.8350 × 10−42 3.0535 × 10−3 −4.3515 × 10−41

30 1.3618 × 10−3 −5.3348 × 10−62 1.3618 × 10−3 −4.8013 × 10−41

5 1.4133 × 10−3 −4.2265 × 10−11 1.4133 × 10−3 4.6491 × 10−10

10 6.8285 × 10−4 −2.3612 × 10−21 6.8285 × 10−4 2.5973 × 10−20

(5, 1.0001) 15 4.4335 × 10−4 −1.7478 × 10−31 4.4335 × 10−4 1.9226 × 10−30

20 3.2455 × 10−4 −1.4533 × 10−41 3.2455 × 10−4 1.5986 × 10−40

30 2.0670 × 10−4 −1.1889 × 10−41 2.0670 × 10−4 1.3077 × 10−60

TABLE 6: The outermost nodes of averaged rules QL2n+1 and optimal averaged rules
QS2n+1 for the measure dλ̂(x) = x+γ

x+δ

√
1+x
1−x dx for some values of γ, δ, and n.

5.2. Internality of truncated optimal averaged rule

This subsection considers truncated averaged rules QTn+2, whose nodes
are the zeros of the polynomials (9). These quadrature rules are internal if
and only if (see, e.g., [3])
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(x− α̂n−1)P̂n+1(x)

β̂n+1P̂n(x)
> 1 for x = ±1,

which is equivalent to

2(1 + rn − rn−1)
rn
rn+1

· 1 + 2rn+1

1 + 2rn
> 1 for x = 1,

2(1− rn + rn−1)
rn
rn+1

· 1− 2rn+1

1− 2rn
> 1 for x = −1.

From (13), (19), and (23) one can notice that rn → − 1
2v when n → ∞.

Hence, for all Chebyshev weights, the previous inequalities are satisfied for
n sufficiently large. We obtain the following theorem.

Theorem 5.5. The truncated averaged rule QTn+2 is internal for the measure
(10), where dλ is one of four Chebyshev measures, when n is large enough.

The following example illustrates that n does not have to be very large
in order for the rule QTn+2 to be internal.

Example 5.6. Consider the measure

dλ̂(x) =
x+ γ

x+ δ
· dx√

1− x2
.

Table 7 shows the outermost nodes of truncated averaged rules QTn+2 for
some values of the parameters γ, δ, and n.

(γ, δ) n xT1 xTn+2

5 −0.989617650796475 0.974131930155257
10 −0.995527156361191 0.991277828763488

(1.2, 1.01) 15 −0.997431051900731 0.995675625680682
20 −0.998317300421766 0.997425153658672
30 −0.999110214098954 0.998786714682353

5 −0.930746165060798 0.976077006397617
10 −0.973037919917524 0.991676686601152

(1.0001, 1.25) 15 −0.985768154010461 0.995816156554298
20 −0.991257699163812 0.997490025315858
30 −0.995791471964076 0.998807789973846

TABLE 7: The outermost nodes of the truncated rule QTn+2

for the measure dλ̂(x) = x+γ
x+δ ·

dx√
1−x2 for some values of γ, δ and n.

6. Numerical examples of error estimation

The examples of this section illustrate the application of the quadrature

rules QL2n+1, QS2n+1, QW2n+1, Q
1/4
2n+1, and QTn+2 to estimating the quadrature

error in the Gauss quadrature rule Gn. We will approximate the integral
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I(f) =

∫ 1

−1
f(x) dλ̂(x)

for a few integrands and tabulate the error estimates

EL = |QL2n+1(f)−Gn(f)|, ES = |QS2n+1(f)−Gn(f)|,

E1/4 = |Q1/4
2n+1(f)−Gn(f)|, EW = |QW2n+1(f)−Gn(f)|,

ET = |QTn+2(f)−Gn(f)|,

(28)

for some values of γ, δ, and n. The actual errors in the tables are determined
by letting the rule A` in (5) be a Gauss quadrature rule G` with ` large. The
exact value I = I(f) of the integral is approximated by G`.

Example 6.1. Let

f(x) = e−x
2

and dλ̂(x) =
x+ 1.05

x+ 1.01
· dx√

1− x2
.

Table 8 depicts the maximum admissible β and the error estimates (28).
The true value of the integral is I = 2.4074780100748213295881078012 . . . .
All error estimates can be seen to be very accurate. Note that although the
formula QL2n+1 is not internal, the integrand is well defined at all nodes.

n β − 1
4

EL ES EW E1/4 ET Actual Error

5 −1.2676 × 10−2 3.72 × 10−5 3.72 × 10−5 3.73 × 10−5 3.72 × 10−5 3.72 × 10−5 3.72 × 10−5

10 −5.5308 × 10−4 1.19 × 10−12 1.19 × 10−12 1.19 × 10−12 1.19 × 10−12 1.19 × 10−12 1.19 × 10−12

15 −2.3736 × 10−5 3.23 × 10−21 3.23 × 10−21 3.23 × 10−21 3.23 × 10−21 3.23 × 10−21 3.23 × 10−21

20 −1.0180 × 10−6 1.69 × 10−30 1.69 × 10−30 1.69 × 10−30 1.69 × 10−30 1.69 × 10−30 1.69 × 10−30

30 −1.8721 × 10−9 1.48 × 10−50 1.48 × 10−50 1.48 × 10−50 1.48 × 10−50 1.48 × 10−50 1.48 × 10−50

TABLE 8: Error estimates and the magnitude of true error for Example 6.1.

Example 6.2. Let

f(x) = 999.1log10(1+x) and dλ̂(x) =
x+ 1.01

x+ 1.0001
· dx√

1− x2
.

The true value of the integral is I = 7.89896370580432612558457017927 . . . .

In this example, the rules QL2n+1, QS2n+1, and Q1/4
2n+1 have a node smaller

than −1, which makes them unusable. Table 9 shows the error estimates
(28) determined with the rules QW2n+1 and QTn+2.

n β − 1
4

EW ET Actual Error

5 −5.8655 × 10−2 4.47 × 10−8 4.45 × 10−8 4.93 × 10−8

10 −1.4642 × 10−2 3.76 × 10−10 2.90 × 10−10 4.13 × 10−10

15 −3.6145 × 10−3 2.69 × 10−11 1.58 × 10−11 2.86 × 10−11

20 −8.8325 × 10−4 4.39 × 10−12 2.06 × 10−12 4.57 × 10−12

30 −5.2392 × 10−5 3.62 × 10−13 1.20 × 10−13 3.69 × 10−13

TABLE 9: Error estimates and the magnitude of the true error for Example 6.2.
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Example 6.3. Consider

f(x) = e−
1
x2 and dλ̂(x) =

x+ 1.01

x+ 1.1

√
1− x2 dx.

All error estimates (28) can be computed and are listed in Table 10. The true
value of the integral is I = 0.0717940484396860072724252528159299116 . . . .

The quadrature rules QL2n+1, QS2n+1, and Q1/4
2n+1 can be seen to determine

the most accurate error estimates.

n β EL ES EW E1/4 ET Actual Error

5 0.34543 4.70 × 10−3 4.70 × 10−3 4.17 × 10−3 4.69 × 10−3 5.12 × 10−3 4.77 × 10−3

10 0.29904 9.81 × 10−5 9.81 × 10−5 1.00 × 10−4 9.81 × 10−5 1.94 × 10−4 9.97 × 10−5

15 0.28304 4.80 × 10−6 4.80 × 10−6 4.04 × 10−6 4.80 × 10−6 6.45 × 10−6 4.78 × 10−6

20 0.27488 1.13 × 10−6 1.13 × 10−6 1.05 × 10−6 1.13 × 10−6 4.15 × 10−7 1.13 × 10−6

30 0.26662 4.48 × 10−9 4.48 × 10−9 5.13 × 10−9 4.48 × 10−9 4.40 × 10−8 4.48 × 10−9

TABLE 10: Error estimates and the magnitude of the true error for Example 6.3.

Example 6.4. Let

f(x) = (1− x)3 ln(1− x) and dλ̂(x) =
x− 5

x− 1.25

√
1 + x

1− x
dx.

The true value of the integral is I = 1.45403744386827092525202769 . . . .

The rules QL2n+1, QS2n+1, and Q1/4
2n+1 cannot be evaluated, so Table 11 shows

only the error estimates induced by QW2n+1 and QTn+2, of which the former
yields a more accurate error estimate than the latter.

n β − 1
4

EW ET Actual Error

5 −1.2544 × 10−9 6.14 × 10−4 5.41 × 10−4 6.11 × 10−4

10 −1.3884 × 10−19 7.02 × 10−6 4.85 × 10−6 6.98 × 10−6

15 −1.5368 × 10−29 4.95 × 10−7 2.77 × 10−7 4.92 × 10−7

20 −1.7010 × 10−39 7.36 × 10−8 3.44 × 10−8 7.31 × 10−8

30 −2.0840 × 10−59 4.86 × 10−9 1.70 × 10−9 4.82 × 10−9

TABLE 11: Error estimates and the magnitude of the true error for Example 6.4.

7. Conclusion

This paper discusses the estimation of the quadrature error in n-node
Gauss rules Gn(f) associated with modifications of Chebyshev measures of
the first, second, and third kinds for some integrand f . Our default approach
to estimate the quadrature error is to evaluate averaged rules QL2n+1(f) or
optimal averaged rules QS2n+1(f) with 2n + 1 nodes. However, the rules
QL2n+1(f) and QS2n+1(f) might not be internal, i.e., these rules might have
nodes outside of the interval [−1, 1], and this makes their application impos-
sible when the integrand only is defined in the open interval (−1, 1) or its
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closure. We therefore investigate whether the truncated rules QTn+1(f) and

the weighted averaged rules Qβ2n+1(f) can be applied, where the parameter
β determines the weighting. Computed examples show the latter rules to
give more accurate estimates than the former. Moreover, we show inequali-
ties for the parameter β, such that if β satisfies these inequalities, then the
weighted averaged quadrature rules are guaranteed to be internal. These
inequalities make it easy to determine a suitable weighting. The proper-
ties and performance of the quadrature rules considered are illustrated by
numerous numerical examples.
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