
Weighted chained graphs and some applications

C. Fenua, L. Reichelb, G. Rodrigueza, Y. Zhangc

aDepartment of Mathematics and Computer Science, University of Cagliari, via Ospedale
72, Cagliari, 09124, Italy

bDepartment of Mathematical Sciences, Kent State University, Kent, 44242, OH, USA
cSchool of Data Science and Artificial Intelligence, Dongbei University of Finance and

Economics, Dalian, 116025, Liaoning, China

Abstract

This paper introduces weighted chained graphs, as well as minimal broad-
casting and receiving sets, and investigates their properties. Both directed
and undirected graphs are considered. The notion of central nodes is in-
troduced both for weighted directed and undirected graphs. This notion is
helpful for determining how quickly information can propagate throughout
a graph. In particular, it is useful for the investigation of transportation
networks and for city planning. Applications to the analysis of airline and
bus networks are presented.

Keywords: network analysis, weighted chained graph, broadcasting set,
receiving set, central vertex

1. Introduction

Many complex systems can be modeled as networks. A network is a set
of objects, referred to as nodes or vertices, that are connected by edges. The
nature of the nodes and edges depends on the application. Networks are
represented by graphs, which typically leave out many details of the system
they model. Nevertheless, graphs often are able to capture much of the
complexity of the original system, and their relative simplicity makes them
amenable to analysis. For instance, network models typically allow us to
assess which nodes and edges are particularly important in a network. Graph
models are employed in a wide range of areas including telecommunication,
transportation, epidemiology, and biology; see, e.g., Bapat [1], Bogatti [2], De
la Cruz Cabrera et al. [5], Estrada [7], Fenu and Higham [8], Newman [9],

Preprint submitted to Applied Numerical Mathematics January 7, 2024

as well as Noschese and Reichel [10] for discussions of graphs and many
applications.

We consider networks that can be represented by a weighted graph G =
{V , E ,W}, where V = {vi}ni=1 denotes a set of vertices or nodes, E = {ei}mi=1

is the set of edges that connects the vertices, and W = {wi}mi=1 are edge
weights, i.e., the edge ei is equipped with the weight wi. Each weight wi
is a non-negative scalar that indicates the strength (or importance) of the
connection between the vertices that are connected by the edge ei. A graph
is said to be unweighted if all positive weights wi equal 1. We will consider
simple graphs, i.e., graphs without multiple edges and self-loops. A directed
edge ek that points from vertex vi to vj can be identified with the ordered
pair ek = (vi, vj). A directed edge may be considered a “one-way street”.
The number of nodes that can be reached from a specific node by a directed
edge is the out-degree of that node, and the number of nodes that can reach a
specific node by a directed edge is the in-degree of that node. An undirected
edge ek between the vertices vi and vj is identified with the set ek = {vi, vj}.
Thus, an undirected edge may be regarded as a “two-way street”. If all the
edges of a graph are undirected, then the graph is said to be undirected ;
otherwise the graph is directed. The number of edges that are incident to a
specific node in an undirected graph is the degree of that node.

A walk with k+1 vertices is a sequence of vertices vi1 , vi2 , . . . , vik+1
and an

associated sequence of edges ei1 , ei2 , . . . , eik such that the edge eij in this walk
points from vertex vij to vertex vij+1

, for j = 1, 2, . . . , k. An undirected edge
eij in this walk is said to be between the vertices vij and vij+1

. The length of
the walk determined by the vertices vi1 , vi2 , . . . , vik+1

and edges ei1 , ei2 , . . . , eik
is defined as the sum of the weights of the edges in the walk, i.e., the length
is given by

∑k
j=1wij . In particular, for an unweighted graph, the length of

a walk is the number of edges that make up the walk. Vertices and edges of
a walk may be repeated. A path is a walk in which no vertex is repeated.
Assume that there is a path from node vi to node vj. Then the distance
d(vi, vj) from node vi to node vj is the length of the shortest path from node
vi to node vj measured by the sum of the weights of the edges of the path. If
the graph is unweighted, then d(vi, vj) is the number of edges in the shortest
path from vi to vj. Note that d(vi, vj) may differ from d(vj, vi); in fact, some
distances might not be defined.

Recently, Concas et al. [3, 4] introduced the notions of chained directed
and chained undirected graphs and some generalizations. For an undirected
graph, the notion of a chained graph generalizes bipartivity and allows the

2

determination of central nodes of the graph; see [4]. The analysis is based on
the use of spanning trees for the graph. A generalization to directed graphs
is described in [3]. Under suitable conditions, the chained structure can
be uncovered by using spanning trees for directed graphs. When applicable,
this analysis allows the definition of central nodes, and has been used to shed
light on the structure of graphs that arise in a variety of applications; see [3].
However, some directed graphs do not have a directed spanning tree, and
then the approach to define central nodes of an undirected graph proposed
in [4] cannot be applied.

It is the purpose of this paper to generalize the approach to chained struc-
ture for directed graphs presented in [3] in several ways: We base our analysis
on spanning forests instead of on spanning trees. This allows us to identify
a chained structure, if present, for a general directed graph. Moreover, we
allow edge weights different from one. This generalizes results both in [3, 4]
and allows us to define weighted chained structures both for directed and
undirected graphs.

This paper is organized as follows. Section 2 generalizes results on chained
structure for unweighted undirected graphs described in [4] to weighted di-
rected graphs. Our approach to define chained structure is based on the
application of directed forests. This allows the definition of chained struc-
ture for a larger set of directed graphs than the approach in [3]. Moreover,
the graphs are allowed to have edge weights different from unity. Section
3 defines the notions of node centrality for directed and weighted graphs.
Broadcasting and receiving sets are introduced. This allows the definitions
of out-centrality and in-centrality of nodes. Section 4 is concerned with
the special case of weighted undirected graphs and generalizes the discus-
sion in [4] by allowing weights different from unity. Some applications are
presented in Section 5, and concluding remarks can be found in Section 6.

2. Chained structure of weighted directed graphs

The following definition extends the notion of chained graphs introduced
in [3].

Definition 2.1. A weighted directed graph (in short, “digraph”) G = {V , E ,W}
is said to be weighted `-chained with initial vertex set V1 if to each edge e ∈ E
is associated a positive weight w ∈ W and the set of vertices can be partitioned

3

into ` disjoint non-empty subsets

V = V1 ∪ V2 ∪ · · · ∪ V` (2.1)

such that all edges connect vertices in the set Vj to vertices in the set Vj+1,
for j = 2, 3, . . . , ` − 1. The chain length ` is the largest number of vertex
subsets Vj possible with this property. The vertex sets Vj and Vj+1, for j =
1, . . . , `− 1, are said to be consecutive.

An undirected edge in a digraph may be regarded as a pair of directed
edges of opposite orientations. Many real-world weighted networks may not
have an `-chained structure. We therefore also consider more general net-
works, described by Definition 2.2 below, that allow edges between non-
consecutive vertex subsets.

Definition 2.2. A weighted digraph G = {V , E ,W} is said to be weighted
(`, k)-chained with initial vertex set V1 if it has the chained structure described
in Definition 2.1 with the extension that edges may connect vertices belonging
to non-consecutive vertex subsets. The lower bandwidth k is defined as the
largest integer for which there exists an edge from a vertex in the subset Vj
and a vertex in the subset Vj−k.

Remark 2.1. The bandwidth k is always larger than or equal to −1 and
smaller than `. If k = −1, then Definition 2.2 agrees with Definition 2.1. If
an edge connects a node v1 in Vj to a node v2 in Vj+k, with k > 1, then node
v2 is to be moved to the set Vj+1.

A digraph is said to be strongly connected if there exist directed paths
connecting each vertex pair (vi, vj) in both directions. It is semi-connected
if for some vertex pair such a connection exists only in one direction. A
digraph is weakly connected if there is an undirected path that connects any
vertex pair (vi, vj), i.e., a path obtained by replacing all directed edges by
undirected ones. An undirected graph is said to be connected if each vertex
pair is connected by a path; see [7, 9].

Theorem 2.1. Every weakly connected digraph is (`, k)-chained.

4

Proof. Let the node set V1 initially only contain the node v1, and consider
undirected paths for all vertex pairs (v1, vi), i = 2, . . . , n. Let one of these
paths, of length s − 1, be (v1, vi2 , . . . , vis−1 , vis). If there is a directed edge
that connects v1 to vi2 , then vi2 ∈ V2; otherwise the edge is directed from
vi2 to v1 and vi2 ∈ V0. Proceed similarly for all other nodes in the path. If
node vir in the path already has been assigned to a set Vj, then the node
vir+1 must be attributed either to the set Vj−1 or to the set Vj+1, depending
on the orientation of the edge that connects the two vertices. The proof is
valid for both weighted and unweighted directed graphs.

Since the graph is weakly connected, every node will be assigned to a set
Vj and, given the way the sets have been constructed, every node in Vj will
be connected to a node in Vj+1. When the process ends, the node sets must
be renumbered as V1, . . . ,V`, and the missing edges must be added to the new
graph. If the initial graph is `-chained, then we will end up with the chained
structure of the graph. Otherwise, there will be some connections going from
nodes in Vj to Vj−k. If some k is smaller than −1, then the corresponding
node must be relocated so that k ≥ −1. In the end, the largest value of k
will identify the underlying (`, k)-chained structure.

The following example explains how to detect an (`, k)-chained structure
of a weakly connected graph.

Example 2.1. Consider the weakly connected digraph shown in Figure 1(a).
To detect its (`, k)-chained structure, let v1 ∈ V1 be the initial node. Since
there is a directed edge e1 that points from v1 to v2, node v2 should be placed
in vertex set V2. Edge e2 provides a connection from v3 to v2. Therefore,
node v3 belongs to vertex set V1. Continuing the process, nodes v4 and v5 are
assigned to V2. Then, for the last node v6, we have two possible assignments.
We may assign v6 to the vertex set V1 according to the direction of edge
e5. The edge e6, which points from v4 to v6, indicates that k = 1 and a
(2, 1)-chained graph is achieved; see Figure 1(b).

Alternatively, we may consider the direction of edge e6 and assign v6 to
V3, as in Figure 1(c). However, this configuration is not permitted, as there
is a “long” forward connection from v3 to v6. Hence, v6 has to be moved to
the set V2. Then, edges e5 and e6 indicate that k = 0, and we obtain the
(2, 0)-chained graph of Figure 1(d). Considering the edge e7 would result in
the same node sets.

5

v1 v2

v3

v4

v5

v6

e1

e2

e4

e3

e6

e5 e7

(a)

v1

v2

v3

v4 v5

v6

(b)

v1

v2

v3

v4 v5

v6

(c)

v1

v2

v3

v4 v5v6

(d)

Figure 1: A weakly connected digraph (a) and two (`, k)-chained structures (b and d)
obtained from it.

Theorem 2.2. Every digraph is (`, k)-chained.

Proof. Since any digraph is the union of weakly connected components, The-
orem 2.1 can be applied to every one of these components. The chained struc-
tures of these components can be merged. For instance, let two components
produce the chained structures (V1, . . . ,V`) and (V ′1, . . . ,V ′`′), with `′ < `.
Then the first structure can be updated, without increasing the chain length,
by setting Vi = Vi ∪ V ′i−j, i = j + 1, . . . , j + `′, for any j = 0, . . . , `− `′.

The chained structure of a directed graph can be identified independently
of the weights. For the sake of simplicity, we drop the weights in the following
when they are not relevant.

Definition 2.3. A digraph is said to be an out-tree if it is acyclic (i.e., it
does not contain any directed or undirected cycles) and if it has only one
vertex v with zero in-degree. The vertex v is called the root of the out-tree.

6

When the graph is undirected, the in-degree and out-degree of a node are the
same, and are referred to as the degree of the node.

Sometimes, an out-tree is referred to as an arborescence, or a branching ;
see [6]. Figure 2 shows an example of an arborescence.

v1

v2 v3

v4 v5

v6 v7 v8

v9

v10
v11

v12

Figure 2: An arborescence rooted at node v1.

Definition 2.4. A digraph is said to be an in-tree if it is acyclic and only
has one vertex v with zero out-degree. This vertex is referred to as the root
of the in-tree.

Definition 2.5. A spanning subgraph G ′ = {V , E ′} of a weakly connected
digraph G = {V , E} is a graph with the same vertex set V but a possibly
smaller edge set E ′ ⊂ E. A spanning out-tree (in-tree) is a spanning subgraph
that is an out-tree (in-tree).

Figure 3 shows an example of a digraph that admits a spanning out-tree
rooted at node v1.

Not all digraphs admit a spanning out-tree or in-tree. These digraphs
can be studied with the aid of spanning forests.

Definition 2.6. A spanning forest G ′ = {V , E ′} for a digraph G = {V , E} is
an acyclic spanning subgraph that may consist of disconnected components.
Every connected component of a spanning forest is either an out-tree or an
in-tree.

Every spanning forest is a weighted `-chained graph with the vertex set
V1 containing the roots of each arborescence and the subset Vi containing the

7

v1 v2

v3 v4

v5

v6

v7

v1

v2

v3 v4

v5

v6

v7

Figure 3: A digraph (left) and one of its spanning arborescences (right).

v1 v2

v3 v4

v5

v6

v7

v1 v2

v3 v4

v5

v6

v7

Figure 4: On the left, a digraph that does not admit a spanning arborescence; on the
right, a spanning forest for the graph.

children of the vertices in Vi−1, for i = 2, . . . , `. The roots of each out-tree
may be placed in node sets different from V1, if this is useful.

A chained digraph is not necessarily a forest, but any (`, k)-chained di-
graph has a spanning forest. Figure 4 shows an (`, k)-chained graph which is
not a forest and does not admit a spanning out-tree, together with a spanning
forest for it. The roots of each out-tree in the forest are marked in red. This
digraph is (4, 2)-chained with V1 = {v1, v2}, V2 = {v3, v4}, V3 = {v5, v7}, and
V4 = {v6}; the bandwidth is 2 since there is a connection from v6 ∈ V4 to
v4 ∈ V2. Figure 5 displays other spanning forests for the same graph with
roots v1 and v2.

The (`, k)-chained structure of a weakly connected graph is closely related

8

v2

v6

v1

v4v3

v5 v7

v1

v6

v2

v4

v3

v5

v7

Figure 5: Spanning forests of the digraph in Figure 4.

to a spanning forest for the graph, in the sense that the latter can be deduced
from the former. On the contrary, a spanning forest alone does not allow the
determination of the chained structure for the graph that it spans, because
the spanning forest lacks information about which sets Vj contain the roots.

Motivated by the above discussion, we show in the following that spanning
trees and forests are useful tools for detecting the chained structure of a
digraph. Algorithm 1 constructs a forest containing a subset of the nodes
either made of out-trees or of in-trees, depending on the value of the third
input argument. The result is simply a tree if a single node is given as
input. If an incomplete chained structure for a network is given as input,
then Algorithm 1 extends this structure by constructing either all the out-
trees by starting from nodes in V1 or all in-trees ending at nodes in V`. The
algorithm starts by scanning the input chained structure by considering all
the available node sets Vj, j = 1, . . . , `, or initializing a new set as empty; see
lines 5–9. If an out-forest is sought, then the algorithm selects all the nodes
pointed to by vertices in Vj−1, removing those already present in another set
(lines 10–18), and adds them to the set Vj. A slight modification of Algorithm
1 allows the handling of an in-forest. The iteration is interrupted when all the
nodes have been added (in this case a spanning forest is obtained) or when
no new nodes are available. The output is the updated chained structure
and the corresponding forest.

Algorithm 2 identifies the chained structure of a graph, returning the
node sets Vi, i = 1, . . . , `, and the corresponding spanning forest. It starts

9

Algorithm 1 Construction of an out-forest or a in-forest (function iofor-
est).

Require: Adjacency matrix A = [aij]
n
i,j=1 ∈ Rn×n, incomplete directed

chained structure V , inflag = ’in’ or ’out’
Ensure: Out/in forest F = {T1, . . . , Tτ} starting/ending at the first/last set

of V , updated chained structure V , set S of the nodes involved
1: if inflag = ’in’ then reverse the chained structure V
2: S = ∪Vi, ` = length(V), j = 1
3: while cardinality(S) < n do
4: j = j + 1
5: if j ≤ ` then
6: V = Vj
7: else
8: V = ∅
9: end if

10: for v ∈ Vj−1 do
11: if inflag = ’in’ then
12: Ω = {nodes pointing to v}
13: else
14: Ω = {nodes pointed by v}
15: end if
16: Ω = Ω \ (Ω ∩ S) (remove from Ω the nodes contained in S)
17: V = V ∪ Ω, S = S ∪ Ω
18: end for
19: if V = ∅ and j > ` then
20: j = j − 1
21: exit the while loop
22: end if
23: Vj = V
24: end while
25: Extract an out/in forest T from V
26: if inflag = ’in’ then reverse the chained structure V

by constructing, in line 1, the out-tree starting at a chosen node v. This
produces an initial partial chained structure V . Then the algorithm extends
this structure (see lines 4–9) by iteratively constructing the in-forest ending
at V` and the out-forest starting at V1. This is done by calling Algorithm 1.

10

Algorithm 2 terminates when all the nodes have been included in the chained
structure. If this fails, then the graph is not weakly connected; this follows
from Theorem 2.1. If needed, then the chained structure obtained can be
extended by initializing Algorithm 2 with a node that is not in the connected
component just found. The chained structures so determined may be joined
by identifying the node sets with the same index, but different couplings are
possible; see the proof of Theorem 2.2. We remark that Algorithms 1 and 2
do not perform any floating-point operations, only integer and set operations.
Their time complexity can be characterized by the fact that the n vertices
and m edges are visited at least once.

Algorithm 2 Identification of a directed (`, k)-chained graph.

Require: Adjacency matrix A = [aij]
n
i,j=1 ∈ Rn×n, initial node v

Ensure: Directed chained structure V = {V1, . . . ,V`} and spanning forest
F = {T1, . . . , Tτ}, if they exist

1: [F ,V ,S] = ioforest(A, v, ’out’) % determine an out-forest F , with root
at node v, and the corresponding chained structure V involving the nodes
in S

2: Nold = −1
3: N = length(S)
4: while N < n and N 6= Nold do
5: Nold = N
6: [F ,V ,S] = ioforest(A,V , ’in’) % find an in-forest ending at V`
7: [F ,V ,S] = ioforest(A,V , ’out’) % find an out-forest starting at V1
8: N = length(S)
9: end while

10: if N < n then
11: The graph has not a chained structure, so it is not weakly connected.
12: end if

3. Broadcasting sets, receiving sets, and central nodes for directed
graphs

It is important in some applications to be able to determine a small set of
nodes of a digraph that can spread information to all other nodes of a network
at minimal cost, where the cost is measured by summing the weights of the
edges traversed. We will denote such a set as the minimum broadcasting set.

11

Chained structures and spanning forests are helpful for determining such
sets.

Definition 3.1. A minimum spanning forest is a spanning forest whose sum
of weights is the minimum possible.

Definition 3.2. A broadcasting set for a graph G = {V , E ,W} is a subset
of nodes B ⊂ V such that

1. B is connected to every other node in V, in the sense that for any vj /∈ B
there is a node vi ∈ B connected by a path to vj;

2. B is “essential”, that is, by removing any node from B property 1 is
lost.

A minimum broadcasting set is such that the distance between B and any
other vertex in the network

εout(B) = max
vj /∈B

min
vi∈B

d(vi, vj)

is minimal.
Similarly, a receiving set for a graph G = {V , E ,W} is an “essential”

subset R ⊂ V such that there is a path from every node in V ending in R. A
minimum receiving set is such that the distance between the vertices in the
network and R,

εin(R) = max
vj /∈R

min
vi∈R

d(vj, vi),

is minimal.

The eccentricity of a vertex in a graph is the maximum distance from this
vertex to any other vertex of the graph. Consider a broadcasting set as a
macro-node. Then εout(B) coincides with the eccentricity of the broadcasting
set. By minimizing the eccentricity, the radius of G is obtained. We will refer
to εout(B) and εin(R) as the out-eccentricity of B and in-eccentricity of R,
respectively.

If a network is `-chained, then there is only one broadcasting set. It
coincides with V1 plus any other node without an incoming edge.

Theorem 3.1. A broadcasting set for a general weakly connected graph is
always the union of a subset of the set V1 of an (`, k)-chained structure for
the graph, and the set of nodes with zero in-degree.

12

Proof. The subset of V1 is obtained by removing nodes with zero out-degree.

An analogous statement can be made for the receiving set R and the set
V`. In this case, nodes with zero out-degree must be included in R. In an
(`, k)-chained network, different chained structures can be determined. It is
therefore meaningful to consider the minimum broadcasting set.

Example 3.1. The graph in Figure 6(a) admits three (`, k)-chained struc-
tures ((b),(c), and (d) in Figure 6). The broadcasting sets associated with
these chained structures are different. From the (4, 2)-chained structure (b),
the obtained broadcasting set is Bb = {v1, v5}. Similarly, from the (3, 2)-
chained structure (c) and the (3, 2)-chained structure (d), we obtain Bc =
{v2, v5} and Bd = {v3, v5}, respectively.

To better illustrate the connections between a broadcasting or receiving
set and the rest of the vertices in a digraph, we introduce the concept of
centrality to describe the spread of information from the broadcasting set or
the reception of information by the receiving set.

Definition 3.3. The out-centrality of the broadcasting set Bi is defined as

P out
p (Bi) =

∑
vj /∈Bi

min
vi∈Bi

d(vi, vj)
p

1/p

,

where d(vi, vj) denotes the distance from node vi ∈ Bi to node vj ∈ V \Bi, as
defined in Section 1, and p ∈ R. We refer to a broadcasting set Bm with the
smallest out-centrality as a p-minimum broadcasting set.

Similarly, the in-centrality of the receiving set Ri ∈ V is given by

P in
p (Ri) =

∑
vj /∈Ri

min
vi∈Ri

d(vj, vi)
p

1/p

,

where p ∈ R. The receiving set with the smallest in-centrality, Rm, is called
the p-minimum receiving set.

13

v2

v1

v3

v4

v5

(a)

v1

v2

v3

v4

v5

(b)

v3

v2

v1 v4

v5

(c)

v1

v2

v3

v4

v5

(d)

Figure 6: An unweighted weakly connected digraph with some of its (`, k)-chained struc-
tures(b,c,and d)

Example 3.2. Consider the graph in Figure 6(a). We identified in Exam-
ple 3.1 the broadcasting sets Bb = {v1, v5}, Bc = {v2, v5} and Bd = {v3, v5}.
After assigning weights to each edge in the graph as shown on the left of
Figure 7, we let p = 2 and evaluate the out-centrality of the broadcasting set
Bb as

P out
2 (Bb) = (22 + 52 + 52)1/2 ≈ 7.348.

The out-centrality of Bc and Bd is calculated as P out
2 (Bc) = (62+32+52)1/2 ≈

8.367 and P out
2 (Bd) = (32 + 52 + 22)1/2 ≈ 6.164, respectively. Therefore, Bd

is the 2-minimum broadcasting set. Similarly, from Figure 6(b), we identify
the receiving set Rb = {v4}, which is displayed on the right of Figure 7. The
in-centrality of Rb with p = 2 is

P in
2 (Rb) = (72 + 52 + 22 + 52)1/2 ≈ 10.149.

14

v1

v2

v3

v4

v5

2

3

3

2 5

v1

v2

v3

v4

v5

2

3

3

2 5

Figure 7: A weighted weakly connected digraph with the broadcasting set Bb = {v1, v5}
on the left and the receiving set Rb = {v4} on the right.

If we instead let p = 1, then we obtain P out
1 (Bb) = 12, P out

1 (Bc) = 14,
P out
1 (Bd) = 10, and P in

1 (Rb) = 19.

Algorithm 3 summarizes the steps to obtain the broadcasting set Bi and
its out-position centrality starting from the chained structure V with vertex
vi as a root. Once that all the broadcasting sets have been found, the one
with smallest out-centrality easily can be selected.

4. Central nodes for undirected graphs

This section discusses how to determine the chained structure of weighted
undirected graphs, and how to identify their center node(s). We consider
graphs that are undirected, connected, simple, and weighted. The chained
structure of these graphs extends the notion of chained graphs in [4].

The vertices vi and vj are said to be adjacent if there is an edge that
connects these nodes.

Definition 4.1. An undirected graph G = {V , E ,W} is said to be weighted
and `-chained with initial vertex vi if each edge e ∈ E is associated with a
positive weight w ∈ W and the set of vertices V can be partitioned into `
disjoint non-empty subsets

V = V1 ∪ V2 ∪ · · · ∪ V`, (4.1)

such that vi ∈ V1 and all the vertices in the set Vj are adjacent only to
vertices in the sets Vj−1 or Vj+1, for j = 2, 3, . . . , `− 1. The chain length `

15

Algorithm 3 Identification of the broadcasting set and computation of its
out-centrality.

Require: Adjacency matrix A = [aij]
n
i,j=1 ∈ Rn×n, (`, k)-chained structure

V , p ∈ R
Ensure: broadcasting set Bi and out-position centrality P out

p (Bi)
1: Bi = V1
2: T = V \ V1
3: D = distances(Bi, T)
4: d = min(D)
5: if any(d) =∞ then % Some nodes in T cannot be reached from Bi
6: V = isinf(d) % Find unreachable nodes
7: A = T (V)
8: A = A \ {nodes with zero out-degree}
9: Bi = Bi ∪ A

10: end if
11: T = T \ A
12: D = distances(Bi, T)
13: d = min(D)
14: P out

p = ‖d‖p

of the graph G is the largest number of vertex subsets Vj with this property.
It typically depends on the choice of initial vertex vi. The vertex sets Vj and
Vj+1 are said to be consecutive for j = 1, 2, . . . , `− 1.

Definition 4.2. An undirected graph G = {V , E ,W} is said to be weighted
`-semi-chained with initial vertex vi if it has the chained structure described
in Definition 4.1 with the extension that connections are allowed between
vertices belonging to the same vertex subset.

We remark that every weighted undirected graph has an `-(semi-)chained
structure. The determination of the chained structure of weighted undirected
graphs is independent of the weights. The notion of a tree can be helpful for
determining the chained structure of a graph.

Definition 4.3. A tree is a connected undirected graph in which any two
vertices are connected by exactly one path. Any vertex of a tree may be
designated as the root. Vertices with degree one, except for the root, are
referred to as leaves.

16

Definition 4.4. A spanning tree for a weighted undirected graph G = {V , E ,W}
is a subgraph T = {V , E ′,W ′} that is a tree and contains all the vertices of
G.

Definition 4.5. A shortest-path spanning tree is a spanning tree such that
the path distance from the root to any other vertex is the smallest possible.

We remark that the shortest-path spanning tree is not necessarily unique.
The following example illustrates the process of determining the chained
structure of a weighted undirected graph by identifying a shortest-path span-
ning tree.

v1

v2 v3

v4 v5 v6

3 3

4

5

4 3

2

Figure 8: A weighted undirected graph.

v5

v4 v6

v2 v3

v1

4 3

5 2

3

v5

v4 v6

v1

v3

v2

4 3

2

34

Figure 9: The shortest-path trees T 5
1 (left) and T 5

2 (right).

17

5

4 6

2 3

1

4 3

5 2

3
3

4

5

4 6

1

3

2

4 3

2

34

3

5

Figure 10: The missing edges (in black) are added to the trees in Figure 9 respectively.

Example 4.1. Figure 9 shows two shortest-path spanning trees rooted at
vertex v5 for the weighted undirected graph G in Figure 8. Notice that from
vertex v5 to vertex v2 there are two shortest paths of length 9. One path
contains the edge from v5 to v4 and the edge from v4 to v2. This can be seen
in the shortest-path spanning tree T 5

1 . The other path displays the shortest-
path spanning tree T 5

2 , which connects nodes from v5 to v6, from v6 to v3,
and from v3 to v2.

The chained structures of the shortest-path trees T 5
1 and T 5

2 also can be
identified from Figure 9. The partition of nodes of T 5

1 is V1 = {v5}, V2 =
{v4, v6}, V3 = {v2, v3}, and V4 = {v1}. For the tree T 5

2 , the partition is given
by V1 = {v5}, V2 = {v4, v6}, V3 = {v3}, and V4 = {v1, v2}.

To determine the chained structure of the graph G, we add the edges in G,
but not in T 5

1 , to the spanning tree T 5
1 as shown on the left of Figure 10. The

graph G is identified as a 4-semi-chained graph. Similarly, the graph on the
right in Figure 10 is constructed by adding the missing edges in G, but not
in T 5

2 , to the spanning tree. With this node partitioning, the structure is not
chained since the adjacent nodes v4 and v2 neither belong to two consecutive
node subsets nor to the same node subset.

For weighted undirected graphs, it is interesting to determine nodes that
can spread information to all the other nodes in the graph in the shortest
amount of time, or for the least cost, depending on the meaning attributed
to the weights of the edges. Such nodes are referred to as center nodes. The

18

determination of center nodes can be easily achieved if the chained struc-
ture and the associated shortest-path spanning tree of a weighted undirected
graph are known.

Definition 4.6. Let T be a shortest-path spanning tree of the weighted undi-
rected graph G = {V , E ,W} with chained structure

V = V1 ∪ V2 ∪ · · · ∪ V` (4.2)

starting at vertex vi ∈ V1. The centrality of vertex vi, for p ≥ 0, is defined as

Pp(vi) =

(
n∑
j=1

d(vi, vj)
p

)1/p

.

This centrality measure coincides with the p-norm of the vector of the dis-
tances between the vertex vi and any other vertex in the graph when p ≥ 1.
We refer to a vertex with the smallest centrality as a p-center vertex.

19

position centrality of node 1:
13.0767

Shortest-path tree starting at node 1

1

2

3

45

6

3

3

4

5

2

4

3

position centrality of node 2:
18.3848

Shortest-path tree starting at node 2

1

2

3

45

6

3

3

4

5

2

4

3

position centrality of node 3:
21.7486

Shortest-path tree starting at node 3

1

2

3

45

6

3

3

4

5

2

4

3

position centrality of node 4:
26.6083

Shortest-path tree starting at node 4

1

2

3

45

6

3

3

4

5

2

4

3

position centrality of node 5:
30.05

Shortest-path tree starting at node 5

1

2

3

45

6

3

3

4

5

2

4

3

position centrality of node 6:
32.0312

Shortest-path tree starting at node 6

1

2

3

45

6

3

3

4

5

2

4

3

Figure 11: Shortest-path spanning trees rooted at each node of the weighted graph G in
Figure 8, each with its computed position centrality for p = 2.

20

We remark that for unweighted undirected graphs, the definition of posi-
tion centrality with p = 1 coincides with the one given in [4] for undirected
chained graphs.

Example 4.2. Consider the graph in Figure 8. The spanning trees rooted
at each vertex vi, for i = 1, 2, . . . , 6, with its computed position centrality for
p = 2 are displayed in Figure 11. The 2-center node is the node v1.

5. Some examples

This section illustrates how the broadcasting and receiving sets and its
associated chained structure can be determined in real world transportation
networks. We investigate the impact of weight changes on the out- and in-
centralities of the broadcasting and receiving sets.

5.1. Airline network

We consider the airline data set reported by the Bureau of Transportation
Statistics of the U.S. Department of Transportation. It describes the airline
routes between 129 cities in the 48 contiguous states of the U.S. for the
first three quarters of 2019. From this airline data set, we obtain a graph
G = {V , E ,W}, where the node set V and the edge set E are represented by
cities and airline routes, respectively. The entries of W = [wi,j]

129
i,j=1 denote

weights that equal the number of passengers in the flights from city i to
city j, for i, j = 1, 2, . . . , 129. If there are no flights between two cities,
the corresponding weight is set to zero. Since the number of passengers of
the flights is reported for each quarter, we take the average numbers as the
weights. Since the flights between some of the cities are one-way, the airline
network is directed.

Let us first determine the broadcasting and receiving sets. We first iden-
tify the minimum broadcasting set, which contains 83 vertices with 1-out-
centrality equal to 10973. The associated chained structure is {4, 2}-chained,
which can be obtained when the initial vertex is one of the following:

v10, v28, v33, v49, v56, v60, v68, v78.

The minimum receiving set contains 76 vertices and its 1-in-centrality is
12505. The associated chained structure is {4, 2}-chained with initial vertex
v25.

21

Figure 12: Some airports in the United States.

To enhance the visualization of the broadcasting and receiving sets, we
use red and blue dots to represent the nodes in the minimum broadcasting
set and the minimum receiving set, respectively, on the map of the United
State in Figure 12. This map is available at https://usamap360.com/

usa-airports-map. We notice that 30 vertices appear both in the broad-
casting set and in the receiving set, which are displayed by green dots. Not
all of the 129 cities are marked on the map.

It can be seen that the vertices marked by red and blue dots are mostly
small and medium-sized cities, while most of the vertices represented by
green dots are large cities. Among the vertices in the minimum receiving set,
most of them are tourist destinations, such as San Diego and San Francisco
in California, and Orlando, Tampa and West Palm Beach in Florida. We
remark that nodes in the minimal broadcasting and receiving sets are not
necessarily important airports; some of the airports in these sets are just
difficult to reach or leave.

22

https://usamap360.com/usa-airports-map
https://usamap360.com/usa-airports-map

5.2. Bus network

This example considers the bus system that serves the metropolitan region
surrounding the town of Cagliari in Sardinia, Italy. The region is roughly
100 km2, with a population of 4.2 · 105 people, and is made up of the town of
Cagliari as well as other smaller, sometimes contiguous municipalities that
are very close to Cagliari, such as Monserrato, Selargius, Quartucciu, Quartu
Sant’Elena, Elmas, Assemini, and Decimomannu; see Figure 13.

10/10/21, 4:51 PM Google Earth

https://earth.google.com/web/search/Cagliari,+CA/@39.22787065,9.1422226,-2.94654193a,20112.96297866d,35y,0h,0t,0r/data=CigiJgokCQMcZkrdMkBAEQMcZkrdMkDAGTFlA… 1/1

Data delle immagini: dopo il giorno 03/07/19 Videocamera: 20 km 39°13'40"N 9°08'32"E -3 m

Data SIO, NOAA, U.S. Navy, NGA, GEBCO TerraMetrics

2.000 m

Figure 13: Cagliari metropolitan area; image produced by Google Earth.

This example has been studied in [3] as an unweighted undirected net-
work, using only information about connections between bus stops. The data
set used in this section contains information about the number of passengers
transported, too. It therefore can be represented by a weighted graph.

Every bus stop defines a node in the network and bus routes between
consecutive stops define edges. The network has 912 nodes and 1068 edges.

23

Figure 14: Bus network of the Cagliari metropolitan area.

Figure 14 shows a graphical representation of the network and Figure 15
shows the spy plot of the adjacency matrix A. The resulting network is
weighted, that is, every edge is equipped with a nonnegative weight corre-
sponding to the number of passengers traversing that edge in one day. Bus
routes are direction-dependent since certain streets are one-way. Thus, the
bus network is directed.

0 200 400 600 800 900

nz = 1068

0

100

200

300

400

500

600

700

800

900

Figure 15: Spy plot of the adjacency matrix of the bus network of the Cagliari metropolitan
area.

24

Figure 16: Bus network of the Cagliari metropolitan area. The red dots are the vertices in
the minimum broadcasting set and the black dots are the ones in the minimum receiving
set.

We first determine the broadcasting and receiving sets. The minimum
broadcasting set contains 3 vertices, namely v223, v704, and v705, with 1-out-
centrality equal to 2.99 · 107. The associated chained structure is {70, 53}-
chained which can be obtained when v223 is the initial vertex. The minimum
receiving set contains the vertices v355, v700, v701, v702, v703, and v912, and
its 1-in-centrality is 8.59 · 107. The associated chained structure is {86, 47}-
chained with initial vertex v541. These large values of the bandwidth k are not
surprising since bus networks are usually made up by several path networks.

In Figure 16, red and black dots indicate the nodes in the minimum
broadcasting set and the minimum receiving set, respectively. Similarly as
in the case of the airport data set, the vertices in the minimum broadcasting
set and receiving set are mostly not well-connected bus stops. Indeed, all
but two of them belong to suburban areas of Quartu Sant’Elena and the
remaining two are non-central bus stops in Cagliari. This example shows
that, even if nodes in the minimum broadcasting can reach every other node
in the network at the minimum cost, they are not easily reachable from the
rest of the network. A similar statement can be made for the minimum
receiving set.

25

6. Conclusion

This paper elucidates the relation between directed graphs and spanning
forests. We define minimal broadcasting and receiving sets, as well as out-
central nodes and in-central nodes. These notions are useful, e.g., for study-
ing communication and transportation networks, as well as for city planning.
Several examples are discussed in the paper.

Aknowledgment

The authors would like to thank the referees for comments. CF and
GR were partially supported by Fondazione di Sardegna, Progetto biennale
bando 2021, “Computational Methods and Networks in Civil Engineering
(COMANCHE)”, and by the INdAM-GNCS 2023 project “Tecniche nu-
meriche per lo studio dei problemi inversi e l’analisi delle reti complesse”.

References

[1] Bapat, B. P., Graphs and Matrices, Springer, London, 2001.

[2] Borgatti, S. P., Centrality and network flow, Soc. Netw. 27 (2005) 55-71.

[3] Concas, A., Fenu, C., Reichel, L., Rodriguez, G., and Zhang, Y.,
Chained structure of directed graphs with applications to social and
transportation networks, Appl. Netw. Sci. 7 (2022), art. 64.

[4] Concas, A., Reichel, L., Rodriguez, G., and Zhang, Y., Chained graphs
and some applications, Appl. Netw. Sci. 6 (2021), art. 39.

[5] De la Cruz Cabrera, O., Jin, J., Noschese, S., and Reichel, L., Commu-
nication in complex networks, Appl. Numer. Math. 172 (2022) 186–205.

[6] Deo, N., Graph Theory with Applications to Engineering and Computer
Science, Dover, Mineola, 2017.

[7] Estrada, E., The Structure of Complex Networks: Theory and Applica-
tions,Oxford University Press, Oxford, 2012.

[8] Fenu, C., and Higham, D. J., Estimating and increasing the structural
stability of a network, SIAM J. Matrix Anal. Appl. 38 (2017) 343–360.

26

[9] Newman, M. E. J., Networks: An Introduction, Oxford University Press,
Oxford, 2010.

[10] Noschese, S., and Reichel, L., Estimating and increasing the structural
robustness of a network, Numer. Linear Algebra Appl. 29 (2022), art.
e2418.

27

	Introduction
	Chained structure of weighted directed graphs
	Broadcasting sets, receiving sets, and central nodes for directed graphs
	Central nodes for undirected graphs
	Some examples
	Airline network
	Bus network

	Conclusion

