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Abstract

This paper discusses weighted tensor Golub-Kahan-type bidiagonalization processes using the
t-product. This product was introduced in [M. E. Kilmer and C. D. Martin, Factorization
strategies for third order tensors, Linear Algebra Appl., 435 (2011), pp. 641–658]. A few steps
of a bidiagonalization process with a weighted least squares norm are carried out to reduce
a large-scale linear discrete ill-posed problem to a problem of small size. The weights are
determined by symmetric positive definite (SPD) tensors. Tikhonov regularization is applied
to the reduced problem. An algorithm for tensor Cholesky factorization of SPD tensors is
presented. The data is a laterally oriented matrix or a general third order tensor. The use
of a weighted Frobenius norm in the fidelity term of Tikhonov minimization problems is
appropriate when the noise in the data has a known covariance matrix that is not the identity.
We use the discrepancy principle to determine both the regularization parameter in Tikhonov
regularization and the number of bidiagonalization steps. Applications to image and video
restoration are considered.

Key words: discrete ill-posed problem, tensor Golub-Kahan bidiagonalization, t-product,
weighted Frobenius norm, Tikhonov regularization, discrepancy principle

1 Introduction

We are concerned with the iterative solution of large-scale least squares problems of the form

min
~X∈Rm×1×n

‖A ∗ ~X − ~B‖2M−1 , A ∈ R`×m×n, ~B ∈ R`×1×n, (1.1)

where A = [aijk]`,m,ni,j,k=1 ∈ R`×m×n is a third order tensor, ~X and ~B are laterally oriented m × n
and `× n matrices, respectively, and ‖ · ‖M−1 denotes a weighted Frobenius norm; see below. The

tensor A specifies the model and the tensor ~B represents measured data that is contaminated by
an error ~E , i.e.,

~B = ~Btrue + ~E , (1.2)

where ~Btrue ∈ R`×1×n denotes the unknown error-free data tensor associated with ~B. The use of a
weighted Frobenius norm is appropriate when the error ~E is not white Gaussian.

We consider minimization problems (1.1) for which the Frobenius norm of the singular tubes of
A, which are analogues of the singular values of a matrix, decay rapidly to zero, and there are many
singular tubes of tiny Frobenius norm of different orders of magnitude; see [19, 27] for examples of
such problems. This makes the solution of (1.1) a linear discrete ill-posed problem. The operator
∗ denotes the t-product introduced by Kilmer and Martin [19]; see Section 2 for details.

∗ e-mail: reichel@math.kent.edu
† e-mail: uugwu@kent.edu



We will assume that the (unavailable) system of equations

A ∗ ~X = ~Btrue

is consistent and let ~Xtrue ∈ Rm×1×n denote its unique solution of minimal Frobenius norm. We
would like to determine an accurate approximation of ~Xtrue given A and ~B.

Problems of the form (1.1) arise, e.g., in image deblurring, see, e.g., [18, 26, 27, 28], where the

goal is to recover an accurate approximation of the unavailable exact image ~Xtrue by removing blur
and noise from an available degraded image that is represented by ~B. The tensor A represents a
blurring operator and typically is ill-conditioned. The ill-conditioning of A, and the presence of the
error ~E in ~B make it difficult to solve (1.1). In particular, straightforward solution of (1.1) typically

gives a meaningless restoration due to a large propagated error, which stems from the error ~E
in ~B. Regularization, such as by Tikhonov’s method, is required to ensure that the computed
approximate solution of (1.1) is useful. Regularization techniques for (1.1) when the norm is the
standard Frobenius norm have received some attention in the literature; see [12, 19, 26, 27, 28]. Here
we consider replacing the the minimization problem (1.1) by a penalized weighted least squares
problem of the form

min
~X∈Rm×1×n

{
‖A ∗ ~X − ~B‖2M−1 + µ−1‖ ~X‖2L−1

}
, (1.3)

where the tensors M ∈ R`×`×n and L ∈ Rm×m×n are symmetric positive definite (SPD) with
inverses M−1 and L−1, that determine weighted Frobenius norms; see below for a definition. The
notion of positive definiteness for tensors under the t-product formalism is discussed by Beik et al.
[7]. The first term in (1.3) is commonly referred to as the fidelity term and the second term as the
regularization term.

The Tikhonov regularization problem (1.3) is said to be in standard form when M and L are
equal to the identity tensor, which we denote by I. It is well known how large-scale problems in
standard form can be reduced to small problems by using Arnoldi-type or bidiagonalization-type
processes; see [12, 26, 27, 28]. Tikhonov minimization problems (1.3) with L or M different from
I are said to be in general form. The choice of the norm in the fidelity term should depend on
properties of the error ~E and the choice of the norm in the regularization term should depend on
properties of the desired solution Xtrue. We will discuss these choices in Section 5. Other tensor-
based solution methods, that do not use the t-product, for minimization problems (1.3) in standard
form are discussed in [5, 6, 11, 13].

Throughout this paper, ‖ ~X‖N denotes the Frobenius norm of ~X induced by an SPD tensor

N ∈ Rm×m×n. We will refer to this norm as the N -norm of a lateral slice ~X ; see Section 2 for
the definition of the N -norm of a general third order tensor X ∈ Rm×p×n, p > 1. The N -norm of
~X ∈ Rm×1×n is defined as

‖ ~X‖N =
√(

~X T ∗ N ∗ ~X
)
(:,:,1)

.

Thus, this norm is the square root of the (1, 1, 1)th entry of ~X T ∗ N ∗ ~X ∈ R1×1×n, where the
superscript T denotes transposition (defined below).

The quantity µ > 0 in (1.3) denotes the regularization parameter. It decides the relative in-
fluence on the solution of (1.3) of the fidelity and the regularization terms. In the present paper,
we determine µ by the discrepancy principle; see, e.g., [14] for a description and analysis of this
principle. Let a bound

‖~E‖M−1 ≤ δ (1.4)

be known. The discrepancy principle prescribes that µ > 0 be determined so that the solution ~Xµ
of (1.3) satisfies

‖A ∗ ~Xµ − ~B‖M−1 = ηδ, (1.5)

where η > 1 is a user-specified constant that is independent of δ. Our reason for using the regular-
ization parameter 1/µ instead of µ in (1.3) will be commented on in Section 3. Other techniques,
such as generalized cross validation and the L-curve criterion also can be used to determine the
regularization parameter; see, e.g., [15, 17, 20, 21, 25].

We remark that minimization problems of the form (1.3) also arise in uncertainty quantification
(UQ) in large-scale Bayesian linear inverse problems; see, e.g., [9, 10, 24], where L and M are
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suitably defined covariance tensors. The techniques developed in this work can be applied to the
solution of inverse UQ problems.

It is the purpose of this paper to discuss applications in image and video restoration. We
consider the situation when M 6= I. Arridge et al. [3] observed that for large-scale problems in
three space-dimensions, the computation of the Cholesky factorization of L may be prohibitively
expensive. We therefore derive a solution method that does not require the Cholesky factorization
of L.

The normal equations associated with (1.3) are given by

(AT ∗M−1 ∗ A+ µ−1L−1) ∗ ~X = AT ∗M−1 ∗ ~B, (1.6)

and can be derived analogously as when L and M are the identity tensor I; see [27] for this
situation. Since the tensor L is SPD, equation (1.6) has a unique solution Xµ for any µ > 0.

The change of variables ~X = L ∗ ~Y in (1.6) yields the equation

(AT ∗M−1 ∗ A ∗ L+ µ−1I) ∗ ~Y = AT ∗M−1 ∗ ~B.

Its solution ~Yµ solves the minimization problem

min
~Y∈Rm×1×n

{‖A ∗ L ∗ ~Y − ~B‖2M−1 + µ−1‖~Y‖2L}. (1.7)

The solution of (1.6) can be computed as ~Xµ = L ∗ ~Yµ.
We describe two weighted t-product Golub-Kahan bidiagonalization-type processes for the ap-

proximate solution of (1.7), and thereby of (1.3). They generate orthonormal tensor bases for the
k-dimensional tensor Krylov (t-Krylov) subspaces

Kk(AT ∗M−1 ∗ A ∗ L,AT ∗M−1 ∗ ~B) and Kk(A ∗ L ∗ AT ∗M−1, ~B), (1.8)

where Kk(A, ~B) := span{ ~B,A∗ ~B, . . . ,Ak−1 ∗ ~B}. Each step of these processes requires two tensor-
matrix product evaluations, one with A and one with AT . Application of a few k � m steps of each
bidiagonalization process to A reduces the large-scale problem (1.7) to a problem of small size.
Specifically, k steps of the weighted t-product Golub-Kahan bidiagonalization (W-tGKB) process
applied to A reduces A to a small (k + 1) × k × n lower bidiagonal tensor, while the weighted
global tGKB (WG-tGKB) process reduces A to a small (k + 1)× k lower bidiagonal matrix. The
WG-tGKB process differs from the W-tGKB process in the choice of inner product and involves
flattening since it reduces equation (1.7) to a problem that involves a matrix and vectors. Both the
W-tGKB and WG-tGKB processes extend the generalized Golub-Kahan bidiagonalization process
described in [9] for matrices to third order tensors. We refer to the solution methods based on the
W-tGKB and WG-tGKB processes as the weighted t-product Golub-Kahan-Tikhonov (W-tGKT)
and the weighted global t-product Golub-Kahan-Tikhonov (WG-tGKT) methods, respectively.

We also consider analogues of the minimization problems (1.3) and (1.7) in which the tensors
~X ∈ Rm×1×n and ~B ∈ R`×1×n are replaced by general third order tensors X ∈ Rm×p×n and
B ∈ R`×p×n, respectively, for some p > 1. That is, we consider minimization problems of the form

min
X∈Rm×p×n

‖A ∗ X − B‖2M−1 . (1.9)

Problems of this kind arise when restoring a color image or a sequence of consecutive gray-scale
video frames. For instance, a color image restoration problem with RGB channels corresponds to
p = 3, whereas when restoring a gray-scale video, p is the number of consecutive video frames. The
minimization problems analogous to (1.3) and (1.7) are given by

min
X∈Rm×p×n

{‖A ∗ X − B‖2M−1 + µ−1‖X‖2L−1} (1.10)

and
min

Y∈Rm×p×n
{‖A ∗ L ∗ Y − B‖2M−1 + µ−1‖Y‖2L}, (1.11)

respectively.
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We present three solution methods for (1.10). The first two work with each lateral slice ~Bj ,
j = 1, 2, . . . , p, of B independently, i.e., they consider (1.11) as p separate minimization problems
and apply the W-tGKT or WG-tGKT methods to each one of these problems. The resulting
methods for (1.10) are referred to as the W-tGKTp and WG-tGKTp methods, respectively, and
sometimes simply as p-methods. The third method works with the lateral slices of B simultaneously
and will be referred to as the weighted generalized global tGKT (WGG-tGKT) method. This
method uses the weighted generalized global tGKB (WGG-tGKB) process introduced in Section
4 to reduce (1.11) to a problem of small size. The WGG-tGKT method requires less CPU time
than the p-methods because it uses larger chunks of data at a time than the other methods in our
comparison.

Numerical experiments in [26, 27, 28] and in Section 5 show that the p-methods often yield
restorations of higher quality than the WGG-tGKT method. This behavior may be attributed to
the facts that the p-methods determine p regularization parameters, and generally use p different
t-Krylov subspaces (1.8). The WGG-tGKT and WG-tGKTp methods involve flattening and re-
quire additional product definition to the t-product. They are related to the global tensor Krylov
subspace methods described in [5, 6, 11, 12, 13, 26, 27, 28].

The organization of this paper is as follows. Section 2 introduces notation and preliminaries as-
sociated with the t-product, while Section 3 discusses the W-tGKT and W-tGKTp methods as well
as the W-tGKB process. Section 4 presents the weighted global t-Krylov subspace methods. The
WGG-tGKT method and WGG-tGKB process are described in Section 4.1. Section 4.2 presents
the WG-tGKB process, and the WG-tGKT and WG-tGKTp methods. In the computed examples
in Section 5, we takeM 6= I and discuss the performance of these methods when L 6= I and L = I.
Concluding remarks are presented in Section 6.

2 Notation and Preliminaries

This section reviews and modifies results by El Guide et al. [12] and Kilmer et al. [18] to suit the
current framework. In this paper, a tensor is a multidimensional array of real numbers. We denote
third order tensors by calligraphic script letters, e.g., A, matrices by capital letters, e.g., A, vectors
by lower case letters, e.g., a, and tubal scalars (tubes) by boldface letters, e.g., a. Tubes of third
order tensors are obtained by fixing any two of the indices, while slices are obtained by keeping
one of the indices fixed; see Kolda and Bader [22]. The jth lateral slice (also referred to as the jth

tensor column) is a laterally oriented matrix denoted by ~Aj . The kth frontal slice is denoted by
A(k) and is a matrix.

Given a third order tensor A ∈ R`×m×n with ` × m frontal slices A(i), i = 1, 2, . . . , n, the
operator unfold(A) returns an `n ×m matrix with the frontal slices, whereas the fold operator
folds back the unfolded tensor A, i.e.,

unfold(A) =


A(1)

A(2)

...
A(n)

 , fold(unfold(A)) = A.

The operator bcirc(A) generates an `n×mn block-circulant matrix with unfold(A) forming the
first block column,

bcirc(A) =


A(1) A(n) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n) A(n−1) . . . A(1)

 .
Definition 2.1. (t-product [19]) Let A ∈ R`×m×n and B ∈ Rm×p×n. Then the t-product A ∗ B is
the tensor C ∈ R`×p×n defined by

C = fold(bcirc(A) · unfold(B)), (2.12)

where · stands for the standard matrix-matrix product.
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The block circulant matrix bcirc(A) can be block diagonalized by the discrete Fourier transform
(DFT) matrix combined with a Kronecker product. Suppose A ∈ R`×m×n and let Fn be an n× n
unitary DFT matrix defined by

Fn =
1√
n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ωn−1 . . . ω(n−1)(n−1)


with ω = e

−2πi
n and i2 = −1. Then

Ā := blockdiag(Â(1), Â(2), . . . , Â(n)) = (Fn ⊗ I`) · bcirc(A) · (F ∗n ⊗ Im), (2.13)

where ⊗ stands for Kronecker product and F ∗n denotes the conjugate transpose of Fn. The matrix

Ā ∈ R`n×mn is block diagonal with the diagonal blocks Â(i) ∈ R`×m, i = 1, 2, . . . , n. The matrices
Â(i) are the frontal slices of the tensor Â obtained by applying the FFT along each tube of A.
Each matrix Â(i) may be dense and have complex entries unless certain symmetry conditions hold;
see [19] for further details. Throughout this paper, we often will denote objects that are obtained
by taking the FFT along the third dimension with a widehat over the argument, i.e., ·̂ .

Using (2.13), the t-product (2.12) can be evaluated as

A ∗ B = fold
(

(F ∗n ⊗ I`) ·
(
(Fn ⊗ I`) · bcirc(A) · (F ∗n ⊗ Im)

)
· (Fn ⊗ Im) · unfold(B)

)
. (2.14)

It is easily shown that by taking the FFT along the tubes of B ∈ Rm×p×n, we can compute
(Fn ⊗ Im) · unfold(B) in O(pmn log2(n)) arithmetic floating point operations (flops); see Kilmer
and Martin [19] for details.

The computations (2.14) can be easily implemented in MATLAB. Using MATLAB notation,

let Ĉ := fft(C, [ ], 3) be the tensor obtained by applying the FFT along the third dimension and

let Ĉ(:, :, i) denote the ith frontal slice of Ĉ. Then the t-product (2.14) can be computed by taking

the FFT along the tubes of A and B to get Â = fft(A, [ ], 3) and B̂ = fft(B, [ ], 3), followed by a

matrix-matrix product of each pair of the frontal slices of Â and B̂, i.e.,

Ĉ(:, :, i) = Â(:, :, i) · B̂(:, :, i), i = 1, 2, . . . , n,

and then taking the inverse FFT along the third dimension to obtain C = ifft(Ĉ, [ ], 3).
Let A ∈ R`×m×n. Then the tensor transpose AT ∈ Rm×`×n is the tensor obtained by first

transposing each one of the frontal slices of A, and then reversing the order of the transposed frontal
slices 2 through n; see [19]. The tensor transpose is analogous to the matrix transpose. Specifically,
if A and B are two tensors such that A ∗ B and BT ∗ AT are defined, then (A ∗ B)T = BT ∗ AT .
The identity I ∈ Rm×m×n is a tensor whose first frontal slice, I(1), is the m×m identity matrix,
and all other frontal slices, I(i), i = 2, 3, . . . , n, are zero matrices; see [19].

The notion of orthogonality under the t-product formalism is well defined and similar to the
matrix case; see Kilmer and Martin [19]. A tensor Q ∈ Rm×m×n is said to be orthogonal if
QT ∗ Q = Q ∗ QT = I. The lateral slices of Q are orthonormal if they satisfy

QT (:, i, :) ∗ Q(:, j, :) =

{
e1 i = j,
0 i 6= j,

where e1 ∈ R1×1×n is a tubal scalar with the (1, 1, 1)th entry equal to 1 and the remaining entries
zero. Given the tensor A and an orthogonal tensor Q of compatible dimension, we have

‖Q ∗ A‖F = ‖A‖F ;

see [19] for a proof. The notion of partial orthogonality is similar as in matrix theory. The tensor
Q ∈ R`×m×n with ` > m is said to be partially orthogonal if QT ∗ Q is well defined and equal to
the identity tensor I ∈ Rm×m×n; see [19].
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A tensor A ∈ Rm×m×n has an inverse, denoted by A−1, provided that A ∗ A−1 = I and
A−1 ∗ A = I, whereas a tensor is said to be f-diagonal if each frontal slice of the tensor is a
diagonal matrix; see [19].

Let A ∈ R`×m×n, ` ≥ m. Then the tensor singular value decomposition (tSVD), introduced by
Kilmer and Martin [19], is given by

A = U ∗ S ∗ VT ,

where U ∈ R`×`×n and V ∈ Rm×m×n are orthogonal tensors, and the tensor

S = diag[s1, s2, . . . , sm] ∈ R`×m×n

is f-diagonal with singular tubes sj ∈ R1×1×n, j = 1, 2, . . . ,m, ordered according to

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖sm‖F .

The tubal rank of A is the number of nonzero singular tubes of A; see Kilmer et al. [18].

The Frobenius norm of a lateral slice ~X ∈ Rm×1×n is given by

‖ ~X‖F =
√(

~X T ∗ ~X
)
(:,:,1)

; (2.15)

see [18]. Thus, the square of the Frobenius norm of ~X is the (1, 1, 1)th entry of the tubal scalar
~X T ∗ ~X ∈ R1×1×n, which is denoted by ( ~X T ∗ ~X

)
(:,:,1)

.

A tensor M∈ Rm×m×n is said to be positive definite (PD) if it satisfies(
~X T ∗M ∗ ~X

)
(:,:,1)

> 0

for all nonzero lateral slices ~X ∈ Rm×1×n; see [7]. Moreover, M is symmetric if each frontal slice

M̂(i), i = 1, 2, . . . , n, of M̂ is Hermitian. Hence, a tensor M is SPD if M̂(i) is Hermitian PD; see
[18].

LetM∈ Rm×m×n be an SPD tensor. TheM-norm of a general third order tensor X ∈ Rm×p×n
with p > 1 is given by

‖X‖M =

√
trace

((
X T ∗M ∗ X

)
(:,:,1)

)
.

The quantity
(
X T ∗M∗X

)
(:,:,1)

is a p× p matrix. It represents the first frontal slice of the tensor

X T ∗M ∗ X ∈ Rp×p×n, and trace(M) denotes the trace of the matrix M .

Algorithm 1 takes a nonzero tensor ~X ∈ Rm×1×n and returns a normalized tensor ~V ∈ Rm×1×n
and a tubal scalar a ∈ R1×1×n, such that

~X = ~V ∗ a and ‖~V‖M = 1.

The tubal scalar a is not necessarily invertible; see [18]. We remark that a is invertible only if there
is a tubal scalar b such that a ∗ b = b ∗ a = e1. The scalar a(j) is the jth face of the 1 × 1 × n
tubal scalar a, while ~V(j) is a vector with m entries, and the jth face of ~V ∈ Rm×1×n. Steps 3 and
7 of Algorithm 1 use the fact that for an SPD matrix M ∈ Rm×m and x ∈ Rm, we have

‖x‖M =
√
xTMx.

An analogue of Algorithm 1 for M = I is described in [18].
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Algorithm 1: Normalize( ~X ,M)

Input: ~X ∈ Rm×1×n 6= ~O, M is an m×m× n SPD tensor
Output: ~V, a with ~X = ~V ∗ a and ‖~V‖M = 1

1 ~V ← fft( ~X , [ ], 3), M← fft(M, [ ], 3)
2 for j = 1, 2, . . . , n do

3 a(j) ← ‖~V(j)‖M(i) (~V(j) is a vector)

4 if a(j) > tol then

5 ~V(j) ← 1
a(j)

~V(j)

6 else

7 ~V(j) ← randn(m, 1); a(j) ← ‖~V(j)‖M(i) ; ~V(j) ← 1
a(j)

~V(j); a(j) ← 0

8 end

9 end

10 ~V ← ifft(~V, [ ], 3); a← ifft(a, [ ], 3)

Algorithm 2 determines the tensor Cholesky decomposition of an SPD tensorM. This algorithm
is mimetic of the Cholesky factorization of a matrix M . Step 3 of Algorithm 2 carries out the
Cholesky factorization of the Hermitian matrix M̂(i) in the Fourier domain. This algorithm will
be used in Section 5.

Algorithm 2: Tensor Cholesky factorization

Input: SPD tensor M∈ Rm×m×n
Output: Tensor Cholesky factor R ∈ Rm×m×n, where M = RT ∗ R

1 M̂ = fft(M, [ ], 3)
2 for i = 1 to n do

3 R̂(i) ← chol(M̂(i)), where chol denotes MATLAB’s Cholesky factorization operator.

Thus, R̂(i) is an upper triangular complex matrix.
4 end

5 R ← ifft(R̂, [ ], 3)

Introduce the tensors

Ck := [C1, C2, . . . , Ck] ∈ Rm×kp×n, Ck := [~C1, ~C2, . . . , ~Ck] ∈ Rm×k×n,

where Cj ∈ Rm×p×n and ~Cj ∈ Rm×1×n, j = 1, 2, . . . , k. Suppose that y = [y1, y2, . . . , yk]T ∈ Rk. El
Guide et al. [12] define two products denoted by ~ :

Ck ~ y =

k∑
j=1

yjCj , Ck ~ y =

k∑
j=1

yj ~Cj .

We conclude this section by modifying some notions introduced by El Guide et al. [12]. Let
M = [miik] ∈ Rm×m×n and consider the tensors C = [cijk],D = [dijk] ∈ Rm×p×n with lateral slices
~C = [ci1k], ~D = [di1k] ∈ Rm×1×n. Introduce the inner products

〈C,D〉 =

m∑
i=1

p∑
j=1

n∑
k=1

cijkdijk, 〈~C, ~D〉 =

m∑
i=1

n∑
k=1

ci1kdi1k.

Then

〈C,D〉M =

m∑
i=1

p∑
j=1

n∑
k=1

cijk[M∗D]ijk, 〈~C, ~D〉M =

m∑
i=1

p∑
k=1

ci1k[M∗ ~D]i1k.

Specifically, 〈C,D〉M = 〈C,M∗D〉, and 〈~C, ~D〉M = 〈~C,M∗ ~D〉. Let

A := [A1,A2, . . . ,Am] ∈ R`×sm×n, B := [B1,B2, . . . ,Bp] ∈ R`×sp×n,

A := [ ~A1, ~A2, . . . , ~Am] ∈ R`×m×n, B := [ ~B1, ~B2, . . . , ~Bp] ∈ R`×p×n,
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where Ai ∈ R`×s×n, ~Ai ∈ R`×1×n, i = 1, 2, . . . ,m, and Bj ∈ R`×s×n, ~Bj ∈ R`×1×n j = 1, 2, . . . , p.
The weighted T-diamond products AT♦MB and AT♦MB yield m× p matrices with entries

[AT♦MB]ij = 〈Ai, Bj〉M, [AT♦MB]ij = 〈 ~Ai, ~Bj〉M, i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

The weighted T-diamond product, ♦M, is the weighted analogue of the T-diamond product, ♦,
used by El Guide et al. [12].

Notation Description
A matrix

A(:, j) jth column of A
A(j, :) jth row of A
A or A tensor
Aj jth column of A
~A lateral slice
~Aj jth lateral slice of A

A(i) or A(i) ith frontal slice of A
Â FFT of A along the third mode
a tube

(a)(:,:,1) first face of a
a vector with jth entry aj
I identity tensor
I identity matrix
~e1 first lateral slice of I
e1 first column of I
∗ t-product
♦ T -diamond product

A~ a A~ a =
∑
j ajAj

A~ a A~ a =
∑
j aj

~Aj
A~A A~A = [A~A(:, 1), . . . ,A~A(:, end)]
A~A A~A = [A~A(:, 1), . . . ,A~A(:, end)]
〈A,B〉 〈A,B〉 =

∑
ijk aijkbijk

〈 ~A, ~B〉 〈 ~A, ~B〉 =
∑
ik ai1kbi1k

AT♦B [AT♦B]ij = 〈Ai, Bj〉
AT♦B [AT♦B]ij = 〈 ~Ai, ~Bj〉
〈A,B〉M 〈C,D〉M = 〈C,M∗D〉
〈 ~A, ~B〉M 〈~C, ~D〉M = 〈~C,M∗ ~D〉
AT♦MB [AT♦MB]ij = 〈Ai, Bj〉M
AT♦MB [AT♦MB]ij = 〈 ~Ai, ~Bj〉M
‖a‖A ‖a‖A =

√
aTAa

‖A‖F ‖A‖F =
√∑

ijk a
2
ijk

‖ ~A‖F ‖ ~A‖F =
√(

~AT ∗ ~A
)
(:,:,1)

‖ ~A‖M ‖ ~X‖M =
√(

~AT ∗M ∗ ~A
)
(:,:,1)

‖A‖M ‖A‖M =

√
trace

((
AT ∗M ∗ A

)
(:,:,1)

)
Table 1: Summary of notation.

3 The Weighted t-Product Golub-Kahan-Tikhonov Method

This section extends the generalized Golub-Kahan bidiagonalization (gen GKB) process described
in [9] for matrices to third order tensors. The gen GKB process was first proposed by Benbow [4]
for generalized least squares problems. Applications of this process to UQ in large-scale Bayesian
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linear inverse problems have recently been described in [9, 10, 24]. For additional applications; see,
e.g., [1, 2, 23]. We will refer to the tensor version of the gen GKB process as the weighted t-product
Golub-Kahan bidiagonalization (W-tGKB) process. The latter process is described by Algorithm
3 below. Its global versions are presented in Section 4.

We also discuss the computation of an approximate solution of the minimization problems (1.3)
and (1.10) with the aid of the partial W-tGKB process. Typically, only a few, say k � m, steps of
this process are required to reduce large-scale problems (1.3) and (1.10) to problems of small size.

Specifically, k steps of the W-tGKB process applied to A in (1.3) with initial tensor ~B reduces A
to a small lower bidiagonal tensor, which we denote by P̄k ∈ R(k+1)×k×n. The reduction process
is described by Algorithm 3.

Algorithm 3: The partial weighted tensor Golub-Kahan bidiagonalization (W-tGKB)
process

Input: A ∈ R`×m×n, B ∈ R`×p×n such that AT ∗M−1 ∗ B 6= O, L ∈ Rm×m×n,
M∈ R`×`×n are SPD, k ≥ 1

Output: Tensors in the decompositions (3.16)

1 [ ~Q1, z1]← Normalize( ~B,M−1) with z1 invertible

2 [ ~W1, c1]← Normalize(AT ∗M−1 ∗ ~Q1,L) with c1 invertible
3 for i = 1, 2, . . . , k do

4 ~Q ← A ∗ L ∗ ~Wi − ~Qi ∗ ci

5 [ ~Qi+1, zi+1]← Normalize( ~Q,M−1)
6 if i < k then

7 ~W ← AT ∗M−1 ∗ ~Qi+1 − ~Wi ∗ zi+1

8 [ ~Wi+1, ci+1]← Normalize( ~W,L)

9 end

10 end

Algorithm 3 produces the partial W-tGKB decompositions

A ∗ L ∗Wk = Qk+1 ∗ P̄k, AT ∗M−1 ∗ Qk =Wk ∗ PTk , (3.16)

where

P̄k =



c1
z2 c2

z3 c3
. . .

. . .

zk ck
zk+1


∈ R(k+1)×k×n

is a lower bidiagonal tensor and Pk denotes the leading k×k×n subtensor of P̄k. The lateral slices
~Wj ∈ Rm×1×n, j = 1, 2, . . . , k, and ~Qi+1 ∈ R`×1×n, i = 0, 1, . . . , k, generated by Algorithm 3 are

orthonormal tensor bases for the t-Krylov subspaces

Kk(AT ∗M−1 ∗ A ∗ L,AT ∗M−1 ∗ ~B) and Kk+1(A ∗ L ∗ AT ∗M−1, ~B),

respectively. The lateral slices ~Wj and ~Qi define the tensors

Wk := [ ~W1, . . . , ~Wk] ∈ Rm×k×n, Qk+1 := [ ~Q1, . . . , ~Qk+1] ∈ R`×(k+1)×n,

which satisfy
WT
k ∗ L ∗Wk = Ik and QTk+1 ∗M−1 ∗ Qk+1 = Ik+1. (3.17)

Theorem 3.1 below shows that the application of the operators L andM in the spatial domain
is equivalent to their application in the Fourier domain. Application of these operators in the
spatial domain may reduce the computing time since transformation of L and M to and from the
Fourier domain is not required. We apply the SPD tensors L and M in the spatial domain in the
computed examples of Section 5.
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Theorem 3.1. Let the first frontal slice L(1) of the tensor L ∈ Rs×m×n be nonzero and let the
remaining frontal slices, L(i), i = 2, 3, . . . , n, be zero matrices. Let X ∈ Rm×p×n have frontal slices
X (i), i = 1, 2, . . . , n. Define

L(X ) := L ∗ X .

Then
L(X )(i) = L(1)X (i), i = 1, 2, . . . , n.

Proof: We have

L ∗ X = fold (bcirc(L) · unfold(X ))

= fold



L(1) O . . . O
O L(1) . . . O
...

...
. . .

...
O O . . . L(1)



X (1)

X (2)

...
X (n)




= fold



L(1)X (1)

L(1)X (2)

...
L(1)X (n)


 ,

(3.18)

and the proof follows. �

3.1 The W-tGKT method

This subsection describes the W-tGKT method for the approximate solution of least squares prob-
lems of the form (1.3). We also apply this method p times to determine an approximate solution

of (1.10) by working with the data tensor slices ~Bj , j = 1, 2, . . . , p, of B independently.

Let ~Y = Wk ∗ ~Z. Substituting the left-hand side of the W-tGKB decompositions (3.16) into
(1.7) and using (3.17) yields

min
~Z∈Rk×1×n

{‖P̄k ∗ ~Z −QTk+1 ∗ ~B‖2F + µ−1‖ ~Z‖2F }. (3.19)

Since ~B = ~Q1 ∗ z1 (cf. Algorithm 3), we get

QTk+1 ∗ ~B = ~e1 ∗ z1 ∈ R(k+1)×1×n, (3.20)

where the (1, 1, 1)th entry of ~e1 ∈ Rm×1×n is 1 and the remaining entries are zero. Substituting
(3.20) into (3.19), we obtain

min
~Z∈Rk×1×n

{‖P̄k ∗ ~Z − ~e1 ∗ z1‖2F + µ−1‖ ~Z‖2F }. (3.21)

The equivalency of (1.3) and (3.21) follows from (3.17). Thus,

min
~Y∈Kk

{‖A ∗ L ∗ ~Y − ~B‖2M−1 +µ−1‖~Y‖2L} ⇐⇒ min
~Z∈Rk×1×n

{‖P̄k ∗ ~Z −~e1 ∗ z1‖2F +µ−1‖ ~Z‖2F }, (3.22)

where Kk = Kk(AT ∗M−1 ∗ A ∗ L,AT ∗M−1 ∗ ~B).
A suitable way to compute the solution of the minimization problem on the right-hand side of

(3.22) is to solve the least squares problem

min
~Z∈Rk×1×n

∥∥∥∥[ P̄k
µ−1/2I

]
∗ ~Z −

[
~e1 ∗ z1
~O

]∥∥∥∥
F

, (3.23)

using [27, Algorithm 3]. The solution ~Zµ,k can be expressed as

~Zµ,k = (P̄Tk ∗ P̄k + µ−1I)−1 ∗ P̄Tk ∗ ~e1 ∗ z1, (3.24)
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and the associated approximate solution of (1.3) is given by

~Xµ,k = L ∗Wk ∗ ~Zµ,k.

The discrepancy principle (1.5) is used to determine the regularization parameter and the
number of steps of the W-tGKB process. We show below that (1.5) is equivalent to

‖P̄k ∗ ~Zµ,k − ~e1 ∗ z1‖F = ηδ. (3.25)

Thus, we have to determine µ > 0 so that (3.25) holds. Define the function

φk(µ) := ‖P̄k ∗ ~Zµ,k − ~e1 ∗ z1‖2F . (3.26)

Substituting (3.24) into (3.26), and using the identity

I − P̄k ∗ (P̄Tk ∗ P̄k + µ−1I)−1 ∗ P̄Tk = (µP̄k ∗ P̄Tk + I)−1 (3.27)

as well as (2.15), we obtain

φk(µ) =
(
(~e1 ∗ z1)T ∗ (µP̄k ∗ P̄Tk + I)−2 ∗ ~e1 ∗ z1

)
(:,:,1)

.

Therefore, (3.25) becomes
φk(µ)− (ηδ)2 = 0. (3.28)

The dependence of φk(µ) on k for a fixed µ > 0 is established in [27]. Moreover, φk(µ) is shown
to be a decreasing and convex function of µ > 0. We can define φk(0) = ‖~e1 ∗ z1‖2F by continuity.
In the computed examples of Section 5, we use the bisection method to solve (3.28). The following
result establishes the equivalence between the discrepancy principle (1.5) and (3.25).

Proposition 3.1. Let φk(µ) be defined by (3.26), and assume that µ = µk solves φk(µ) = η2δ2

and that ~Zµ,k solves

(P̄Tk ∗ P̄k + µ−1I) ∗ ~Z = P̄Tk ∗ ~e1 ∗ z1.

Let ~Yµ,k =Wk ∗ ~Zµ,k. Then the associated approximate solution ~Xµ,k = L ∗ ~Yµ,k of (1.1) satisfies

‖A ∗ ~Xµ,k − ~B‖2M−1 =
(
(~e1 ∗ z1)T ∗ (µP̄k ∗ P̄Tk + I)−2 ∗ ~e1 ∗ z1

)
(:,:,1)

.

Proof : Substituting ~Xµ,k = L ∗ ~Yµ,k and ~Yµ,k =Wk ∗ ~Zµ,k into (1.5), and using the left-hand side
decomposition of (3.16), as well as (3.20) and (3.17), shows that

‖A ∗ ~Xµ,k − B‖2M−1 = ‖Qk+1 ∗ P̄k ∗ ~Zµ,k − ~B‖2M−1 = ‖P̄k ∗ ~Zµ,k − ~e1 ∗ z1‖2F . �

We refer to the solution method for (1.3) described above as the W-tGKT method. It is imple-
mented by Algorithm 4 below with p = 1.

The remainder of this subsection describes an algorithm for the approximate solution of (1.10)

by solving the minimization problem (1.11). Let the data tensor B have the lateral data slices ~Bj ,
j = 1, 2, . . . , p, and let ~Bj,true denote the unknown error-free data slice associated with the available

error-contaminated slice ~Bj . Assume that bounds for the norm of the errors

Ej := ~Bj − ~Bj,true, j = 1, 2, . . . , p, p > 1,

are available or can be estimated, i.e.,

‖~Ej‖M−1 ≤ δj , j = 1, 2, . . . , p;

cf. (1.2) and (1.4). Let ~Xj = L ∗ ~Yj , j = 1, 2, . . . , p, and consider (1.11) as p separate Tikhonov
minimization problems

min
~Yj∈Rm×1×n

{‖A ∗ L ∗ ~Yj − ~Bj‖2M−1 + µ−1‖~Yj‖2L}, j = 1, 2, . . . , p. (3.29)
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We apply the W-tGKT method described above to solve the p problems (3.29) independently by
using Algorithm 4, and we refer to this solution method for (1.10) by solving the problems (3.29)
independently as the W-tGKTp method.

Algorithm 4: The W-tGKTp method for the approximate solution of (1.10) by solving
the problems (3.29) independently

Input: A, ~B1, ~B2, . . . , ~Bp, δ1, δ2, . . . , δp,L,M, η > 1, kinit = 2
Output: Approximate solution of (1.10) when p > 1 and of (1.3) when p = 1

1 ~e1 ← I(:, 1, :)
2 for j = 1, 2, . . . , p do

3 k ← kinit, [ ~Q1, z1]← Normalize( ~Bj ,M−1)
4 Compute Wk,Qk+1 and P̄k by Algorithm 3, and let ~e1 ← I(:, 1, :)
5 Solve the minimization problem

min
~Z∈Rk×1×n

‖P̄k ∗ ~Z − ~e1 ∗ z1‖F

for ~Zk by using [27, Algorithm 3]

6 while ‖P̄k ∗ ~Zk − ~e1 ∗ z1‖F ≥ ηδj do
7 k ← k + 1
8 Go to step 3

9 end
10 Determine the regularization parameter by the discrepancy principle, i.e., compute the

zero µk > 0 of
ξk(µk) := ‖P̄k ∗ ~Zj,µk − ~e1 ∗ z1‖2F − η2δ2j

and the associated solution ~Zj,µk of

min
~Z∈Rk×1×n

∥∥∥∥[ P̄k
µ
−1/2
k I

]
∗ ~Z −

[
~e1 ∗ z1
~O

]∥∥∥∥
F

by using [27, Algorithm 3]

11 Compute ~Yj,µk ←Wk ∗ ~Zj,µk , ~Xj,µk ← L ∗ ~Yj,µk
12 end

4 The WGG-tGKT and WG-tGKT Methods

We describe the WGG-tGKT and WG-tGKT methods for the approximate solution of (1.3) and
(1.10). The latter method is designed to compute an approximate solution of (1.3). When applied

to solve (1.10), the method works with the lateral slices of ~Bj , j = 1, 2, . . . , p, of B one at a time and
independently. We refer to the resulting method for solving (1.10) as the WG-tGKTp method. The
WGG-tGKT method solves (1.10) by working with the lateral slices of the tensor B simultaneously.

4.1 The WGG-tGKT method

This subsection describes the weighted generalized global t-product Golub-Kahan bidiagonalization
(WGG-tGKB) process and discusses how it can be applied to reduce the large-scale problem (1.10)
to a problem of small size. This is achieved by applying k � m steps of the WGG-tGKB process
to A. We assume that there is no breakdown of this process. This is the generic situation. The
WGG-tGKB process, which is described by Algorithm 5, yields the decompositions

A ∗ L ∗Wk = Qk+1 ~ P̄k, AT ∗M−1 ∗Qk = Wk ~ P
T
k , (4.30)

where
Wk := [W1, . . . ,Wk] ∈ Rm×kp×n, Qk+1 := [Q1, . . . ,Qk+1] ∈ R`×(k+1)p×n.
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As usual, the tensors L ∈ Rm×m×n and M∈ R`×`×n are assumed to be SPD. Moreover,

QTk+1♦M−1Qk+1 = Ik+1, WT
k ♦LWk = Ik, (4.31)

and

A ∗ L ∗Wk = [A ∗ L ∗W1,A ∗ L ∗W2, . . . ,A ∗ L ∗Wk] ∈ R`×kp×n,
Qk+1 ~ P̄k = [Qk+1 ~ P̄k(:, 1),Qk+1 ~ P̄k(:, 2), . . . ,Qk+1 ~ P̄k(:, k)] ∈ R`×kp×n,

(4.32)

where AT ∗M−1 ∗Qk and Wk ~ PTk are defined similarly as (4.32).
Details of the computations of the WGG-tGKB process are described by Algorithm 5. The

tensors Wj ∈ Rm×p×n, j = 1, 2, . . . , k, and Qi+1 ∈ R`×p×n, i = 0, 1, . . . , k, generated by the
algorithm form orthogonal tensor bases for the t-Krylov subspaces Kk(AT ∗ M−1 ∗ A ∗ L,AT ∗
M−1 ∗ B) and Kk+1(A ∗ L ∗AT ∗M−1,B), respectively. The lower bidiagonal matrix P̄k in (4.32)
is given by

P̄k =



α1

β2 α2

β3 α3

. . .
. . .

βk αk
βk+1


∈ R(k+1)×(k), (4.33)

and Pk is the leading k × k submatrix of P̄k. The relation

B = Qk+1 ~ e1β1, e1 = [1, 0, . . . , 0]T , (4.34)

is easily deduced from Algorithm 5.

Proposition 4.1. Let the tensors Qk+1 and M be defined as above. Let y ∈ Rk+1. Then

‖Qk+1 ~ y‖M−1 = ‖y‖2, (4.35)

where ‖ · ‖2 denotes the Euclidean vector norm.

Proof:

‖Qk+1 ~ y‖2M−1 =

〈
k+1∑
i=1

yjQj ,
k+1∑
i=1

yjQj

〉
M−1

=

k+1∑
i=1

y2j 〈Qj ,Qj〉M−1 =

k+1∑
i=1

y2j = ‖y‖22,

since the tensors Qj , j = 1, 2, . . . , k, are orthogonal, i.e.,

〈Qi,Qj〉M−1 =

{
1 i = j,
0 i 6= j.

�

It can be shown analogously that for an orthogonal tensor Q ∈ Rm×k×n, one has

‖Q~ y‖M−1 = ‖y‖2; (4.36)

see [12] for the analogous result when M−1 = I.
We compute an approximate solution of (1.10) similarly as described in Subsection 3.1. Thus,

letting Y = Wk ~ z and using the left-hand side of (4.30), as well as (4.34) and (4.31), the
minimization problem (1.11) reduces to

min
z∈Rk
{‖P̄kz − e1β1‖22 + µ−1‖z‖22}. (4.37)
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Algorithm 5: Partial weighted generalized global tGKB process

Input: A ∈ R`×m×n, B ∈ R`×p×n such that AT ∗M−1 ∗ B 6= O, L ∈ Rm×m×n,
M∈ R`×`×n are SPD, k ≥ 1

Output: Matrices and tensors in the decompositions (4.30)
1 β1 ← ‖B‖M−1 , Q1 ← 1

β1
B

2 α1 ← ‖AT ∗M−1 ∗ Q1‖L, W1 ← 1
α1

(AT ∗M−1 ∗ Q1)

3 for j = 1, 2, . . . , k do
4 Q ← A ∗ L ∗Wj − αjQj
5 βj+1 ← ‖Q‖M−1 , Qj+1 ← Q/βj+1

6 if j < k then
7 W ← AT ∗M−1 ∗ Qj+1 − βj+1Wj

8 αj+1 ← ‖W‖L, Wj+1 ←W/αj+1

9 end

10 end

The minimization problem (4.37) is analogous to (3.23). We compute its solution by solving

min
z∈Rk

∥∥∥∥[ P̄k
µ−1/2I

]
z −

[
e1β1

0

]∥∥∥∥
2

. (4.38)

Denote the solution by zµ,k. Then the associated approximate solution of (1.10) is given by

~Xµ,k = L ∗Wk ~ zµ,k.

We determine the regularization parameter µ by the discrepancy principle based on the M−1-
norm. This assumes knowledge of a bound

‖E‖M−1 ≤ δ

for the error tensor E in B. Thus, we choose µ > 0 so that the solution zµ,k of (4.38) satisfies

‖P̄kzµ,k − e1β1‖2 = ηδ. (4.39)

Define the function
ψk(µ) := ‖P̄kzµ,k − e1β1‖22,

where zµ,k solves (4.38). Using an identity analogous to (3.27), we obtain

ψk(µ) = β2
1e
T
1 (µP̄kP̄

T
k + I)−2e1,

The discrepancy principle (4.39) can be satisfied for reasonable values of ηδ by choosing a large
enough value of k; see [27, Proposition 4.3]. It can be shown that the function µ 7→ ψk(µ) is
decreasing and convex with ψk(0) = β2

1 . The following result is a matrix analogue of Proposition
3.1.

Proposition 4.2. Let µk solve ψk(µ) = η2δ2 and suppose that zµ,k is the solution of (4.37) with
µ = µk. Let Yµ,k = Wk~ zµ,k. Then the associated approximate solution Xµ,k = L∗Yµ,k of (1.10)
satisfies

‖A ∗ Xµ,k − B‖2M−1 = β2
1e
T
1 (µP̄kP̄

T
k + I)−2e1. (4.40)

Proof: Substituting Xµ,k = L ∗ Yµ,k and Yµ,k = Wk ~ zµ,k into left-hand side of (4.40), using the
left-hand side of (4.30), (4.31) and (4.34), as well as left-hand side of (4.36), gives

‖A ∗ Xµ,k − B‖2M−1 = ‖Qk+1 ~ (P̄k ~ zµ,k − e1β1)‖2M−1 = ‖P̄kzµ,k − e1β1‖22. �

We refer to the solution method described above as the WGG-tGKT method. This method is
implemented by Algorithm 6.
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Algorithm 6: The WGG-tGKT method for computing an approximate solution of (1.10)

Input: A, B, δ, L, M, η > 1, kinit = 2
Output: Approximate solution of (1.10)

1 k ← kinit, β1 ← ‖B‖M−1 , Q1 ← 1
β1
B

2 Compute Wk, Qk+1, and P̄k by Algorithm 5

3 Let zk ∈ Rk solve the minimization problem

min
z∈Rk

‖P̄kz − e1β1‖2

while ‖P̄kzk − e1β1‖2 ≥ ηδ do
4 k ← k + 1
5 Go to step 2

6 end
7 Determine the regularization parameter by the discrepancy principle, i.e., compute the

zero µk > 0 of
ϕk(µ) := ‖P̄kzµ,k − e1β1‖22 − η2δ2

and the associated solution zµ,k of

min
z∈Rk

∥∥∥∥[ P̄k

µ
−1/2
k I

]
z −

[
e1β1

0

]∥∥∥∥
2

8 Compute Yµ,k ←Wk ~ zµ,k, Xµ,k ← L ∗ Yµ,k

4.2 The WG-tGKT method

The WG-tGKT method for the approximate solution of (1.3) first reduces the tensor A in (1.3)
to a small lower bidiagonal matrix by carrying out a few, say k, steps of the weighted global t-
product Golub-Kahan bidiagonalization (WG-tGKB) process, which is described by Algorithm 7.
We assume that k is small enough to avoid breakdown. This is the generic situation. Algorithm 7
yields the partial WG-tGKB decompositions

A ∗ L ∗Wk = Qk+1 ~ B̄k, AT ∗M−1 ∗ Qk =Wk ~B
T
k , (4.41)

where
Wk := [ ~W1, . . . , ~Wk] ∈ Rm×k×n, Qk+1 := [ ~Q1, . . . , ~Qk+1] ∈ R`×(k+1)×n

and
QTk+1♦M−1Qk+1 = Ik+1, WT

k ♦LWk = Ik.

The tensors L and M are assumed to be SPD. The expressions in (4.41) are defined similarly
to (4.32), and the bidiagonal matrix B̄k ∈ R(k+1)×k has a form analogous to (4.33). The tensors
~Wj ∈ R`×1×n, j = 1, 2, . . . , k, and ~Qi+1 ∈ Rm×1×n, i = 0, 1, . . . , k, generated by Algorithm 7 form

orthonormal tensor bases for the t-Krylov subspaces Kk(AT ∗ M−1 ∗ A ∗ L,AT ∗ M−1 ∗ ~B) and

Kk+1(A ∗ L ∗ AT ∗M−1, ~B), respectively.
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Algorithm 7: Partial weighted global tGKB (WG-tGKB) process

Input: A ∈ R`×m×n, ~B ∈ R`×1×n such that AT ∗M−1 ∗ ~B 6= ~O, L ∈ Rm×m×n and
M∈ R`×`×n are SPD, k ≥ 1

Output: Matrices and tensors in the decompositions (4.41)

1 β1 ← ‖ ~B‖M−1 , ~Q1 ← 1
β1

~B
2 α1 ← ‖AT ∗M−1 ∗ ~Q1‖L, ~W1 ← 1

α1
(AT ∗M−1 ∗ ~Q1)

3 for j = 1, 2, . . . , k do

4 ~Q ← A ∗ L ∗ ~Wj − αj ~Qj
5 βj+1 ← ‖ ~Q‖M−1 , ~Qj+1 ← ~Q/βj+1

6 if j < k then

7 ~W ← AT ∗M−1 ∗ ~Qj+1 − βj+1
~Wj

8 αj+1 ← ‖ ~W‖L, ~Wj+1 ← ~W/αj+1

9 end

10 end

Let ~Y =Wk~ y. Then following a similar approach as in Subsection 4.1, we reduce (1.3) to the
Tikhonov minimization problem in standard form

min
z∈Rk
{‖B̄kz − e1β1‖22 + µ−1‖z‖22}. (4.42)

The solution of (4.42) determines an approximate solution of (1.3). We refer to this approach of
computing an approximate solution of (1.3) as the WG-tGKT method.

The solution method for (1.10) defined by applying the WG-tGKT method p times to the
problems (3.29) independently is referred to as the WG-tGKTp method. This p-method is described
by Algorithm 8.

Algorithm 8: The WG-tGKTp method for the approximate solution of (1.10).

Input: A, ~B1, ~B2, . . . , ~Bp, L, M, δ1, δ2, . . . , δp, η > 1, kinit = 2
Output: Approximate solution of (1.10)

1 for j = 1, 2, . . . , p do

2 k ← kinit, β1 ← ‖ ~Bj‖M−1 , ~Q1 ← 1
β1

~Bj
3 Compute Wk, Qk+1, and B̄k by Algorithm 7
4 Solve the minimization problem

min
z∈Rk

‖B̄kz − e1β1‖2

for zk
5 while ‖B̄kzk − e1β1‖2 ≥ ηδj do
6 k ← k + 1
7 Go to step 3

8 end
9 Determine the regularization parameter by the discrepancy principle, i.e., compute the

zero µk > 0 of
ϕk(µk) := ‖B̄kzj,µk − e1β1‖22 − η2δ2j

and the associated solution zj,µk of

min
z∈Rk

∥∥∥∥[ B̄k

µ
−1/2
k I

]
z −

[
e1β1

0

]∥∥∥∥
2

10 Compute Yj,µk ←Wk ~ zj,µk , ~Xj,µk ← L ∗ Yj,µk
11 end

16



5 Numerical Examples

All computations reported in this section are carried out in MATLAB R2021a with about 15 sig-
nificant decimal digits on a Dell computer running Windows 10 with 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz and 16 GB RAM. We compare the performance of the W-tGKT and WG-
tGKT methods for the solution of (1.3) and (1.10), and the WGG-tGKT method for solving the
latter problem. The implementation of the described methods is carried out in the spatial domain
in Examples 5.1-5.3 using (3.18). All examples are concerned with image or video restoration.

Let ~Xmethod ∈ Rm×1×n denote the approximate solution of (1.3) computed by a particular

solution method, and let ~Xtrue ∈ Rm×1×n stand for the desired solution (e.g., a blur- and noise-free
image). To compare the performance of the solution methods discussed, we tabulate the relative
errors in the Frobenius norm,

Emethod =
‖ ~Xmethod − ~Xtrue‖F

‖ ~Xtrue‖F
. (5.43)

We also display the Peak Signal-to-Noise Ratio,

PSNR := 10 log10

(
MAX ~Xtrue√

MSE

)
,

where MAX ~Xtrue
stands for the maximum pixel value of the desired image ~Xtrue. The mean square

error is given by

MSE =
1

mn

m∑
i=1

n∑
k=1

(
~Xtrue(i, 1, k)−Xmethod(i, 1, k)

)2
.

The relative error and the PSNR of computed approximate solutions Xmethod of (1.10), whose
data is given by a tensor B ∈ Rm×p×n for some p > 1, are determined analogously. For the sake of
brevity, we only explicitly discuss the situation when the data is a tensor slice ~B ∈ Rm×1×n.

We generate a “noise” tensor ~E that simulates the error in the data tensor ~B = ~Btrue + ~E in
(1.3) and has a specified covariance tensor as described below.

Proposition 5.1. Let the entries of the tensor ~Eρ ∈ R`×1×n be normally distributed with mean
zero and variance ρ > 0, and let C be a tensor of compatible size. Then the covariance tensor for
~E = C ∗ ~Eρ is ρ2C ∗ CT .

Proof: This result is well known in the situation when ~Eρ is a vector and C is a matrix; see, e.g.,

[8, Lemma 2.1.1] for a proof for this case. The statistical properties of ~E are independent of the
operations fold and unfold in the definition (2.12) of the t-product. We apply [8, Lemma 2.1.1]

since bcirc(C) is a matrix and unfold(~Eρ) is a vector. We also use the fact that bcirc(CT ) =
(bcirc(C))T , and bcirc(C ∗ CT ) = bcirc(C) · bcirc(CT ). Let Cov(·) denote the covariance of a
known quantity. Then

Cov(~E) = fold(Cov(bcirc(C) unfold(~Eρ)))
= ρ2fold(bcirc(C) · (bcirc(C))T )

= ρ2fold(bcirc(C ∗ CT ) · unfold(I))

= ρ2C ∗ CT . �

Let the tensor ~Eρ ∈ R`×1×n be defined as in Proposition 5.1 and let the tensor C be of compatible
size. The entries of the tensor

~E := C ∗ ~Eρ (5.44)

simulate noise with covariance tensor ρ2C ∗CT . We will use ~E to simulate noise in ~B ∈ R`×1×n, i.e.,
~B = ~Btrue + ~E ; cf. (1.2). Introduce the scaled covariance tensor for ~E ,

M = C ∗ CT , (5.45)
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where we assume that the tensor (5.45) is positive definite. This is the generic situation. We refer
to the quotient

δ̃ :=
‖~E‖M−1

‖ ~Btrue‖F
=
‖~Eρ‖F
‖ ~Btrue‖F

(5.46)

as the noise level of the error ~E in ~B. Equality of the right-hand side of (5.46) holds since

‖~E‖2M−1 = ‖C ∗ ~Eρ‖2M−1 =
(
~ETρ ∗ CT ∗M−1 ∗ C ∗ ~Eρ

)
(:,:,1)

=
(
~ETρ ∗ ~Eρ

)
(:,:,1)

= ‖~Eρ‖2F .

In the computed examples below, we prescribe the noise level (5.46) and adjust ρ in the noise

tensor ~Eρ to obtain a tensor (5.44) that corresponds to the desired noise level. Specifically, since

‖~Eρ‖F = ρ‖~E1‖F , we can adjust ρ > 0 to obtain a “noise tensor” ~Eρ of a specified noise level. Knowl-
edge of the noise level allows us to apply the discrepancy principle to determine the regularization
parameter(s) as described in the previous sections.

In actual applications, the tensor M or an estimate thereof often are known and typically are
symmetric positive definite. In our numerical experiments, we let

M = L̃T1 ∗ L̃1 + ωI, (5.47)

with ω > 0. Here L̃1 is a tensor, whose first frontal slice is the upper bidiagonal matrix

L̃(1)
1 =

1

2


1 −1

. . .
. . .

1 −1
1

 ∈ R`×`,

and the remaining frontal slices L̃(i)
1 ∈ R`×`, i = 2, 3, . . . , n, are zero matrices. We compute the

tensor Cholesky factorization of (5.47) by Algorithm 2 to obtain the Cholesky factorR and generate
the noise tensor by

~E = RT ∗ ~Eρ.

Thus, equation (5.45) holds with C = RT . We adjust ρ > 0 to achieve a specified noise level as
described above.

The SPD tensors Dγ defined next are used as regularization tensor L in the Tikhonov mini-
mization problems (1.3) and (1.10). Let

Dγ =
1

4
(L̃T2 ∗ L̃2 + αI), γ ∈ {1, 2}, (5.48)

where α > 0 and the tensor L̃2 ∈ Rm×m×n has the tridiagonal matrix

L̃(1)
2 =


γ −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 γ

 ∈ Rm×m,

as its first frontal slice, and the remaining frontal slices L̃(i)
2 ∈ Rm×m, i = 2, 3, . . . , n, are zero

matrices. We do not require Cholesky factorization of the tensor (5.48).
The quality of restorations obtained for L = I and L = Dγ in the computed examples is

compared. We use the parameters ω = 0.2 in (5.47) and α = 3 in (5.48) in most examples. The
influence on the computations of these parameters is discussed in Example 5.1. In all but the last
example, we use γ = 1 in (5.48). The last example compares this choice to γ = 2.

The symbol “-” in the tables indicates that the solution method solves several subproblems and
carries out different numbers of bidiagonalization steps for the subproblems or uses several regular-
ization parameters that take on different values. We determine the regularization parameter(s) by
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the bisection method over a specified interval using the discrepancy principle with safety parameter
η. Specifically, we use the interval [101, 108] and η = 1.01 in Example 5.2, and the interval [101, 107]
and η = 1.1 in Examples 5.1 and 5.3.

In all examples, the tensor A is a blurring operator that is constructed by using the function
blur from [16]. We use the squeeze and twist operators described in [18], and the multi squeeze

and multi twist operators defined in [27] to store tensors in the desired format.
This section compares many methods. To make it easier for a reader to follow the discussion,

the names of the weighted global methods begin with “WG” or “WGG”.

Example 5.1. (Color image restoration.) This example illustrates the performance of the W-
tGKTp, WG-tGKTp, and WGG-tGKT methods when applied to the restoration of the peppers

image of size 300× 300× 3 shown in Figure 1 (left). The image is stored in the RGB format, with
each frontal slice corresponding to a color. The blurring tensor A ∈ R300×300×300 is generated by
the MATLAB commands

z = [exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N− band)], (5.49)

A =
1

σ
√

2π
toeplitz(z), A(i) = A(i, 1)A, i = 1, 2, . . . , 300, σ = 3, and band = 12.

Let the true peppers image (assumed to be unknown) be stored as Xtrue ∈ R300×3×300 by using
the multi twist operator. The blurred and noisy peppers image is generated as B = A∗Xtrue+E ,

where E is the noise tensor (5.44). This image is displayed in Figure 1 (right) for δ̃ = 10−3 by using
the multi squeeze operator.

Figure 1: True image (left), and blurred and noisy image (right) for δ̃ = 10−3.

The dependence of the performance of the W-tGKTp, WG-tGKTp, and WGG-tGKT methods
on the choice of ω > 0 for α = 3, and on the choice of α > 0 for ω = 0.2, is illustrated by Figures
2-3 for δ̃ = 10−2. We see from Figure 2 that smaller values of ω often give higher PSNR values
of the restored image and result in higher CPU time requirement, whereas Figure 3 shows that
smaller α values often result in smaller PSNR and faster computations. These observations inform
our choices of ω and α in all computed examples. Recall that the parameter ω affects the properties
of the noise tensor E , while α determines the regularization tensor L = D1.

Figure 4 shows restored images determined by the W-tGKTp and WGG-tGKT methods for L
defined by (5.48) with γ = 1 and δ̃ = 10−3, and Table 2 shows PSNR values and relative errors
for each method as well as the CPU time required for the computations. Table 2 compares the
performance of the W-tGKTp, WG-tGKTp, and WGG-tGKT methods when applied to (1.10) and
to the minimization problem

min
X∈Rm×p×n

{‖A ∗ X − B‖2F + µ−1‖X‖2L−1}. (5.50)

We see from Table 2 that the use of weighted Frobenius norm in the fidelity term of (1.10) is
more appropriate when the error tensor E that simulates the noise in B is of the form (5.44)
than the standard (unweighted) Frobenius norm in (5.50). Independently of the choice of L and
noise level, the W-tGKTp method determines restorations of the worst quality for (1.10), and of
the highest quality for (5.50). This method does not involve flattening and works separately with
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Figure 2: PSNR (left) and CPU time (right) for different ω values.

Figure 3: PSNR (left) and CPU time (right) for different α values.

Figure 4: Reconstructed images by the W-tGKTp method (left) and the WGG-tGKT method after 67

iterations (right) for δ̃ = 10−3.

each lateral slice of the data tensor B. For both choices of regularization tensor L in (1.10), the

WG-tGKTp and WGG-tGKT methods give restorations of the highest quality for δ̃ = 10−3 and

δ̃ = 10−2, respectively. Among all methods considered for (5.50), the WGG-tGKT method results
in restorations of the worst quality for both noise levels and for all choices of L. This method
requires less CPU time than the other methods for both minimization problems (1.10) and (5.50)
because it works with the whole data tensor B at a time.

Example 5.2. (Medical imaging restoration.) We consider the restoration of an MRI image from
MATLAB, and compare the weighted Golub-Kahan-Tikhonov (W-GKT), W-tGKT, and WG-
tGKT methods applied to the solution of (1.1). The W-GKT method first reduces (1.1) to an
equivalent problem involving a matrix and a vector, then applies the gen GKB process described
in [9] to determine an approximate solution of (1.1). Our implementation of the W-GKT method is
analogous to the implementations of the W-tGKT and WG-tGKT methods. The (unknown) true
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The performance of the W-tGKTp, WG-tGKTp, and WGG-tGKT methods when applied to (1.10).

δ̃ L Method k µk PSNR Relative error CPU time (secs)

10−3

D1

W-tGKTp - - 30.60 5.5508 · 10−2 3.20 · 103

WG-tGKTp - - 30.66 5.5111 · 10−2 4.35 · 103

WGG-tGKT 67 2.45 · 104 30.65 5.5176 · 10−2 1.55 · 103

I
W-tGKTp - - 30.61 5.5433 · 10−2 3.16 · 103

WG-tGKTp - - 30.64 5.5262 · 10−2 5.12 · 103

WGG-tGKT 72 2.41 · 104 30.62 5.5356 · 10−2 1.76 · 103

10−2

D1

W-tGKTp - - 27.95 7.5297 · 10−2 1.56 · 102

WG-tGKTp - - 28.29 7.2381 · 10−2 1.88 · 102

WGG-tGKT 14 8.92 · 102 28.31 7.2248 · 10−2 6.89 · 101

I
W-tGKTp - - 27.79 7.6715 · 10−2 1.34 · 102

WG-tGKTp - - 28.31 7.2265 · 10−2 1.86 · 102

WGG-tGKT 14 9.39 · 102 28.31 7.2214 · 10−2 6.85 · 101

The performance of the W-tGKTp, WG-tGKTp, and WGG-tGKT methods when applied to (5.50).

10−3

D1

W-tGKTp - - 30.30 5.7421 · 10−2 8.44 · 102

WG-tGKTp - - 30.15 5.8460 · 10−2 9.93 · 102

WGG-tGKT 32 3.91 · 104 30.13 5.8565 · 10−2 3.48 · 102

I
W-tGKTp - - 30.30 5.7460 · 10−2 8.20 · 102

WG-tGKTp - - 30.13 5.8601 · 10−2 1.14 · 103

WGG-tGKT 34 3.98 · 104 30.11 5.8723 · 10−2 4.03 · 102

10−2

D1

W-tGKTp - - 27.43 7.9983 · 10−2 4.25 · 101

WG-tGKTp - - 27.24 8.1692 · 10−2 4.99 · 101

WGG-tGKT 7 1.43 · 103 27.20 8.2053 · 10−2 1.69 · 101

I
W-tGKTp - - 27.41 8.0094 · 10−2 3.75 · 101

WG-tGKTp - - 27.32 8.0918 · 10−2 5.39 · 101

WGG-tGKT 7 1.22 · 103 27.21 8.2004 · 10−2 1.69 · 101

Table 2: Results for W-tGKTp, WG-tGKTp, and WGG-tGKT methods when applied to the restoration
of peppers image.

MRI image is shown on the left-hand side of Figure 5.
The frontal slices A(i) ∈ R256×256 of A ∈ R256×256×256 are generated by using a modified form

of the function blur from [16] with σ = 4 and band = 7. Specifically, the blurring tensor A is
generated with the MATLAB commands

A =
1

σ
√

2π
toeplitz([z(1) fliplr(z(2 : end))], z), A(i) = A(i, 1)A, i = 1, 2, . . . , 256,

where z is defined in (5.49).

We store the true MRI image of size 256×256 as a tensor ~Xtrue ∈ R256×1×256 by using the twist
operator. The blurred but noise-free image ~Btrue ∈ R256×1×256 is generated by ~Btrue = A ∗ ~Xtrue,
and the blur- and noise-contaminated image ~B = ~Btrue + ~E is displayed on the right-hand side of
Figure 5 by using the squeeze operator, where ~E is a noise tensor analogous to (5.44).

The restored images determined by the W-tGKT and WG-tGKT methods are displayed in
Figure 6 for the noise level δ̃ = 10−3. Table 3 illustrates that the performance of the W-GKT,
W-tGKT, and WG-tGKT methods depends on the choice of the tensor L and on the noise level.
Independently of the choice of L, the W-tGKT method, which does not involve flattening, yields
restorations of the highest quality for δ̃ = 10−3. The WG-tGKT method gives restorations of
higher quality than the W-GKT method for δ̃ = 10−3. The latter method requires less CPU time
than the former and is the fastest among the methods considered for both noise levels. The W-
GKT and WG-tGKT methods yield restorations of almost the same quality for δ̃ = 10−2, and
require the same number of iterations for both noise levels independently of the choice of L. These
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Figure 5: True image (left), blurred noisy image (right) for δ̃ = 10−3.

Figure 6: Restored images determined by the W-tGKT method after 28 iterations (left) and the WG-tGKT

method after 107 iterations (right) for δ̃ = 10−3.

observations are based on the PSNR-values and relative errors shown in Table 3. Regardless of the
choice of L and the noise level, the W-tGKT method requires the least number of iterations, while
the WG-tGKT method is the slowest.

In summary, using the regularization tensor (5.48) increases the quality of the computed restora-
tions slightly and reduces the number of iterations required by all methods in our comparison. The
method W-tGKT gives the most accurate restorations for the smaller noise level.

δ̃ L Method k µk PSNR Relative error CPU time (secs)

10−3

D1
W-GKT 107 9.07 · 105 32.52 5.4448 · 10−2 3.23 · 102

W-tGKT 28 1.85 · 105 34.86 4.1608 · 10−2 2.38 · 102

WG-tGKT 107 2.44 · 106 32.56 5.4250 · 10−2 2.37 · 103

I
W-GKT 138 3.85 · 105 32.19 5.6571 · 10−2 3.20 · 102

W-tGKT 38 2.60 · 105 34.81 4.1826 · 10−2 3.56 · 102

WG-tGKT 138 3.97 · 105 32.19 5.6552 · 10−2 3.75 · 103

10−2

D1
W-GKT 25 1.04 · 104 24.74 1.3338 · 10−1 1.74 · 101

W-tGKT 10 3.10 · 104 23.32 1.5708 · 10−1 2.98 · 101

WG-tGKT 25 1.07 · 104 24.74 1.3338 · 10−1 1.24 · 102

I
W-GKT 29 8.74 · 103 24.74 1.3347 · 10−1 1.46 · 101

W-tGKT 12 3.87 · 104 23.79 1.4901 · 10−1 3.66 · 101

WG-tGKT 29 8.85 · 103 24.73 1.3348 · 10−1 1.64 · 102

Table 3: Results for the W-GKT, W-tGKT, and WG-tGKT methods when applied to the restoration of
the MRI image.

Example 5.3. (Video restoration.) This example is concerned with the restoration of the first four
consecutive frames of the Xylophone video from MATLAB and compares the performance of the
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W-tGKTp, WG-tGKTp, and WGG-tGKT methods for the regularization tensors L = I and for L
defined by (5.48) with γ = 1 or γ = 2. Each video frame is in MP4 format and has 240× 240 pixels.
The blurring operator A ∈ R240×240×240 is generated similarly as in Example 5.1 with σ = 2.5 and
band = 12.

Figure 7: True fourth video frame (left), and blurred and noisy fourth video frame (right) for δ̃ = 10−3.

Figure 8: Restored fourth video frame by the W-tGKTp method (left) and the WGG-tGKT method after

50 iterations (right) for δ̃ = 10−3.

The first four blur- and noise-free frames are stored as a tensor Xtrue ∈ R240×4×240 using
the multi twist operator and are blurred by the tensor A. We generated the blur- and noise-
contaminated frames as B = A∗Xtrue +E , where E is a noise tensor defined by (5.44). The original
fourth frame, and the corresponding blurred and noisy fourth frame are displayed in Figure 7
by using the squeeze operator. The restored fourth frames determined by the W-tGKTp and

WGG-tGKT methods are shown in Figure 8 for δ̃ = 10−3 and L = D1. Comparing the PSNR
values and relative errors, as well as the CPU times, displayed in Table 4, the W-tGKTp method,
independently of the choice of L, yields restorations of the highest and of the least quality for
δ̃ = 10−3 and δ̃ = 10−2, respectively. The WG-tGKTp method is seen to be the slowest and gives

restorations of the highest quality for all choices of L for δ̃ = 10−2. The WGG-tGKT method is
fastest for all choices of L and noise levels. Generally, the use of L = D2 results in faster execution
and gives restorations of higher quality for both noise levels than the other regularization tensors
in our comparison.

6 Conclusion

This paper extends the generalized Golub-Kahan bidiagonalization process described in [9] for
matrices to third order tensors using a t-product. This results in the weighted t-product Golub-
Kahan bidiagonalization (W-tGKB) process. Global versions of the latter process also are consid-
ered, namely, the weighted global t-product Golub-Kahan bidiagonalization (WG-tGKB) and the
weighted generalized global t-product Golub-Kahan bidiagonalization (WGG-tGKB) processes.
The W-tGKB process does not involve flattening, but the global methods do. Only a few steps of
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δ̃ L Method k µk PSNR Relative error CPU time (secs)

10−3

D1

W-tGKTp - - 34.03 4.1173 · 10−2 8.22 · 102

WG-tGKTp - - 34.03 4.1185 · 10−2 1.25 · 103

WGG-tGKT 50 3.32 · 104 34.03 4.1193 · 10−2 3.47 · 102

I
W-tGKTp - - 34.11 4.0797 · 10−2 8.24 · 102

WG-tGKTp - - 34.11 4.0829 · 10−2 1.42 · 103

WGG-tGKT 54 2.12 · 104 34.11 4.0835 · 10−2 4.01 · 102

D2

W-tGKTp - - 34.19 4.0441 · 10−2 6.16 · 102

WG-tGKTp - - 34.14 4.0648 · 10−2 1.12 · 103

WGG-tGKT 48 1.42 · 104 34.15 4.0632 · 10−2 3.20 · 102

10−2

D1

W-tGKTp - - 31.01 5.8289 · 10−2 3.95 · 101

WG-tGKTp - - 31.38 5.5858 · 10−2 7.12 · 101

WGG-tGKT 12 7.44 · 102 31.38 5.5860 · 10−2 2.01 · 101

I
W-tGKTp - - 31.00 5.8410 · 10−2 3.68 · 101

WG-tGKTp - - 31.47 5.5285 · 10−2 7.01 · 101

WGG-tGKT 12 8.71 · 102 31.47 5.5290 · 10−2 1.98 · 101

D2

W-tGKTp - - 31.52 5.5006 · 10−2 4.14 · 101

WG-tGKTp - - 31.70 5.3875 · 10−2 7.51 · 101

WGG-tGKT 11 3.65 · 103 31.64 5.4267 · 10−2 1.98 · 101

Table 4: Results for the W-tGKTp, WG-tGKTp, and WGG-tGKT methods when applied to the restoration
of gray-scale video frames.

the bidiagonalization processes are required to solve the weighted Tikhonov regularization prob-
lems of our examples. This is typical for many image and video restoration problems. The use of
a regularization tensor L 6= I often results in higher quality restorations than when L = I.

The weighted t-product Golub-Kahan-Tikhonov (W-tGKT) and weighted global t-product
Golub-Kahan-Tikhonov (WG-tGKT) regularization methods for the approximate solution of (1.3)
are considered. These methods are based on the W-tGKB and WG-tGKB processes, respectively.
Independently of the choices of L considered, the W-tGKT method, which does not involve flat-
tening, yields the best or near-best quality restorations for 0.1% noise level.

The W-tGKT and WG-tGKT methods also are applied p times to determine an approximate
solution of (1.10). This leads to the W-tGKTp and WG-tGKTp methods. The weighted generalized
global t-product Golub-Kahan-Tikhonov (WGG-tGKT) method for (1.10) is also discussed. This
method differs from the W-tGKTp and WG-tGKTp methods in that it uses the WGG-tGKB
process and works with a large amount of data at a time.

The WGG-tGKT method is the fastest, while the WG-tGKTp method is the slowest, inde-
pendently of the choice of L and noise levels. Both methods involve flattening since they require
additional product definition to the t-product. Generally, working with one lateral slice of the data
tensor at a time is seen to give restorations of higher quality than working with all lateral slices
simultaneously.
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