Probability and Statistics

Quiz #7

Show all work in order to receive full credit.

1) Assume A and B are disjoint and that $P(A) + P(B) = 1$. Then if C is any other event such that $P(C) \neq 0$ or 1, then Baye’s theorem says

$$P(A|C) = \frac{P(C|A) \times P(A)}{P(C|A) \times P(A) + P(C|B) \times P(B)}$$

2a) The binomial coefficient $n \choose k$ is given by the formula

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

b) Evaluate $\binom{5}{2}$.

$$\binom{5}{2} = 10.$$

3a) If X is binomially distributed with parameters n and p, then the mean of X is np and the standard deviation of X is $\sqrt{np(1-p)}$.

b) Assume that $\hat{p} = \frac{X}{n}$ where X is distributed binomially with parameters n and p. Find the variance \hat{p} showing every step as you proceed.

$$\sigma_{\hat{p}}^2 = \frac{\sigma_X^2}{n} = \frac{1}{n^2} np(1-p) = \frac{n(1-p)}{n}.$$

4) Assume that $\mu_{X_i} = \mu$ and $\sigma_{X_i} = \sigma$ for all $i \in \{0,1,2,..,n\}$ where μ and σ are the population mean and standard deviation respectively. What is $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$, where \bar{X} is the sample mean (you do not need to show steps)?

$$\mu_{\bar{X}} = \mu$$ and $$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}.$$

5) The central limit theorem says that under certain conditions, the sample mean is approximately (put a distribution here with mean and standard deviation) $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ if n is sufficiently large.