Real Analysis II

Instructor: Dmitry Ryabogin

Assignment I.

- 1. **Problem 1.** Compute $1_{[0,1]} * 1_{[0,1]}(x), x \in \mathbf{R}$.
- 2. **Problem 2.** Let f be a periodic (with period 1) integrable function on the real line, satisfying $\int_{0}^{1} f(t)dt = 0$. Prove that $\forall \alpha \in (0,1)$ there exists a set $A_{\alpha} \subset \mathbf{R}$ such that $\int_{A_{\alpha}} f(t)dt = 0$, and $m(A_{\alpha}) = \alpha$.

Hint. Where is Fubini? (periodicity is important!)

- 3. **Problem 3.** Prove that (f * g) * h = f * (g * h), provided f, g, h are integrable on the real line.
- 4. Problem 4. Put $\phi(t) = 1 \cos t$ if $0 \le t \le 2\pi$, $\phi(t) = 0$ for all other real t. For $-\infty < x < \infty$, define

$$f(x) = 1,$$
 $g(x) = \phi'(x),$ $h(x) = \int_{-\infty}^{x} \phi(t)dt.$

Verify the following statements about convolutions of these functions:

(i) f * g(x) = 0 for all x.

(ii)
$$g * h(x) = \phi * \phi(x) > 0$$
 on $(0, 4\pi)$.

(iii) Therefore (f * g) * h = 0, whereas f * (g * h) is a positive constant. But convolution is supposedly associative, by Fubini Theorem (see Problem 2). What went wrong?

5. **Problem 5.**

Use Fubini Theorem and the relation

$$\frac{1}{x} = \int_{0}^{\infty} e^{-xt} dt, \qquad x > 0,$$

to prove that

$$\lim_{A \to \infty} \int_{0}^{A} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

6. **Problem 6.** Suppose A is a measurable subset of the real line, having finite positive measure. Show that the convolution $1_A * 1_A$ is continuous and not identically 0. Use this to prove that A + A contains a segment.