Real Analysis II

Instructor: Dmitry Ryabogin

Assignment I.

1. Problem 1. Compute $1_{[0,1]} * 1_{[0,1]}(x), x \in \mathbf{R}$.
2. Problem 2. Let f be a periodic (with period 1) integrable function on the real line, satisfying $\int_{0}^{1} f(t) d t=0$. Prove that $\forall \alpha \in(0,1)$ there exists a set $A_{\alpha} \subset \mathbf{R}$ such that $\int_{A_{\alpha}} f(t) d t=0$, and $m\left(A_{\alpha}\right)=\alpha$.
Hint. Where is Fubini? (periodicity is important!)
3. Problem 3. Prove that $(f * g) * h=f *(g * h)$, provided f, g, h are integrable on the real line.
4. Problem 4. Put $\phi(t)=1-\cos t$ if $0 \leq t \leq 2 \pi, \phi(t)=0$ for all other real t. For $-\infty<x<\infty$, define

$$
f(x)=1, \quad g(x)=\phi^{\prime}(x), \quad h(x)=\int_{-\infty}^{x} \phi(t) d t .
$$

Verify the following statements about convolutions of these functions:
(i) $f * g(x)=0$ for all x.
(ii) $g * h(x)=\phi * \phi(x)>0$ on $(0,4 \pi)$.
(iii) Therefore $(f * g) * h=0$, whereas $f *(g * h)$ is a positive constant. But convolution is supposedly associative, by Fubini Theorem (see Problem 2). What went wrong?

5. Problem 5.

Use Fubini Theorem and the relation

$$
\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t, \quad x>0
$$

to prove that

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

6. Problem 6. Suppose A is a measurable subset of the real line, having finite positive measure. Show that the convolution $1_{A} * 1_{A}$ is continuous and not identically 0 . Use this to prove that $A+A$ contains a segment.
