Real Analysis II.

Instructor: Dmitry Ryabogin

Assignment X.

1. Problem 1.

In class we considered the determinant D_m of the matrix, $(d_{ij})_{1 \le i,j \le m}$, $d_{ij} = (a_i + b_i)^{-1}$, and showed that

$$D_m = P_m / C_m, \qquad C_m = \prod_{i,j=1}^m (a_i + b_j),$$

where P_m is a polynomial of a_i and b_j .

- a) Prove that $deg(P_m) \leq m^2 m$.
- b) Prove that $deg(A_m B_m) = m^2 m$,

$$A_m B_m = \prod_{1 \le i < j \le m} (a_i - a_j) \prod_{1 \le i < j \le m} (b_i - b_j).$$

c) Prove that

$$\lim_{a_m \to \infty} \lim_{b_m \to \infty} \frac{a_m \prod_{1 \le i < j \le m} (a_i - a_j) (b_i - b_j)}{\prod_{i,j=1}^m (a_i + b_j)} = \frac{\prod_{1 \le i < j \le m-1} (a_i - a_j) (b_i - b_j)}{\prod_{i,j=1}^{m-1} (a_i + b_j)}.$$

2. **Problem 2.** A point $x_0 \in C \subseteq H$ is called an **internal** point of *C* if for every $x \neq x_0$ there exists $\epsilon > 0$ such that for every $0 \leq \lambda < \epsilon$ we have $(1 - \lambda)x_0 + \lambda x \in C$.

a) Prove that every interior point is also an internal point.

b) Let x be an internal point of convex C, and let $y \in C$. Then for all $0 \le \lambda \le 1$, $\lambda x + (1 - \lambda)y$ is an internal point of C.

c) Find a set $C \subset \mathbf{R}^2$ such that the origin is an internal point of C but is not its interior point.

d) Let $\{y_{\alpha}\}_{\alpha \in A}$ be an algebraic basis of H, and let $||y_{\alpha}|| = 1 \quad \forall \alpha$. Pick a sequence $(x_n)_{n=1}^{\infty}$ of (countably many) vectors from the basis, and define C to be a set of vectors in H such that in the decomposition $y = \sum_{k=1}^{m} c_{\alpha_k} y_{\alpha_k}, m = m(y)$, the coefficient near x_n is less than 1/n in absolute value.

Prove that C is convex, that the origin is an internal point of C, but is not its interior point.

3. **Problem 3.**

Let $g_1, g_2, ..., g_n$ be vectors in $\mathbf{R}^n, g_k = (g_k(1), ..., g_k(n))$. It is known that

$$D(g_1, ..., g_n) = |det\{(d_{ij})_{1 \le i,j \le n}\}|, \qquad d_{ij} = g_j(i),$$

is a volume of a parallelepiped $\Pi_n(g_1, ..., g_n)$ generated by vectors $g_1, ..., g_n$.

a) Prove that $G(g_1, ..., g_n) = (D(g_1, ..., g_n))^2$, and conclude that $G(g_1, ..., g_n) = 0$ iff $g_1, ..., g_n$ are linearly dependent.

b) Consider $\mathbf{R}^{\mathbf{n}}$ as a sub-space of $\mathbf{R}^{\mathbf{n+1}}$, i.e.,

$$\mathbf{R}^{\mathbf{n}} = \{ x \in \mathbf{R}^{\mathbf{n+1}} : x = (x(1), x(2), ..., x(n), 0) \}.$$

Let $g_1, ..., g_n \in \mathbf{R}^n$, $x \in \mathbf{R}^{n+1}$, and let $M = span\{g_1, ..., g_n\}, d := d(x, M) = \inf_{y \in M} ||x - y||$. Prove that

$$d^2 G(g_1, ..., g_n) = G(x, g_1, ..., g_n).$$

Hint:

$$vol_{n+1}(\Pi_{n+1}(x, g_1, ..., g_n)) = vol_n(\Pi_n(g_1, ..., g_n))$$
 height.

4. **Problem 4.** Let $\alpha > 0$, $f_{\alpha}(x) = e^{\alpha x}$, and let $H = L^2(-\infty, 0)$. Compute

$$dist(f_{\alpha_0}, span\{f_{\alpha_1}, ..., f_{\alpha_m}\}),$$

provided α_j , j = 0, ..., m are pairwise different.