## Real Analysis II.

## Instructor: Dmitry Ryabogin

## Assignment X.

## 1. Problem 1.

In class we considered the determinant $D_{m}$ of the matrix, $\left(d_{i j}\right)_{1 \leq i, j \leq m}, d_{i j}=\left(a_{i}+b_{i}\right)^{-1}$, and showed that

$$
D_{m}=P_{m} / C_{m}, \quad C_{m}=\prod_{i, j=1}^{m}\left(a_{i}+b_{j}\right)
$$

where $P_{m}$ is a polynomial of $a_{i}$ and $b_{j}$.
a) Prove that $\operatorname{deg}\left(P_{m}\right) \leq m^{2}-m$.
b) Prove that $\operatorname{deg}\left(A_{m} B_{m}\right)=m^{2}-m$,

$$
A_{m} B_{m}=\Pi_{1 \leq i<j \leq m}\left(a_{i}-a_{j}\right) \Pi_{1 \leq i<j \leq m}\left(b_{i}-b_{j}\right)
$$

c) Prove that

$$
\begin{gathered}
\lim _{a_{m} \rightarrow \infty} \lim _{b_{m} \rightarrow \infty} \frac{a_{m} \Pi_{1 \leq i<j \leq m}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{i, j=1}^{m}\left(a_{i}+b_{j}\right)}= \\
\frac{\Pi_{1 \leq i<j \leq m-1}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\Pi_{i, j=1}^{m-1}\left(a_{i}+b_{j}\right)}
\end{gathered}
$$

2. Problem 2. A point $x_{0} \in C \subseteq H$ is called an internal point of $C$ if for every $x \neq x_{0}$ there exists $\epsilon>0$ such that for every $0 \leq \lambda<\epsilon$ we have $(1-\lambda) x_{0}+\lambda x \in C$.
a) Prove that every interior point is also an internal point.
b) Let $x$ be an internal point of convex $C$, and let $y \in C$. Then for all $0 \leq \lambda \leq 1$, $\lambda x+(1-\lambda) y$ is an internal point of $C$.
c) Find a set $C \subset \mathbf{R}^{\mathbf{2}}$ such that the origin is an internal point of $C$ but is not its interior point.
d) Let $\left\{y_{\alpha}\right\}_{\alpha \in A}$ be an algebraic basis of $H$, and let $\left\|y_{\alpha}\right\|=1 \forall \alpha$. Pick a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of (countably many) vectors from the basis, and define $C$ to be a set of vectors in $H$ such that in the decomposition $y=\sum_{k=1}^{m} c_{\alpha_{k}} y_{\alpha_{k}}, m=m(y)$, the coefficient near $x_{n}$ is less than $1 / n$ in absolute value.
Prove that $C$ is convex, that the origin is an internal point of $C$, but is not its interior point.

## 3. Problem 3.

Let $g_{1}, g_{2}, \ldots, g_{n}$ be vectors in $\mathbf{R}^{\mathbf{n}}, g_{k}=\left(g_{k}(1), \ldots, g_{k}(n)\right.$. It is known that

$$
D\left(g_{1}, \ldots, g_{n}\right)=\left|\operatorname{det}\left\{\left(d_{i j}\right)_{1 \leq i, j \leq n}\right\}\right|, \quad d_{i j}=g_{j}(i)
$$

is a volume of a parallelepiped $\Pi_{n}\left(g_{1}, \ldots, g_{n}\right)$ generated by vectors $g_{1}, \ldots, g_{n}$.
a) Prove that $G\left(g_{1}, \ldots, g_{n}\right)=\left(D\left(g_{1}, \ldots, g_{n}\right)\right)^{2}$, and conclude that $G\left(g_{1}, \ldots, g_{n}\right)=0$ iff $g_{1}, \ldots, g_{n}$ are linearly dependent.
b) Consider $\mathbf{R}^{\mathbf{n}}$ as a sub-space of $\mathbf{R}^{\mathbf{n + 1}}$, i.e.,

$$
\mathbf{R}^{\mathbf{n}}=\left\{x \in \mathbf{R}^{\mathbf{n + 1}}: x=(x(1), x(2), \ldots, x(n), 0)\right\} .
$$

Let $g_{1}, \ldots, g_{n} \in \mathbf{R}^{\mathbf{n}}, x \in \mathbf{R}^{\mathbf{n + 1}}$, and let $M=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}, d:=d(x, M)=$ $\inf _{y \in M}\|x-y\|$. Prove that

$$
d^{2} G\left(g_{1}, \ldots, g_{n}\right)=G\left(x, g_{1}, \ldots, g_{n}\right)
$$

## Hint:

$$
\operatorname{vol}_{n+1}\left(\Pi_{n+1}\left(x, g_{1}, \ldots, g_{n}\right)\right)=\operatorname{vol}_{n}\left(\Pi_{n}\left(g_{1}, \ldots, g_{n}\right)\right) \text { height. }
$$

4. Problem 4. Let $\alpha>0, f_{\alpha}(x)=e^{\alpha x}$, and let $H=L^{2}(-\infty, 0)$. Compute

$$
\operatorname{dist}\left(f_{\alpha_{0}}, \operatorname{span}\left\{f_{\alpha_{1}}, \ldots, f_{\alpha_{m}}\right\}\right)
$$

provided $\alpha_{j}, j=0, \ldots, m$ are pairwise different.

