Real Analysis II.
 Instructor: Dmitry Ryabogin

 Assignment XI.

 Assignment XI.}

1. Problem 1.

Let $0 \leq t<1$ and let $x_{t}=\left(1, t, t^{2}, \ldots, t^{k}, \ldots,\right) \in l^{2}=H$. Compute the distance between $x_{t_{0}}$ and $\operatorname{span}\left\{x_{t_{1}}, \ldots, x_{t_{m}}\right\}$, where $\left\{t_{j}\right\}_{j=0}^{m}$ are different from each other.
Hint:

$$
G\left(x_{t_{1}}, \ldots, x_{t_{m}}\right)=\left(t_{1} \ldots t_{m}\right)^{-1} \operatorname{det}\left(\left(t_{j}^{-1}-t_{i}\right)^{-1}\right)_{1 \leq i, j \leq m}
$$

2. Problem 2.

Let P, Q be projections on closed subspaces M, N of H.
a) Prove that $\operatorname{Im}(P Q)=\{y \in H: P Q y=y\}=M \cap N$, provided $P Q$ is a projection.
b) Prove that $P Q$ is a projection iff $P Q=Q P$.
c) Prove that $P+Q-P Q$ is a projection, provided $P Q$ is a projection.
d) Prove that $\operatorname{Im}(P+Q-P Q)=\{y \in H:(P+Q-P Q) y=y\}=M+N$.

3. Problem 3.

Let M be a closed subspace of H. Prove that for every $x_{0} \in H$, we have

$$
\min \left\{\left\|x-x_{0}\right\| ; x \in M\right\}=\max \left\{\left(x_{0}, y\right) ;\|y\|=1, y \in M^{\perp}\right\}
$$

4. Problem 4.

In this exercise a "projection" is a linear bounded operator $P: H \rightarrow H$, satisfying $P^{2}=P$.
a) Prove that $\operatorname{ImP}, \operatorname{Ker} P$ are closed subspaces of H and that $H=\operatorname{Im} P+\operatorname{Ker} P$.
b) Prove the converse: If $H=M+N, M \cap N=\{0\}$, where M, N are closed subspaces of H, then there exists a unique projection P with $M=\operatorname{Im} P, N=\operatorname{Ker} P$.
c) Prove that P is a projection iff $I-P$ is a projection.
d) Let $a>0$. Give an example of a projection P satisfying $\|P\|>a$.
e) Prove that a projection P is orthogonal, $(\|P x\| \leq\|x\|)$, iff $(P x, y)=(x, P y)$ for all $x, y \in H$.

5. Problem 5.

a) Let $H=C^{n}$. Assume that the matrix of a linear operator T (with respect to a standard basis) is given as $\left(a_{i j}\right)_{1 \leq i, j \leq n}$. Prove that $\|T\|^{2} \leq \sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}$.
b) Let $\left(a_{i j}\right)_{i, j=1}^{\infty}$ be an infinite Hilbert-Schmidt matrix, $\sum_{i, j=1}^{\infty}\left|a_{i j}\right|^{2}<\infty$. Prove that for every i and for every $x=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}, y_{i}=\sum_{j=1}^{\infty} a_{i j} x_{j}$ is convergent and $y=\left(y_{1}, y_{2}, \ldots\right) \in l^{2}$. Let $T x=y$. Prove that T is bounded and $\|T\|^{2} \leq \sum_{i, j=1}^{\infty}\left|a_{i j}\right|^{2}$.

