Real Analysis II. Instructor: Dmitry Ryabogin Assignment XI.

1. **Problem 1.**

Let $0 \le t < 1$ and let $x_t = (1, t, t^2, ..., t^k, ...,) \in l^2 = H$. Compute the distance between x_{t_0} and $span\{x_{t_1}, ..., x_{t_m}\}$, where $\{t_j\}_{j=0}^m$ are different from each other. **Hint**:

$$G(x_{t_1}, ..., x_{t_m}) = (t_1 ... t_m)^{-1} \det ((t_j^{-1} - t_i)^{-1})_{1 \le i,j \le m}$$

2. Problem 2.

Let P, Q be projections on closed subspaces M, N of H.

- a) Prove that $Im(PQ) = \{y \in H : PQy = y\} = M \cap N$, provided PQ is a projection.
- b) Prove that PQ is a projection iff PQ = QP.
- c) Prove that P + Q PQ is a projection, provided PQ is a projection.
- d) Prove that $Im(P + Q PQ) = \{y \in H : (P + Q PQ)y = y\} = M + N.$

3. Problem 3.

Let M be a closed subspace of H. Prove that for every $x_0 \in H$, we have

$$\min\{\|x - x_0\|; x \in M\} = \max\{(x_0, y); \|y\| = 1, y \in M^{\perp}\}$$

4. Problem 4.

In this exercise a "projection" is a linear bounded operator $P: H \to H$, satisfying $P^2 = P$.

- a) Prove that ImP, KerP are closed subspaces of H and that H = ImP + KerP.
- b) Prove the converse: If H = M + N, $M \cap N = \{0\}$, where M, N are closed subspaces
- of H, then there exists a unique projection P with M = ImP, N = KerP.
- c) Prove that P is a projection iff I P is a projection.
- d) Let a > 0. Give an example of a projection P satisfying ||P|| > a.

e) Prove that a projection P is orthogonal, $(||Px|| \le ||x||)$, iff (Px, y) = (x, Py) for all $x, y \in H$.

5. **Problem 5.**

a) Let $H = C^n$. Assume that the matrix of a linear operator T (with respect to a standard basis) is given as $(a_{ij})_{1 \le i, j \le n}$. Prove that $||T||^2 \le \sum_{i,j=1}^n |a_{ij}|^2$.

b) Let $(a_{ij})_{i,j=1}^{\infty}$ be an infinite Hilbert-Schmidt matrix, $\sum_{i,j=1}^{\infty} |a_{ij}|^2 < \infty$. Prove that for every *i* and for every $x = (x_1, x_2, ...) \in l^2$, $y_i = \sum_{j=1}^{\infty} a_{ij}x_j$ is convergent and $y = (y_1, y_2, ...) \in l^2$. Let Tx = y. Prove that *T* is bounded and $||T||^2 \leq \sum_{i,j=1}^{\infty} |a_{ij}|^2$.