Real Analysis II.
 Instructor: Dmitry Ryabogin
 Assignment XII.

1. Problem 1.

Let $e_{n}=(0, \ldots, 0,1,0, \ldots, 0, \ldots),(1$ stands on nth place $), n=1,2, \ldots$, be a sequence of vectors of l^{2}. In the case $H=l^{2}$ give a direct proof of the Riesz theorem by showing that for any linear bounded functional on l^{2} we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|f\left(e_{n}\right)\right|^{2}<\infty \tag{1}
\end{equation*}
$$

Hint: Assume that (1) is not true, then there are disjoint subsets E_{k} of natural numbers, $k=1,2, \ldots$, so that

$$
\sum_{n \in E_{k}}\left|f\left(e_{n}\right)\right|^{2}>1
$$

Define x_{n} so that $x_{n}=c_{k} f\left(e_{n}\right)$ for $n \in E_{k}$. For suitably chosen c_{k},

$$
\sum_{n=1}^{\infty} x_{n} f\left(e_{n}\right)=\infty
$$

although

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty
$$

2. Problem 2.

Let $\left\{x_{n}\right\}, n=1,2,3, \ldots$ be a linearly independent system (set) of vectors on H.
a) Show that the following construction yields an orthonormal system u_{n} such that $\left\{x_{1}, \ldots x_{N}\right\}$ and $\left\{u_{1}, \ldots, u_{N}\right\}$ have the same span for all N.
Hint: Put $u_{1}=x_{1} /\left\|x_{1}\right\|$. Having u_{1}, \ldots, u_{n-1} define

$$
v_{n}=x_{n}-\sum_{k=1}^{n-1}\left(x_{n}, u_{k}\right) u_{k}, \quad u_{n}=v_{n} /\left\|v_{n}\right\| .
$$

Note that this leads to a proof of the existence of a maximal orthonormal system in separable Hilbert spaces.
b) Let $x_{n}=x^{n-1}, n=1,2,3, \ldots$ be a linearly independent system of vectors in $L^{2}(0,1)$. What are u_{n} ?
c) Let $x_{1}=(1,0, \ldots, 0, \ldots), x_{2}=(1,1 / 2,0, \ldots, 0, \ldots), x_{3}=(1,0,1 / 4,0, \ldots, 0, \ldots), \ldots$, $x_{n}=\left(1,0, \ldots, 0,1 / 2^{n-1}, 0, \ldots, 0, \ldots\right), \ldots$ be a system of vectors in l^{2}. Are these vectors independent? Is this system orthonormal? If not, what are u_{n} ? Is it true that the closure of the linear span of $\left(x_{j}\right)_{j=1}^{\infty}$ is l^{2} ? Is $\left(x_{j}\right)_{j=1}^{\infty}$ a basis?
d) Prove that in $L^{2}([a, b])$ there are orthonormal systems consisting of polynomials, piecewise linear functions, trigonometric functions.

3. Problem 3.

a) If $A \subset[0,2 \pi]$, and A is measurable, prove that

$$
\lim _{n \rightarrow \infty} \int_{A} \cos (n x) d x=\lim _{n \rightarrow \infty} \int_{A} \sin (n x) d x=0 .
$$

Hint: $1_{A} \in L^{2}([0,2 \pi])$.
b) Let $n_{1}<n_{2}<n_{3}<\ldots$ be positive integers, and let E be the set of all $x \in[0,2 \pi]$ at which $\left\{\sin \left(n_{k} x\right)\right\}$ converges. Prove that $\mu(E)=0$.
Hint: $2 \sin ^{2} \alpha=1-\cos (2 \alpha)$, so $\sin \left(n_{k} x\right) \rightarrow \pm 1 / \sqrt{2}$ a.e. on E.

