Real Analysis II.

 Instructor: Dmitry Ryabogin

 Instructor: Dmitry Ryabogin}

Assignment II.

1. Problem 1. Suppose V is an open set in R^{k}, T maps V into R^{k}, and $x \in V$. The map T is called differentiable at x if there exists a linear operator A on R^{k} and a map $\alpha_{x}: V \rightarrow R^{k}$ such that

$$
T(x+h)-T(x)=A h+\alpha_{x}(h), \quad \lim _{|h| \rightarrow 0} \frac{\left|\alpha_{x}(h)\right|}{|h|}=0 .
$$

Prove that A is unique.
Hint. Observe that

$$
\frac{\left|\alpha_{x}(\lambda h)\right|}{|\lambda h|}|h| \rightarrow 0,
$$

provided $\lambda \in R, \lambda \rightarrow 0$.

2. Problem 2.

a) For $n=1,2,3, \ldots$ we let P_{n} be the set of all $x \in R^{k}$ whose coordinates are integral multiples of 2^{-n}, and we let Ω_{n} be the collection of all 2^{-n} boxes with corners at points of P_{n}. Prove that every nonempty open set in R^{k} is a countable union of disjoint boxes belonging to $\Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \cup \ldots$.
b) Prove that for any positive translation-invariant Borel measure on R^{k} such that $\nu(K)$ is finite for every compact set K, there exists a constant $c=c(\nu)$ such that $\nu(E)=c \mu(E)$ for all Borel sets $E \subset R^{k}$.
Hint. By a) it is enough to check b) for boxes from P_{n}. Let Q_{0} be a 1-box, put $c=\nu\left(Q_{0}\right)$. Then Q_{0} is a union of $2^{n k}$ disjoint 2^{-n} boxes that are translates of each other, and

$$
2^{n k} \nu(Q)=\nu\left(Q_{0}\right)=c \mu\left(Q_{0}\right)=c 2^{n k} \mu(Q)
$$

for every 2^{-n} box.
c) Prove that to every linear transformation T of R^{k} into R^{k} corresponds a real number $\Delta(T)$ such that $\mu(T(E))=\Delta(T) \mu(E)$ for every measurable E. In particular, $\mu(T(E))=\mu(E)$ when T is rotation.
Hint. Let $m(E)=\mu(T(E))$. Prove that m is translation-invariant and use b).
d) Let T be a linear transformation on R^{k} defined as follows: $T e_{1}=e_{1}+e_{2}, T e_{i}=e_{i}$ for $i=2,3, \ldots, k$. Assume also that Q is a cube consisting of all $x=\left(x_{1}, \ldots, x_{k}\right)$ with $0 \leq x_{k}<1$. Show that $T(Q)$ is the set of all points $\sum x_{i} e_{i}$, whose coordinates satisfy

$$
x_{1} \leq x_{2}<x_{1}+1, \quad 0 \leq x_{i}<1, i \neq 2 .
$$

Show that $\Delta(T)=|\operatorname{det} T|$.

Hint. Let S_{1} be the set of points in $T(Q)$ that have $x_{2}<1$ and let S_{2} be the rest of $T(Q)$. Observe that $S_{1} \cup\left(S_{2}-e_{2}\right)=Q$, and that $S_{1} \cap\left(S_{2}-e_{2}\right)$ is empty. Hence, $\Delta(T)=1$.

3. Problem 3.

a) Let $f \in L(R)$. Prove that for any $\epsilon>0$ there exists $g_{\epsilon} \in C(R)$ supported by a bounded interval, say $[-A, A]$, such that

$$
\int_{R}|f(x)-g(x)| d x<\epsilon
$$

b) Let $f \in L(R)$. Prove that for any $\epsilon>0$ there exists $\delta=\delta(\epsilon)$ such that

$$
\int_{R}|f(x-t)-f(y-t)| d t<\epsilon
$$

provided $|x-y|<\delta$.
c) Prove that $f * g$ is continuous on the real line, provided $f \in L(R)$ and g is bounded.
4. Problem 4. Suppose G is a subgroup of R (relative to addition), $G \neq R$, and G is Lebesgue measurable. Prove that $\mu(G)=0$.
Hint. Use the last problem of the previous assignment.
5. Problem 5*. Prove that the Cantor function is $\log _{3} 2$-Lipschitz, i.e., there exists a constant K such that for all $x, y \in[0,1]$,

$$
|c(x)-c(y)| \leq K|x-y|^{\log _{3} 2} .
$$

