
Real Analysis II.

Instructor: Dmitry Ryabogin

Assignment III.

1. Problem 1. Let T (x, y) = (f(x, y), g(x, y)) be a map from R2 to R2 defined as follows

f(x, y) = g(x, y) =
x2y

x2 + y2
, (x, y) 6= (0, 0), f(0, 0) = g(0, 0) = 0.

a) Is T continuous at (0, 0)?

b) Do partial derivatives ∂f
∂x

(0, 0), ∂f
∂y

(0, 0) exist?

c) Is T differentiable at (0, 0)?

2. Problem 2. Complex differentiation.

A function (a map) l : C → C is called R-linear (C-linear), if

l(z1 + z2) = l(z1) + l(z2)∀z1, z2 ∈ C, l(λz) = λl(z) ∀λ ∈ R, ∀z ∈ C

( l(z1 + z2) = l(z1) + l(z2)∀z1, z2 ∈ C, l(λz) = λl(z) ∀λ ∈ C, ∀z ∈ C).

a) Prove that any R-linear function is of the form

l(z) = az + bz̄, a =
1

2
(α− iβ), b =

1

2
(α + iβ), α = l(1), β = l(i).

b) Prove that any C-linear function is of the form

l(z) = az, a = l(1).

c) Prove that an R-linear function is C-linear iff l(iz) = il(z).

d) Compute the Jacobian of an R-linear map and of a C-linear map. What geometric
conclusions can you make from the computation?

e) Let z ∈ U ⊆ C. A function f : U → C is called R-differentiable (C-differentiable)
at the point z, provided

f(z + h)− f(z) = l(h) + α(z, h), lim
h→0

α(z, h)

h
= 0,

where l is an R-linear (C-linear) function. Thus,

f(z + h)− f(z) = ah + bh̄ + α(z, h), lim
h→0

α(z, h)

h
= 0.

Prove that
∂f

∂x
= a + b, −i

∂f

∂y
= a− b,



or

a =
1

2

(∂f

∂x
− i

∂f

∂y

)
, b =

1

2

(∂f

∂x
+ i

∂f

∂y

)
.

f) Complex Analysis starts with the notion of C-differentiability. The above formulas
show that C-differentiability yields b = 0. Prove that for f = u + iv the condition
b = 0 can be written as

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

the so-called Cauchy-Riemann equations.

g) Observe that f(z) = x + 2iy is nowhere differentiable in the complex sense.

3. Problem 3. Polar coordinates.

a) Let P := {x ∈ Rk : x = ((a − t)x1, (a− t)x2, ..., (a − t)xk−1, t)}, (x1, ..., xk−1) ∈ A,
t ∈ [0, a] be a pyramid in Rk with a base A ⊂ Rk−1 and height a. Prove that

volk(P ) =
a

k
volk−1(A).

Hint. Use Fubini.

b) Let vk be the volume of the Euclidean ball (of radius 1) in Rk, and let σk−1 be its
surface area. Prove that σk−1 = k vk.

c) Let Sk−1 be the unit sphere. Show that every x ∈ Rk, except for x = 0, has a unique
representation of the form x = ru, where r is a positive real number and u ∈ Sk−1.
Thus, Rk may be regarded as a product (0,∞)× Sk−1.

d) Let mk be Lebesgue measure on Rk, and define a measure σk−1 on Sk−1 as follows:
if A ⊆ Sk−1 and A is a Borel set, let Ã be the set of all points ru, where 0 < r < 1
and u ∈ A, and define σk−1(A) = k mk(Ã). Prove the formula

∫

Rk

fdmk =

∞∫

0

rk−1dr

∫

Sk−1

f(ru)dσk−1(u)

for every nonnegative Borel function f on Rk.

Hint. If 0 < r1 < r2 and if A is an open subset of Sk−1, let E be the set of all ru with
r1 < r < r2, u ∈ A, and verify the formula for the characteristic function of E. Then
approximate.

e) Check that the above formula coincides with familiar results when k = 2 and k = 3.

f) It is convenient to normalize integrals as above by pulling out the factor kvk, and
write ∫

Rk

fdmk = kvk

∞∫

0

rk−1dr

∫

Sk−1

f(ru)dσ(u), σ(Sk−1) = 1.



Compute vk using the following trick: integrate the function f(x) = exp{−1
2

k∑
j=1

x2
j}

in both ways. This function is at once invariant under rotations and a product of
functions depending on separate coordinates. Hence,

∫

Rk

fdmk = Πk
j=1

∫

R

e−x2
j/2dxj = (2π)k/2 = kvk

∞∫

0

rk−1e−r2/2dr = vk2
k/2Γ(k/2 + 1),

and find vk.

g) It is known that

Γ
(k

2
+ 1

)
≈
√

2πe−k/2
(k

2

)(k+1)/2

.

Conclude that vk is roughly (2πe/k)k/2. This is extremely small when k is large. What
is going on?


