Real Analysis II.

 Instructor: Dmitry Ryabogin

 Instructor: Dmitry Ryabogin}

Assignment III.

1. Problem 1. Let $T(x, y)=(f(x, y), g(x, y))$ be a map from R^{2} to R^{2} defined as follows

$$
f(x, y)=g(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0), \quad f(0,0)=g(0,0)=0
$$

a) Is T continuous at $(0,0)$?
b) Do partial derivatives $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ exist?
c) Is T differentiable at $(0,0)$?

2. Problem 2. Complex differentiation.

A function (a map) $l: \mathbf{C} \rightarrow \mathbf{C}$ is called R-linear (C-linear), if

$$
\begin{aligned}
l\left(z_{1}+z_{2}\right)=l\left(z_{1}\right)+l\left(z_{2}\right) \forall z_{1}, z_{2} \in \mathbf{C}, & & l(\lambda z)=\lambda l(z) \forall \lambda \in R, \forall z \in \mathbf{C} \\
\left(l\left(z_{1}+z_{2}\right)=l\left(z_{1}\right)+l\left(z_{2}\right) \forall z_{1}, z_{2} \in \mathbf{C},\right. & & l(\lambda z)=\lambda l(z) \forall \lambda \in \mathbf{C}, \forall z \in \mathbf{C}) .
\end{aligned}
$$

a) Prove that any R-linear function is of the form

$$
l(z)=a z+b \bar{z}, \quad a=\frac{1}{2}(\alpha-i \beta), b=\frac{1}{2}(\alpha+i \beta), \alpha=l(1), \beta=l(i) .
$$

b) Prove that any \mathbf{C}-linear function is of the form

$$
l(z)=a z, \quad a=l(1)
$$

c) Prove that an R-linear function is \mathbf{C}-linear iff $l(i z)=i l(z)$.
d) Compute the Jacobian of an R-linear map and of a C-linear map. What geometric conclusions can you make from the computation?
e) Let $z \in U \subseteq \mathbf{C}$. A function $f: U \rightarrow \mathbf{C}$ is called R-differentiable (\mathbf{C}-differentiable) at the point z, provided

$$
f(z+h)-f(z)=l(h)+\alpha(z, h), \quad \lim _{h \rightarrow 0} \frac{\alpha(z, h)}{h}=0
$$

where l is an R-linear (\mathbf{C}-linear) function. Thus,

$$
f(z+h)-f(z)=a h+b \bar{h}+\alpha(z, h), \quad \lim _{h \rightarrow 0} \frac{\alpha(z, h)}{h}=0 .
$$

Prove that

$$
\frac{\partial f}{\partial x}=a+b, \quad-i \frac{\partial f}{\partial y}=a-b,
$$

or

$$
a=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad b=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

f) Complex Analysis starts with the notion of C-differentiability. The above formulas show that C-differentiability yields $b=0$. Prove that for $f=u+i v$ the condition $b=0$ can be written as

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x},
$$

the so-called Cauchy-Riemann equations.
g) Observe that $f(z)=x+2 i y$ is nowhere differentiable in the complex sense.

3. Problem 3. Polar coordinates.

a) Let $P:=\left\{x \in R^{k}: x=\left((a-t) x_{1},(a-t) x_{2}, \ldots,(a-t) x_{k-1}, t\right)\right\},\left(x_{1}, \ldots, x_{k-1}\right) \in A$, $t \in[0, a]$ be a pyramid in R^{k} with a base $A \subset R^{k-1}$ and height a. Prove that

$$
\operatorname{vol}_{k}(P)=\frac{a}{k} \operatorname{vol}_{k-1}(A) .
$$

Hint. Use Fubini.
b) Let v_{k} be the volume of the Euclidean ball (of radius 1) in R^{k}, and let σ_{k-1} be its surface area. Prove that $\sigma_{k-1}=k v_{k}$.
c) Let S^{k-1} be the unit sphere. Show that every $x \in R^{k}$, except for $x=0$, has a unique representation of the form $x=r u$, where r is a positive real number and $u \in S^{k-1}$. Thus, R^{k} may be regarded as a product $(0, \infty) \times S^{k-1}$.
d) Let m_{k} be Lebesgue measure on R^{k}, and define a measure σ_{k-1} on S^{k-1} as follows: if $A \subseteq S^{k-1}$ and A is a Borel set, let \tilde{A} be the set of all points $r u$, where $0<r<1$ and $u \in A$, and define $\sigma_{k-1}(A)=k m_{k}(\tilde{A})$. Prove the formula

$$
\int_{R^{k}} f d m_{k}=\int_{0}^{\infty} r^{k-1} d r \int_{S^{k-1}} f(r u) d \sigma_{k-1}(u)
$$

for every nonnegative Borel function f on R^{k}.
Hint. If $0<r_{1}<r_{2}$ and if A is an open subset of S^{k-1}, let E be the set of all $r u$ with $r_{1}<r<r_{2}, u \in A$, and verify the formula for the characteristic function of E. Then approximate.
e) Check that the above formula coincides with familiar results when $k=2$ and $k=3$.
f) It is convenient to normalize integrals as above by pulling out the factor $k v_{k}$, and write

$$
\int_{R^{k}} f d m_{k}=k v_{k} \int_{0}^{\infty} r^{k-1} d r \int_{S^{k-1}} f(r u) d \sigma(u), \quad \sigma\left(S^{k-1}\right)=1
$$

Compute v_{k} using the following trick: integrate the function $f(x)=\exp \left\{-\frac{1}{2} \sum_{j=1}^{k} x_{j}^{2}\right\}$ in both ways. This function is at once invariant under rotations and a product of functions depending on separate coordinates. Hence,

$$
\int_{R^{k}} f d m_{k}=\Pi_{j=1}^{k} \int_{R} e^{-x_{j}^{2} / 2} d x_{j}=(2 \pi)^{k / 2}=k v_{k} \int_{0}^{\infty} r^{k-1} e^{-r^{2} / 2} d r=v_{k} 2^{k / 2} \Gamma(k / 2+1),
$$

and find v_{k}.
g) It is known that

$$
\Gamma\left(\frac{k}{2}+1\right) \approx \sqrt{2 \pi} e^{-k / 2}\left(\frac{k}{2}\right)^{(k+1) / 2}
$$

Conclude that v_{k} is roughly $(2 \pi e / k)^{k / 2}$. This is extremely small when k is large. What is going on?

